07/2006

Brauer Loop Scheme and Orbital Varieties (P. Zinn-Justin)

Plan of the talk

- The Brauer B(1) Loop model: \diamond Definition
 - ◇ Transfer Matrix and Perron–Frobenius eigenvector
 - ◇ Multi-parameter generalization
 - $\diamond q KZ$ equation
- The Brauer Loop scheme: \diamond Degenerate matrix product; definition of the scheme
 - ◇ Torus action and Equivariant Cohomology
 - \diamond Geometric action of Brauer
 - ♦ Application: degree of the commuting variety
- Relation to Orbital Varieties: \diamond Nilpotent orbits of order 2, Orbital Varieties and B-orbits
 - \diamond From the Brauer loop scheme to B-orbits
 - ◇ Temperley–Lieb action and Hotta construction
 - ♦ Relation to Schubert varieties

References

- P. Di Francesco, P. Zinn-Justin, Inhomogeneous model of crossing loops..., math-ph/0412031.
- A. Knutson, P. Zinn-Justin, A scheme related to the Brauer loop model, math.AG/0503224.
- A. Knutson, P. Zinn-Justin, The Brauer loop scheme and orbital varieties, math.AG/0867....

The Brauer B(1) loop model $\bullet \circ \circ \circ \circ \circ$

The Brauer loop scheme

Relation to Orbital Varieties (2)

where T_n is the **transfer matrix** that adds a row to the semi-infinite cylinder.

Conjecture [PZJ '04] (now theorem [AK, PZJ '05]): these numbers are degrees of the irreducible components of the Brauer loop scheme.

Inhomogeneous Brauer model of loops [PDF, PZJ '04]

Introduce local probabilities dependent on the column i via a parameter z_i respecting **integrability** of the model (i.e. satisfying Yang–Baxter equation).

$$T_n(t|z_1, \dots, z_{2n}) = \prod_{i=1}^{2n} \left(a(t-z_i) \bigvee_{i=1}^{2n} + a(a-t+z_i) \bigvee_{i=1}^{2n} + \frac{(t-z_i)(a-t+z_i)}{2} \bigcup_{i=1}^{2n} \right)$$

$$T_n(t; z_1 \dots, z_{2n}) \Psi_n(z_1, \dots, z_{2n}) = \Psi_n(z_1, \dots, z_{2n})$$

* Polynomiality.

The $\Psi_{\pi}(z_1, \ldots, z_{2n})$ can be chosen to be coprime polynomials; they are then of total degree 2n(n-1)and of partial degree at most 2(n-1) in each z_i , with integer coefficients.

* Factorization, Recursion relations... \rightarrow entirely fixed (see next slides)

 \star Sum rule.

$$\sum_{\pi} \Psi_{\pi}(z_1, \dots, z_{2n}) = \Pr\left(\frac{z_i - z_j}{a - (z_i - z_j)^2}\right)_{1 \le i, j \le 2n} \times \prod_{1 \le i < j \le 2n} \frac{a - (z_i - z_j)^2}{z_i - z_j}$$

|i - j| > 1

Brauer algebra $B(\beta)$

 \diamond Generators e_i , f_i , $i = 1, \ldots, N-1$ and relations

 $e_i^2 = \beta e_i$ $e_i e_{i\pm 1} e_i = e_i$ $e_i e_j = e_j e_i$ |i - j| > 1

$$f_i^2 = 1$$
 $(f_i f_{i+1})^3 = 1$ $f_i f_j = f_j f_i$ $|i - j| > 1$

 $f_i e_i = e_i f_i = e_i \quad e_i f_i f_{i+1} = e_i e_{i+1} = f_{i+1} f_i e_{i+1} \quad e_{i+1} f_i f_{i+1} = e_{i+1} e_i = f_i f_{i+1} e_i \quad e_i f_j = f_j e_i$

