Math 122, Midterm, due Friday 5pm

- You should work by yourself.
- You may consult the book or course notes, but no other sources.
- You are also welcome to consult me or the TA by email or at office hours.
- For all questions, liberal partial credit will be awarded, e.g. for working out any specific example correctly, for working out a special case of the general result, or by stating any ideas you have towards a solution.
- All vector spaces are finite-dimensional, all representations are on finite-dimensional vector spaces.

1. Let G be a group (not necessarily finite) and F a field.
 (a) Let V be a G-representation. Give an example to show that V may not be isomorphic to a direct sum of irreducible representations.
 (b) Suppose V is isomorphic to a direct sum of irreducible representations. Let $X \subset V$ be any subrepresentation. Prove that there exists a homomorphism of G-representations $\pi : V \to V$ with image X.

 Hint for (b): first construct a G-subrepresentation $Y \subset V$ so that V is the internal direct sum of X and Y.

2. Let G be an abelian group (not necessarily finite).
 (a) Explain why every irreducible representation of G over \mathbb{C} is 1-dimensional.
 (b) Deduce that, if $\rho : G \to \text{GL}(V)$ is a representation of G on a complex vector space, there exists a basis e_1, \ldots, e_n for V, with respect to which G acts by upper triangular matrices.

 Hint for (b): You may wish to use the concept of “quotient representation”: if $W \subset V$ is a subrepresentation, then G acts on the quotient V/W via $g : v + W \mapsto \rho(g)v + W$.

3. Let G be a finite group and $g \in G$ an element of order N (i.e. $g^N = e$ and N is the smallest such positive integer).
 (a) What is the characteristic polynomial of g acting on the regular representation (i.e., action of g by left multiplication on CG?)
 (b) Let $z \in \mathbb{C}$ satisfy $z^N = 1$. Prove that there exists an irreducible representation $\rho : G \to \text{GL}(V)$ on a complex vector space V so that $\rho(g)$ has z as an eigenvalue.

4. For each irreducible representation $\rho : S_5 \to \text{GL}(n, \mathbb{C})$, determine whether or not the image of ρ lies inside the subgroup $\text{SL}(n, \mathbb{C})$ of matrices with determinant 1. (There’s a character table on page 884 of the text book.)

 Hint: $g \mapsto \det(\rho(g))$ is a homomorphism $S_5 \to \mathbb{C}^\times$, i.e. a one-dimensional representation.

5. Let p be a prime, $V = \{\text{functions } \mathbb{Z}/p\mathbb{Z} \to \mathbb{C}\}$ and let $S, T \in \text{GL}(V)$ be defined by:

\[
(Sf)(x) = f(x + 1), \quad (Tf)(x) = f(x)e^{2\pi ix/p}.
\]

Prove that the subgroup G of $\text{GL}(V)$ generated by S, T is a finite group of order p^2. Compute the character χ_V of this representation of G, and prove it is an irreducible representation.

\[1\text{in other words: the smallest subgroup of } \text{GL}(V) \text{ that contains } S \text{ and } T.\]