In this homework, for \(f \) a polynomial of degree \(n \), we use “Galois group of \(f \)” as a shorthand for the Galois group of the splitting field of \(f \), considered as a subgroup of \(S_n \) via its action on the \(n \) roots of \(f \).

1. Let \(f \in \mathbb{Q}[X] \) be a polynomial with distinct roots \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \), and define the discriminant
\[
\Delta_f = \prod_{i < j} (\alpha_i - \alpha_j)^2 \in \mathbb{Q}.
\]
Prove that this quantity is a square if and only if the Galois group of \(f \) is contained in \(A_n \). Deduce that \(\mathbb{Q}[x]/f(x) \) is Galois for \(f = X^3 - 3X - 1 \) but not for \(f = X^3 - 3X - 3 \).

2. Let \(L/\mathbb{Q} \) be a splitting field for \(X^5 - 2 \in \mathbb{Q}[X] \). Show that \(L = \mathbb{Q}(\alpha, \zeta) \) with \(\alpha^5 = 2 \) and \(\zeta^5 = 1 \) with \(\zeta \neq 1 \), and that \([L : \mathbb{Q}] = 20 \). Rigorously describe \(\text{Gal}(L/\mathbb{Q}) \) as a semi-direct product, and determine all intermediate fields and containments among them.

3. Prove that the Galois group of \(X^4 - 10X^2 + 1 \in \mathbb{Q}[X] \) is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) and identify all intermediate fields.

4. Prove that \(f = 2X^5 - 10X + 5 \in \mathbb{Q}[X] \) has Galois group \(S_5 \). (Hint: check that \(f \) is irreducible. Explain why this means that the Galois group acts transitively on the 5 roots. Use complex conjugation to show the Galois group contains a transposition. Deduce that \(\text{Gal}(L/\mathbb{Q}) = S_5 \).)

5. (i) For a commutative ring \(R \) and a pair of \(R \)-algebras \(A \) and \(A' \), prove that \(A \otimes_R A' \) has a unique \(R \)-algebra structure with identity \(1 \otimes 1' \) such that \((a_1 \otimes a_1')(a_2 \otimes a_2') = (a_1 a_2) \otimes (a_1' a_2') \) and the \(R \)-algebra structure recovers the underlying \(R \)-module structure.

(ii) Prove that \(V \otimes_k V' \) is nonzero for any nonzero vector spaces \(V \) and \(V' \) over a field \(k \), and deduce that if \(K \) and \(K' \) are extensions of \(k \) then \(K \otimes_k K' \) is a nonzero \(k \)-algebra. Use a maximal ideal of this algebra to construct an extension field \(F \) of \(k \) into which both \(K \) and \(K' \) embed as subfields over \(k \).

(iii) Use (ii) to show that any two fields of the same characteristic can be realized as subfields of a common field. (Hint: take \(k = \mathbb{Q} \) or \(\mathbb{F}_p \).)