♦ Action on link patterns: rewrite link patterns on a line

The Brauer B(1) loop model $\bullet \bullet \bullet \bullet \circ$

The Brauer loop scheme

Rational qKZ equation

$$\diamond$$
 R-matrix: $1 = \bigcirc$, $e_i = \bigcirc$, $f_i = \bigcirc$
 $a(a - u) \bigcirc + a$

$$\check{R}_{i}(u) = \frac{a(a-u) + au + (1-\beta/2)u(a-u)}{(a+u)(a-(1-\beta/2)u)}$$

Satisfies Yang–Baxter equation: $\check{R}_i(u)\check{R}_{i+1}(u+v)\check{R}_i(v) = \check{R}_{i+1}(v)\check{R}_i(u+v)\check{R}_{i+1}(u)$ and unitarity equation: $\check{R}_i(u)\check{R}_i(-u) = 1$.

Fix ϵ and consider the following system of equations:

where ρ is the rotation of link patterns.

In general, no polynomial solutions. But if $\beta = \frac{2(a-\epsilon)}{2a-\epsilon}$, there is a solution uniquely fixed by

$$\Psi_{\pi_0}^{(\epsilon)} = \prod_{\substack{1 \le i < j \le 2n \\ j-i < n}} (a + z_i - z_j) \prod_{\substack{1 \le i < j \le 2n \\ j-i > n}} (a + z_j - z_i - \epsilon) \qquad \pi_0 = \bigvee_{1 \le i < j \le 2n \atop j-i > n} (a + z_j - z_i - \epsilon)$$

Claim: when $\epsilon = 0$ we recover our eigenvector Ψ_n .

Deformed matrix product

For P, Q two $N \times N$ matrices define the product $P \bullet Q$:

$$(P \bullet Q)_{ik} = \sum_{j: (i \le j \le k) \ cyc} P_{ij}Q_{jk} \qquad i, k = 1, \dots, N$$

where $(i \le j \le k) \ cyc$ means that *i*, *j*, *k* are in cyclic order: (and $i = k \Rightarrow i = j = k$)

 $(M_N(\mathbb{C}), \bullet, +)$ associative algebra. A matrix is invertible iff its diagonal elements are non-zero.

The affine scheme E

Define in the space $M_N^0(\mathbb{C})$ of matrices with zero diagonals:

 $E := \{ M \in M_N^0(\mathbb{C}) : M \bullet M = 0 \}$

Explicitly, the equations defining the scheme E read:

$$\sum_{j:(i \le j \le k) \ cyc} M_{ij} M_{jk} = 0 \qquad \forall i, k$$

What are the components of E? what is their dimension?

Experimental answer: to simplify, in what follows we assume N even (N = 2n). Then 1) E is equidimensional:

$$E = \bigcup_{\pi} E_{\pi}$$

with dim $E_{\pi} = N^2/2$.

2) E, and each of its components, are generically reduced.

(examples in three slides...)

Torus action and equivariant cohomology

Action of $T = (\mathbb{C}^*)^{N+1}$ on $M_N(\mathbb{C})$:

$$(\mathbf{e}^{a}, \mathbf{e}^{w_{1}}, \dots, \mathbf{e}^{w_{N}}) : M_{ik} \mapsto \mathbf{e}^{a + \sum_{j:(i \leq j < k)} cyc} w_{j} M_{ik}$$

Introduce z_i , $i = 1, \ldots, N$, such that $z_{i+1} - z_i = w_i$, and $\epsilon = \sum_{i=1}^N w_i$.

Remark: if $\epsilon = 0$, then the action is simply conjugation by $diag(e^{z_1}, \ldots, e^{z_N})$ and scaling by e^a .

 \rightarrow Equivariant cohomology $H^*_T(M_N(\mathbb{C})) \subset \mathbb{C}[a, w_1, \dots, w_N] \subset \mathbb{C}[a, \epsilon, z_1, \dots, z_N]$ generated by the weights $[M_{ik}]_T = a + \sum_{j: (i \leq j < k) \ cyc} w_j$.

This action preserves the product \bullet ; therefore it preserves E and its components E_{π} .

 \rightarrow Each E_{π} is pushed forward by inclusion to some cohomology class in $H^*_T(M^0_N(\mathbb{C}))$.

