Midterm solutions.

Problem 1. (1) Define what it means for two groups to be isomorphic.
(2) Define the order of an element of a group. Give an example to show that
the order can be infinite. No proof is necessary.

Proof.

(1) Two groups G and H are isomorphic if there exists a bijective map f : G —
H s.t. f is a homomorphism. That is, f is one to one, onto and satisfies
flxy) = f(z)f(y) for any two elements z,y € G.

(2) Let G be a group and € G. The order of z is n € Z if n is the smallest
positive number for which 2™ = e. This is equivalent to saying that n is
the order of the subgroup of G generated by x.

An example of an element of infinite order is the element 1 in the group
Z of integers under addition.
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Problem 2. Let G = {1,2,3,4} with group law multiplication modulo 5.

(1) Describe all the subgroups of G. No proof is necessary.
(2) Describe an isomorphism ¢ from G to itself, besides ¢(z) = z. No proof is

necessary.
Proof.
(1) Since any element of G other than 1 generates G, there are two subgroups:
{e} and G.

(2) An isomorphism ¢ : G — G can be defined by ¢(z) = 27! so ¢(1) = 1,
6(2) = 3, $(3) = 3 and G(1) = 4.
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Problem 3. Let G be a group and let A, B be subgroups of G. Set
C={aoblaec A,be B}

(1) Prove that, if G is abelian, then C is a subgroup.
(2) Give an example to show that C' need not be a subgroup.

Proof.

(1) Since G is a group, C' is a subset of G. We need to show:

Closed under group law: Let ¢c = aob and ¢/ = a’ o b’ be in C with
a,a’ € Aand b,/ € B. Then (aob)o(a’ob') =(aoca’)o(bol) since
G is abelian. Since A, B are subgroups of G, aoa’ € A and bol/ € B.
Thus co ¢ € C so C is closed under the group law.

Identity: Since A, B are subgroups of G, e € A, B. Thuseoe=¢ € C.

Inverses: Let c = aob e C witha € A,b € B. Since A, B are subgroups
of G, we have that a™' € A4, b' € Bsoa'ob ! € C. Then
(aob)o(a=tob™t)=(acat)o(bob™!) = e since G is abelian. Thus
every element of C' has an inverse.

Associativity: Since C is a subset of G, multiplication in C' is associa-
tive.

Therefore C is a group if G is abelian.
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(2) Let G = S3, let A = {e,(12)} and let B = {e, (13)}. Then C = {e, (12),

(13), (12)(13) = (132)}. But C is not a subgroup of S3 because (132)% =
(123) in not in C.

O

Problem 4. (1) Let G be a group of order 27 and x € G. Suppose also that

(2)

Proof.
(1)

2% is not the identity. Prove that G is cyclic.
Prove that Sy is not isomorphic to the dihedral group of order 24. [Hint:
how many elements of order 3 in both groups?|

First note that x is a fixed element (so x doesn’t stand for any arbitrary
element of G.) The order of z divides the order of G. Since the order of
G is 27, the order of z is 1, 3, 9 or 27. If the order of x were 1, 3, or 9 we
could take (z1)?, (22)2 or 2 and see that the result would be the identity.
But any of those three expressions are equal to 2°. We are given that z° is
not the identity. So the order of x cannot be 1,3, or 9. Therefore the order
of = is 27.

Take the group generated by z. It is < x >= {e,z,2?,...,2%°}. All of
the elements in this set are distinct. There are 27 elements in < x > and
27 elements in G so we must have < x >= G. Thus G is generated by z.
Therefore G is cyclic.

There are 8 elements of order 3 in Sy. They are the three-cycles (123),
(132), (134), (143), (124), (142), (234), and (243).

The dihedral group of order 24 is D5 since D,, has 2n elements. D15 has
two elements of order 2. They are r* and r8. (These are the only rotations
of order 3. All reflections have order 2.)

If f: Dy — Sy were an isomorphism, it would send elements of order 3
to elements of order 3. And since f is a bijection, it would have to send
distinct elements of order 3 in S; to distinct elements of order 3 in Dy.
But the number of elements of order 3 in S4 and D, are different, so there
cannot be a bijection between them. So there is no isomorphism between
Sy and Dy4. Therefore Sy and D, are not isomorphic.
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Problem 5. Let f : .S, — H be a homomorphism where H is an abelian group.

(1)

(2)
Proof.
1)

Show that if 7,7' are transpositions, then f(7) = f(7/). [Hint: Briefly
explain why every transposition 7 is of the form a(12)a~! for some a € S,,.
Prove that there are exactly two homomorphisms f : S,, — {£1}.

First we show the hint. Let 7 = (ab) be a transposition. Let o = (1a)(2b)
so a~! = (2b)(la). Then note that the element (1a)(2b)(12)(2b)(1a) is
actually (ab). (You can figure this out by seeing that if o sends k to &’
for some k, then a~! sends k' to k. If k is neither 1 nor 2, then (12) does
nothing to it. And then a would put the k back to k¥’. So a(12)a~! only
moves numbers that o' sends to 1 or 2. Then you say, I want o' to send
a to 1 and b to 2, and you build such an «.) In any case, this shows that
for any transposition 7 there is an a s.t. 7 = a(12)a~1.
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Let f : S, — H be a homomorphism. We will now show that f(r
f(12) for any transposition 7. From this we can conclude that f(7) =
for any two transpositions 7 and 7/. So write 7 = a(12)a~!. Then f(7)
fla(12)a™t). Since f is a homomorphism, this is just f(a)f(12)f(a™t)
fla)f(12)f(a)~t. Since H is abelian, we finally get that f(7) = f(12).

Since f(7) = f(12) for any transposition 7, we have shown that if H is

abelian, f(7) = f(7').
Note that H = {£1} is an abelian group. So if f : S,, — H is a homomor-
phism, then f sends all the transpositions to the same place. So either all
the transpositions get mapped to 1, or all the transpositions get mapped
to -1.

S, is generated by transpositions. So for any « € S,,, « can be written
as a product of transpositions. That is, a = 775 - - - 7, where 7; is a trans-
position for all . Since f is a homomorphism, f(«) = f(m1)f(72) - f(m).
If f sends all transpositions to 1, then f(a) = 1 for all a. If f sends all
transpositions to -1, then f(a) = (—=1)" which is 1 if n is even and -1 if n
is odd.

So there are exactly two possible homomorphisms f. The first is the
one that sends every element to 1. The second is the one that sends even
permutations to 1 and odd permutations to -1.
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