Brauer Loop Scheme and Orbital Varieties
 (P. Zinn-Justin)

Plan of the talk

- The Brauer $\mathrm{B}(1)$ Loop model: \diamond Definition
\diamond Transfer Matrix and Perron-Frobenius eigenvector
\diamond Multi-parameter generalization
$\diamond q \mathrm{KZ}$ equation
- The Brauer Loop scheme: \diamond Degenerate matrix product; definition of the scheme
\diamond Torus action and Equivariant Cohomology
\diamond Geometric action of Brauer
\diamond Application: degree of the commuting variety
- Relation to Orbital Varieties: \diamond Nilpotent orbits of order 2, Orbital Varieties and B-orbits
\diamond From the Brauer loop scheme to B-orbits
\diamond Temperley-Lieb action and Hotta construction
\diamond Relation to Schubert varieties

References

P. Di Francesco, P. Zinn-Justin, Inhomogeneous model of crossing loops..., math-ph/0412031.
A. Knutson, P. Zinn-Justin, A scheme related to the Brauer loop model, math. AG/0503224.
A. Knutson, P. Zinn-Justin, The Brauer loop scheme and orbital varieties, math.AG/0,7 $\$ 7 . \ldots$

Brauer model of loops

Probability that external vertex i is connected to vertex j ? (proba: \square
\square
\rightarrow vector Ψ_{n}, whose components are indexed by crossing link patterns, satisfying

$$
T_{n} \Psi_{n}=\Psi_{n}
$$

where T_{n} is the transfer matrix that adds a row to the semi-infinite cylinder.

Brauer model of loops cont'd

NB: $\pi=$ crossing link pattern, or chord diagram, or Brauer diagram, or fixed-point free involution.
Example: for $n=3(N=2 n=6)$, up to normalization, Ψ_{3} reads

Conjecture [PZJ '04] (now theorem [AK, PZJ '05]): these numbers are degrees of the irreducible components of the Brauer loop scheme.

Inhomogeneous Brauer model of loops [PDF, PZJ '04]

Introduce local probabilities dependent on the column i via a parameter z_{i} respecting integrability of the model (i.e. satisfying Yang-Baxter equation).

$$
\begin{aligned}
T_{n}\left(t \mid z_{1}, \ldots, z_{2 n}\right)= & \prod_{i=1}^{2 n}\left(a\left(t-z_{i}\right) \square+a\left(a-t+z_{i}\right) \square+\frac{\left(t-z_{i}\right)\left(a-t+z_{i}\right)}{2} \square\right) \\
& T_{n}\left(t ; z_{1} \ldots, z_{2 n}\right) \Psi_{n}\left(z_{1}, \ldots, z_{2 n}\right)=\Psi_{n}\left(z_{1}, \ldots, z_{2 n}\right)
\end{aligned}
$$

* Polynomiality.

The $\Psi_{\pi}\left(z_{1}, \ldots, z_{2 n}\right)$ can be chosen to be coprime polynomials; they are then of total degree $2 n(n-1)$ and of partial degree at most $2(n-1)$ in each z_{i}, with integer coefficients.
\star Factorization, Recursion relations..\rightarrow entirely fixed (see next slides)

* Sum rule.

$$
\sum_{\pi} \Psi_{\pi}\left(z_{1}, \ldots, z_{2 n}\right)=\operatorname{Pf}\left(\frac{z_{i}-z_{j}}{a-\left(z_{i}-z_{j}\right)^{2}}\right)_{1 \leq i, j \leq 2 n} \times \prod_{1 \leq i<j \leq 2 n} \frac{a-\left(z_{i}-z_{j}\right)^{2}}{z_{i}-z_{j}}
$$

Brauer algebra $\mathbf{B}(\beta)$

\diamond Generators $e_{i}, f_{i}, i=1, \ldots, N-1$ and relations

$$
\begin{aligned}
& e_{i}^{2}=\beta e_{i} \quad e_{i} e_{i \pm 1} e_{i}=e_{i} \quad e_{i} e_{j}=e_{j} e_{i} \quad|i-j|>1 \\
& f_{i}^{2}=1 \quad\left(f_{i} f_{i+1}\right)^{3}=1 \quad f_{i} f_{j}=f_{j} f_{i} \quad|i-j|>1 \\
& f_{i} e_{i}=e_{i} f_{i}=e_{i} \quad e_{i} f_{i} f_{i+1}=e_{i} e_{i+1}=f_{i+1} f_{i} e_{i+1} \quad e_{i+1} f_{i} f_{i+1}=e_{i+1} e_{i}=f_{i} f_{i+1} e_{i} \quad e_{i} f_{j}=f_{j} e_{i}
\end{aligned}
$$

