Midterm solutions.

Problem 1. (1) Define what it means for two groups to be isomorphic.
(2) Define the order of an element of a group. Give an example to show that the order can be infinite. No proof is necessary.

Proof.
(1) Two groups G and H are isomorphic if there exists a bijective map $f: G \rightarrow$ H s.t. f is a homomorphism. That is, f is one to one, onto and satisfies $f(x y)=f(x) f(y)$ for any two elements $x, y \in G$.
(2) Let G be a group and $x \in G$. The order of x is $n \in \mathbb{Z}$ if n is the smallest positive number for which $x^{n}=e$. This is equivalent to saying that n is the order of the subgroup of G generated by x.

An example of an element of infinite order is the element 1 in the group \mathbb{Z} of integers under addition.

Problem 2. Let $G=\{1,2,3,4\}$ with group law multiplication modulo 5 .
(1) Describe all the subgroups of G. No proof is necessary.
(2) Describe an isomorphism ϕ from G to itself, besides $\phi(x)=x$. No proof is necessary.

Proof.
(1) Since any element of G other than 1 generates G, there are two subgroups: $\{e\}$ and G.
(2) An isomorphism $\phi: G \rightarrow G$ can be defined by $\phi(x)=x^{-1}$ so $\phi(1)=1$, $\phi(2)=3, \phi(3)=3$ and $\phi(4)=4$.

Problem 3. Let G be a group and let A, B be subgroups of G. Set

$$
C=\{a \circ b \mid a \in A, b \in B\}
$$

(1) Prove that, if G is abelian, then C is a subgroup.
(2) Give an example to show that C need not be a subgroup.

Proof.
(1) Since G is a group, C is a subset of G. We need to show:

Closed under group law: Let $c=a \circ b$ and $c^{\prime}=a^{\prime} \circ b^{\prime}$ be in C with $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. Then $(a \circ b) \circ\left(a^{\prime} \circ b^{\prime}\right)=\left(a \circ a^{\prime}\right) \circ\left(b \circ b^{\prime}\right)$ since G is abelian. Since A, B are subgroups of $G, a \circ a^{\prime} \in A$ and $b \circ b^{\prime} \in B$. Thus $c \circ c^{\prime} \in C$ so C is closed under the group law.
Identity: Since A, B are subgroups of $G, e \in A, B$. Thus $e \circ e=e \in C$.
Inverses: Let $c=a \circ b \in C$ with $a \in A, b \in B$. Since A, B are subgroups of G, we have that $a^{-1} \in A, b^{-1} \in B$ so $a^{-1} \circ b^{-1} \in C$. Then $(a \circ b) \circ\left(a^{-1} \circ b^{-1}\right)=\left(a \circ a^{-1}\right) \circ\left(b \circ b^{-1}\right)=e$ since G is abelian. Thus every element of C has an inverse.
Associativity: Since C is a subset of G, multiplication in C is associative.
Therefore C is a group if G is abelian.
(2) Let $G=S_{3}$, let $A=\{e,(12)\}$ and let $B=\{e,(13)\}$. Then $C=\{e,(12)$, (13), (12) $(13)=(132)\}$. But C is not a subgroup of S_{3} because $(132)^{2}=$ (123) in not in C.

Problem 4. (1) Let G be a group of order 27 and $x \in G$. Suppose also that x^{9} is not the identity. Prove that G is cyclic.
(2) Prove that S_{4} is not isomorphic to the dihedral group of order 24. [Hint: how many elements of order 3 in both groups?]

Proof.
(1) First note that x is a fixed element (so x doesn't stand for any arbitrary element of G.) The order of x divides the order of G. Since the order of G is 27 , the order of x is $1,3,9$ or 27 . If the order of x were 1,3 , or 9 we could take $\left(x^{1}\right)^{9},\left(x^{3}\right)^{3}$ or x^{9} and see that the result would be the identity. But any of those three expressions are equal to x^{9}. We are given that x^{9} is not the identity. So the order of x cannot be 1,3 , or 9 . Therefore the order of x is 27 .