Multidegrees

Algebraic formulation: Purely algebraic framework of equivariant cohomology for invariant subschemes

of a complex vector space W:

multidegree $\operatorname{mdeg}_W X$ of a *T*-invariant scheme $X \subset W$ defined by

(1) If $X = W = \{0\}$ then $m \deg_W X = 1$.

(2) If X has top-dimensional components X_i with multiplicity m_i , $\operatorname{mdeg}_W X = \sum_i m_i \operatorname{mdeg}_W X_i$.

(3) If X is a variety and H is a T-invariant hyperplane in W,

(a) If $X \not\subset H$, then $\operatorname{mdeg}_W X = \operatorname{mdeg}_H(X \cap H)$.

(b) If $X \subset H$, then $\operatorname{mdeg}_W X = [W/H]_T \operatorname{mdeg}_H X$.

Remark 1: $mdeg_W X$ is a homogeneous polynomial, of degree the codimension of X in W. Remark 2: Integral formula:

mdeg
$$X \propto \int_X d\mu(x) \exp\left(-\pi \sum_i |x_i|^2 [x_i]\right)$$

Remark 3: here, $\operatorname{mdeg} X|_{a=1,w_i=0} = \operatorname{deg} X$.

Relation to Orbital Varieties (12)

Multidegree of E_{π}

What is mdeg E_{π} ? (deg E_{π} ?)

Example 1: N = 4. Three components:

 \star One component of degree 1:

$$E_1 = \left\{ M = \begin{pmatrix} 0 & 0 & m_{13} & m_{14} \\ m_{21} & 0 & 0 & m_{24} \\ m_{31} & m_{32} & 0 & 0 \\ 0 & m_{42} & m_{43} & 0 \end{pmatrix} \right\}$$

 \star Two components of degree 3:

$$E_{2} = \left\{ M = \begin{pmatrix} 0 & m_{12} & m_{13} & m_{14} \\ m_{21} & 0 & 0 & m_{24} \\ m_{31} & m_{32} & 0 & m_{34} \\ 0 & m_{42} & m_{43} & 0 \end{pmatrix} \qquad \begin{array}{l} m_{12}m_{24} + m_{13}m_{34} = 0 \\ m_{31}m_{12} + m_{34}m_{42} = 0 \\ m_{13}m_{31} - m_{24}m_{42} = 0 \\ \end{array} \right\}$$
$$E_{3} = S(E_{2})$$

where S is the cycling automorphism $M_{ij} \mapsto M_{i+1\,j+1}$. $\Rightarrow \deg E = 7$.

$General\ relation\ scheme\ \leftrightarrow\ statistical\ model$

Conjecture [PZJ]: There is a natural way to index irreducible components E_{π} of E with crossing link patterns π of size N = 2n, in such a way that their multidegrees are solutions of rational qKZ equation associated to the Brauer algebra

$$\operatorname{mdeg} E_{\pi} = \Psi_{\pi}^{(\epsilon)}(z_1, \dots, z_{2n})$$

In particular, for $\epsilon = 0$, these multidegrees are th components of the eigenvector of the inhomogeneous Brauer loop model. And if $\epsilon = 0$, $z_i = 0$, the degrees are the components of the homogeneous model.

Proof for $\epsilon = 0$ in [AK,ZJ '05]; full proof to appear in [AK,ZJ '07].

Corollary: the sum $\sum_{\pi} \Psi_{\pi}^{(\epsilon)}(z_1, \ldots, z_{2n})$ is the multidegree of E itself.

Definition of the E_{π}

Define
$$s_i(M) := \sum_{j=1}^N M_{ij} M_{ji}$$
 for $M \in E = \{M \bullet M = 0\}.$

Two simple lemmas:

(1) E (and therefore each E_{π}) is stable by \bullet -conjugation by any invertible matrix.

(2) $s_i(M) = s_i(P \bullet M \bullet P^{-1})$ for all $i, M \in E, P$ invertible.

Motivates the following two equivalent definitions:

 $E_{\pi} = \bigcup_{\substack{t \text{ diag}}} Orb(\pi t) = \overline{\left\{P \bullet \pi t \bullet P^{-1}, t \text{ diag}, P \text{ inv}\right\}} \qquad (\pi \equiv \text{the matrix of involution } \pi)$ $= \overline{\left\{M \in E : s_i(M) = s_j(M) \text{ if and only if } j \in \{i, \pi(i)\}\right\}} \qquad (\pi \equiv \text{the matrix of involution } \pi)$ Special case: "trivial" component. $\pi_0 = \prod_{i=1}^{n} (a + z_i - z_j) \prod_{i=1}^{n} (a + z_j - z_i - \epsilon)$

The Brauer loop scheme

Relation to Orbital Varieties (15)

Geometric action of Brauer algebra

Embed $(M_N(\mathbb{C}), \bullet)$ in upper triangular infinite periodic matrices: (M = U + L)

* "Sweeping": Define $L_i = \{$ invertible matrices with off-diagonal elements at $(i, i + 1), (i + 1, i)\}$,

 $B_i = \{$ invertible matrices with off-diagonal elements at $(i + 1, i)\}$ and $S_i : L_i \times_{B_i} M_N(\mathbb{C}) \to M_N(\mathbb{C})$

 $(P, M) \to PMP^{-1}$

If $S_{i|L_i \times B_i X}$ generically one-to-one, then

$$\mathrm{mdeg}(S_i)X = -(a+z_i-z_{i+1})\partial_i\left(\frac{1}{a+z_i-z_{i+1}}\mathrm{mdeg}\,X\right)$$

where $\partial_i = \frac{1}{z_{i+1}-z_i}(\tau_i-1)$ and $\tau_i F(z_i,z_{i+1}) = F(z_{i+1},z_i).$

 \star "Cutting": Imposing an additional equation that decreases dimension by 1 amounts to multiplying by the weight of the equation.

Geometric action of Brauer algebra cont'd

Now consider a component E_{π} . Sweeping with L_i stays within upper triangular matrices only if $M_{ii+1} = 0$. Therefore we must distinguish two cases:

* Assume π has no arch between i and i+1. Then $E_{\pi} \subset \{M : M_{i,i+1} = 0\}$. Thus, sweep first. The result is upper triangular but not in $E \Rightarrow$ impose $(M \bullet M)_{i+1,i} = 0$.

One can show that the result is $E_{\pi} \cup E_{f_i\pi}$.

$$-(a+b+z_{i+1}-z_i)(a+z_i-z_{i+1})\partial_i\left(\frac{\mathrm{mdeg}\,E_{\pi}}{a+z_i-z_{i+1}}\right) = \mathrm{mdeg}\,E_{f_i\cdot\pi} + \mathrm{mdeg}\,E_{\pi}$$

* Assume π has an arch between i and i + 1. Then cut with $M_{i,i+1} = 0$, sweep, then cut with $(M \bullet M)_{i+1,i} = 0$.

One can show that the result is $\bigcup_{\pi' \neq \pi: e_i \pi' = \pi} E_{\pi'} \cap \{M \in E : s_i(M) = s_{\pi(i)}(M) \ \forall i\}$

$$-(a+b+z_{i+1}-z_i)(a+z_i-z_{i+1})\partial_i \operatorname{mdeg} E_{\pi} = (a+b) \sum_{\pi' \neq \pi: e_i \pi' = \pi} \operatorname{mdeg} E_{\pi'}$$

Application: (multi)degree of the commuting variety

Define the **commuting variety** to be the scheme

 $C = \{ (X, Y) \in M_n(\mathbb{C})^2 : XY = YX \}$

It is a classical difficult problem to compute the degree of C. (previously known up to n = 4 only)

Observation [A. Knutson '03]: there is a Gröbner degeneration from $C \times V$ to E_{π} where N = 2n

In particular, $\deg C = \deg E_{\pi} = 1$, 3, 31, 1145,

[dG, N] 154881, 77899563, 147226330175, 1053765855157617,

[PZJ] 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463,

$$\log \deg C \sim n^2 \times \log 2 \qquad n \to \infty$$

Orbital varieties

We work with G = GL(N), $\mathfrak{g} = \mathfrak{gl}(N)$. $B = \{$ invertible upper triangular matrices $\}$,