Take the group generated by x. It is $<x\rangle=\left\{e, x, x^{2}, \ldots, x^{26}\right\}$. All of the elements in this set are distinct. There are 27 elements in $\langle x\rangle$ and 27 elements in G so we must have $\langle x\rangle=G$. Thus G is generated by x. Therefore G is cyclic.
(2) There are 8 elements of order 3 in S_{4}. They are the three-cycles (123), (132), (134), (143), (124), (142), (234), and (243).

The dihedral group of order 24 is D_{12} since D_{n} has $2 n$ elements. D_{12} has two elements of order 2. They are r^{4} and r^{8}. (These are the only rotations of order 3. All reflections have order 2.)

If $f: D_{4} \rightarrow S_{4}$ were an isomorphism, it would send elements of order 3 to elements of order 3. And since f is a bijection, it would have to send distinct elements of order 3 in S_{4} to distinct elements of order 3 in D_{4}. But the number of elements of order 3 in S_{4} and D_{4} are different, so there cannot be a bijection between them. So there is no isomorphism between S_{4} and D_{4}. Therefore S_{4} and D_{4} are not isomorphic.

Problem 5. Let $f: S_{n} \rightarrow H$ be a homomorphism where H is an abelian group.
(1) Show that if τ, τ^{\prime} are transpositions, then $f(\tau)=f\left(\tau^{\prime}\right)$. [Hint: Briefly explain why every transposition τ is of the form $\alpha(12) \alpha^{-1}$ for some $\alpha \in S_{n}$.
(2) Prove that there are exactly two homomorphisms $f: S_{n} \rightarrow\{ \pm 1\}$.

Proof.
(1) First we show the hint. Let $\tau=(a b)$ be a transposition. Let $\alpha=(1 a)(2 b)$ so $\alpha^{-1}=(2 b)(1 a)$. Then note that the element $(1 a)(2 b)(12)(2 b)(1 a)$ is actually $(a b)$. (You can figure this out by seeing that if α sends k to k^{\prime} for some k, then α^{-1} sends k^{\prime} to k. If k is neither 1 nor 2 , then (12) does nothing to it. And then α would put the k back to k^{\prime}. So $\alpha(12) \alpha^{-1}$ only moves numbers that α^{-1} sends to 1 or 2 . Then you say, I want α^{-1} to send a to 1 and b to 2 , and you build such an α.) In any case, this shows that for any transposition τ there is an α s.t. $\tau=\alpha(12) \alpha^{-1}$.

Let $f: S_{n} \rightarrow H$ be a homomorphism. We will now show that $f(\tau)=$ $f(12)$ for any transposition τ. From this we can conclude that $f(\tau)=f\left(\tau^{\prime}\right)$ for any two transpositions τ and τ^{\prime}. So write $\tau=\alpha(12) \alpha^{-1}$. Then $f(\tau)=$ $f\left(\alpha(12) \alpha^{-1}\right)$. Since f is a homomorphism, this is just $f(\alpha) f(12) f\left(\alpha^{-1}\right)=$ $f(\alpha) f(12) f(\alpha)^{-1}$. Since H is abelian, we finally get that $f(\tau)=f(12)$.

Since $f(\tau)=f(12)$ for any transposition τ, we have shown that if H is abelian, $f(\tau)=f\left(\tau^{\prime}\right)$.
(2) Note that $H=\{ \pm 1\}$ is an abelian group. So if $f: S_{n} \rightarrow H$ is a homomorphism, then f sends all the transpositions to the same place. So either all the transpositions get mapped to 1 , or all the transpositions get mapped to -1 .
S_{n} is generated by transpositions. So for any $\alpha \in S_{n}, \alpha$ can be written as a product of transpositions. That is, $\alpha=\tau_{1} \tau_{2} \cdots \tau_{n}$ where τ_{i} is a transposition for all i. Since f is a homomorphism, $f(\alpha)=f\left(\tau_{1}\right) f\left(\tau_{2}\right) \cdots f\left(\tau_{n}\right)$. If f sends all transpositions to 1 , then $f(\alpha)=1$ for all α. If f sends all transpositions to -1 , then $f(\alpha)=(-1)^{n}$ which is 1 if n is even and -1 if n is odd.

So there are exactly two possible homomorphisms f. The first is the one that sends every element to 1 . The second is the one that sends even permutations to 1 and odd permutations to -1 .