 $\mathfrak{b} = \{ upper triangular matrices \}.$

We are interested in nilpotent orbits:

$$\mathcal{O} = \{gMg^{-1}, g \in G\} \qquad M^N = 0$$

Nilpotent orbits are entirely characterized by the sizes of blocks of the Jordan decomposition of M, or equivalently by a Young diagram:

$$M = \begin{pmatrix} 0 & & \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \\ & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{bmatrix} 1 & \lambda_1 = 2 \\ & \lambda_2 = 1 \\ & & \lambda_3 = 1 \end{bmatrix}$$

Nilpotent orbit closures $\overline{\mathcal{O}}$ are (irreducible) algebraic varieties:

$$\overline{\mathcal{O}} = \{ M : \operatorname{rank} M^i \le \sum_{j>i} \lambda_j \quad i = 1, \dots, k \}$$

To $\overline{\mathcal{O}}$ one associates its **orbital varieties** $\{X_{\gamma}\}$ which are the irreducible components of $\overline{\mathcal{O}} \cap \mathfrak{b}$.

Orbital varieties are indexed by standard Young tableaux. [Spaltenstein, 1976]

Indeed, to an $M \in \mathcal{O} \cap \mathfrak{b}$, one can associate a tableau as the sequence of Young diagrams of successive

restrictions of M to the first n basis vectors. Components are closures of M with a given SYT.

In particular, the number of components of $\overline{\mathcal{O}} \cap \mathfrak{b}$ is the dimension of the corresponding irrep of \mathcal{S}_N .

(extended) Joseph polynomials

There is a natural torus action on $\overline{\mathcal{O}} \cap \mathfrak{b}$ and each of its components: conjugation by diagonal matrices.

 $M \to DMD^{-1}, \quad D \in (\mathbb{C}^{\star})^N \qquad \Rightarrow \ [M_{ij}] = z_i - z_j$

Joseph polynomials = multidegrees of orbital varieties.

Form a basis of an irreducible representation of the symmetric group [Joseph]. Identical to the Springer representation.

Additional \mathbb{C}^* action by scaling: $[M_{ij}] = a + z_i - z_j$, i < j.

 \rightarrow (extended) Joseph polynomials

 $J_{\gamma}(a, z_1, \ldots, z_N) = \mathrm{mdeg}_{\mathfrak{b}} X_{\gamma}$

The usual Joseph polynomials are $J_{\gamma}(0, z_1, \ldots, z_N)$.

The Brauer loop scheme as a flat limit

There is a better way to "break into pieces" an orbit closure $\overline{\mathcal{O}}$: take its "flat limit" as one scales to zero the strict lower triangular part of the matrix.

In the order 2 case we obtain the Brauer loop scheme of E. Indeed, an alternate definition of E

("interpolation" between usual and deformed product) is:

if $R_N(\mathbb{C})$ is the subspace of upper triangular matrices and

 $R_N(\mathbb{C}[t]) = R_N(\mathbb{C}) \oplus tM_N(\mathbb{C}) \oplus t^2M_N(\mathbb{C}) \oplus \cdots$

then our algebra is isomorphic to $R_N(\mathbb{C}[t])/tR_N(\mathbb{C}[t])$: $M \mapsto U + tL$.

In this language, it is more convenient to rewrite the weights in the following (non-cyclic invariant) way:

$$[M_{ij}] = \begin{cases} [U_{ij}] = a + z_i - z_j & i \le j \\ [L_{ij}] = b + z_i - z_j & i > j \end{cases}$$

with $b = a - \epsilon$.

From the Brauer loop scheme to Orbital Varieties

Consider the operation: $E_{\pi} \mapsto E_{\pi} \cap \mathfrak{b}$. We find easily: $E_{\pi} \cap \mathfrak{b} = X_{\pi}$ i.e. components of the Brauer scheme are in one-to-one correspondence with *B*-orbits.

In the multidegree language this corresponds to $b \rightarrow \infty$:

$$\Psi_{\pi}(a,b,z_1,\ldots,z_N) \overset{b\to\infty}{\sim} b^{\#} J_{\pi}(a,z_1,\ldots,z_N)$$

Now, take $b \to \infty$ limit in the Brauer B(β) qKZ equation. Recall that $\beta = \frac{2b}{a+b} \Rightarrow$ limit of the degenerate Brauer algebra B(2).

$$e_i^2 = 2e_i \qquad e_i e_{i\pm 1} e_i = e_i \qquad e_i e_j = e_j e_i \quad |i - j| > 1$$

$$f_i^2 = 0 \qquad f_i f_{i+1} f_i = f_{i+1} f_i f_{i+1} \qquad f_i f_j = f_j f_i \quad |i - j| > 1$$

$$f_i e_i = e_i f_i = 0 \qquad f_{i+1} f_i e_{i+1} = f_i f_{i+1} e_i = 0 \qquad e_i f_j = f_j e_i \quad |i - j| > 1$$

$$\check{R}_i(u) = \frac{(a - u) \bigodot + u \bigodot + u(a - u)}{a + u}$$

qKZ equation for Orbital Varieties/B-orbits

$$\check{R}_{i}(z_{i}-z_{i+1})J(z_{1},\ldots,z_{N})=J(z_{1},\ldots,z_{i+1},z_{i},\ldots,z_{N})$$

 $\diamond e_i$ equation:

$$-(a+z_i-z_{i+1})\partial_i J_{\pi} = \sum_{\pi' \neq \pi: e_i \pi' = \pi} J_{\pi'}$$

Related to Hotta's construction of the Joseph polynomials: cut with $M_{i\,i+1} = 0$ then sweep. Indeed TL(2) is a quotient of the symmetric group! Equivalently the usual generators of the symmetric group $s_i = 1 - e_i$ are given by $s_i = -\tau_i + a\partial_i$.

 $\diamond f_i$ equation: if i and i + 1 are unconnected and the arches starting from i, i + 1 do not cross,

$$-(a+z_i-z_{i+1})\partial_i \frac{J_{\pi}}{a+z_i-z_{i+1}} = J_{f_i\pi}$$

NB: $f_i \pi$ has one more crossing than π .

Looks very similar to relations between Schubert polynomials. Indeed...

Matrix Schubert varieties and (double) Schubert polynomials Consider the crossing link patterns π for which $\pi(i) > n$ for $i \le n$. (N = 2n)Such patterns are in one-to-one correspondence with $\sigma \in S_n$: The corresponding matrices are contained in the upper right square: $M = \begin{pmatrix} 0 & p(M) \\ 0 & 0 \end{pmatrix}$. Also, recall that the matrix Schubert varieties are defined by $\tilde{X}_{\sigma} = \{M \in M(n, \mathbb{C}) : \operatorname{rank} M_{i \times j} \le \operatorname{rank} \sigma_{i \times j} \quad i, j = 1, \dots, n\} = \overline{B_{-}\sigma B_{+}}$ Proposition: $p(X_{\pi})$ is the mirror image of matrix Schubert variety \tilde{X}_{σ} ; thus,

$$J_{\pi}(a, z_1, \dots, z_N) = \prod_{1 \le i < j \le n} (a + z_i - z_j) \prod_{n+1 \le i < j \le N} (a + z_i - z_j)$$
$$S_{\sigma}(a + z_n, \dots, a + z_1; z_{n+1}, \dots, z_N)$$

where the S_{σ} are the double Schubert polynomials.

Remark: relation to the flag variety G/B: (G = GL(n), $T = \mathbb{C}^n$)

$$H^*(G/B) \simeq H^*_B(G) \simeq H^*_T(G) \stackrel{i^*}{\twoheadleftarrow} H^*_T(\mathfrak{g}) = \mathbb{C}[z_1, \dots, z_n]$$

 $i^*(S_{\sigma}(z_1,\ldots,z_n;0,\ldots,0))$ linear basis of $H^*(G/B)$.