\diamond Action on link patterns: rewrite link patterns on a line

$$
|i-j|>1
$$

Rational q KZ equation

$\diamond R$-matrix: $1=\left\langle\mid, e_{i}=\right\rangle, f_{i}=\langle$

$$
\check{R}_{i}(u)=\frac{a(a-u) \backslash+a u\rangle+(1-\beta / 2) u(a-u) ぬ}{(a+u)(a-(1-\beta / 2) u)}
$$

Satisfies Yang-Baxter equation: $\check{R}_{i}(u) \check{R}_{i+1}(u+v) \check{R}_{i}(v)=\check{R}_{i+1}(v) \check{R}_{i}(u+v) \check{R}_{i+1}(u)$ and unitarity equation: $\check{R}_{i}(u) \check{R}_{i}(-u)=1$.

Fix ϵ and consider the following system of equations:

$$
\left\{\begin{aligned}
\check{R}_{i}\left(z_{i}-z_{i+1}\right) \Psi_{n}^{(\epsilon)}\left(z_{1}, \ldots, z_{N}\right) & =\Psi_{n}^{(\epsilon)}\left(z_{1}, \ldots, z_{i+1}, z_{i}, \ldots, z_{N}\right) \quad i=1, \ldots, N-1 \\
\rho \Psi_{n}^{(\epsilon)}\left(z_{1}, \ldots, z_{N}\right) & =\Psi_{n}^{(\epsilon)}\left(z_{2}, \ldots, z_{N}, z_{1}+\epsilon\right)
\end{aligned}\right.
$$

where ρ is the rotation of link patterns.
In general, no polynomial solutions. But if $\beta=\frac{2(a-\epsilon)}{2 a-\epsilon}$, there is a solution uniquely fixed by

$$
\Psi_{\pi_{0}}^{(\epsilon)}=\prod_{\substack{1 \leq i<j \leq 2 n \\ j-i<n}}\left(a+z_{i}-z_{j}\right) \prod_{\substack{1 \leq i<j \leq 2 n \\ j-i>n}}\left(a+z_{j}-z_{i}-\epsilon\right) \quad \pi_{0}=
$$

Claim: when $\epsilon=0$ we recover our eigenvector Ψ_{n}.

From $q \mathrm{KZ}$ equation back to the Brauer loop model

Applied to the transfer matrix:

or more explicitly

$$
\check{R}_{i}\left(z_{i}-z_{i+1}\right) T_{n}\left(t \mid z_{1}, \ldots, z_{i}, z_{i+1}, \ldots, z_{2 n}\right)=T_{n}\left(t \mid z_{1}, \ldots, z_{i+1}, z_{i}, \ldots, z_{2 n}\right) \check{R}_{i}\left(z_{i}-z_{i+1}\right)
$$

The intertwining relation implies (NB: fixing the normalization is non-trivial!)

$$
\Psi_{n}\left(\ldots, z_{i+1}, z_{i}, \ldots\right)=\check{R}_{i}\left(z_{i}-z_{i+1}\right) \Psi_{n}\left(\ldots, z_{i}, z_{i+1}, \ldots\right)
$$

Deformed matrix product

For P, Q two $N \times N$ matrices define the product $P \bullet Q$:

$$
(P \bullet Q)_{i k}=\sum_{j:(i \leq j \leq k) c y c} P_{i j} Q_{j k} \quad i, k=1, \ldots, N
$$

where $(i \leq j \leq k)$ cyc means that i, j, k are in cyclic order: (and $i=k \Rightarrow i=j=k$)

$\left(M_{N}(\mathbb{C}), \bullet,+\right)$ associative algebra. A matrix is invertible iff its diagonal elements are non-zero.

The affine scheme E

Define in the space $M_{N}^{0}(\mathbb{C})$ of matrices with zero diagonals:

$$
E:=\left\{M \in M_{N}^{0}(\mathbb{C}): M \bullet M=0\right\}
$$

Explicitly, the equations defining the scheme E read:

$$
\sum_{j:(i \leq j \leq k) c y c} M_{i j} M_{j k}=0 \quad \forall i, k
$$

What are the components of E ? what is their dimension?
Experimental answer: to simplify, in what follows we assume N even $(N=2 n)$. Then

1) E is equidimensional:

$$
E=\bigcup_{\pi} E_{\pi}
$$

with $\operatorname{dim} E_{\pi}=N^{2} / 2$.
2) E, and each of its components, are generically reduced.
(examples in three slides...)

Torus action and equivariant cohomology

Action of $T=\left(\mathbb{C}^{\star}\right)^{N+1}$ on $M_{N}(\mathbb{C})$:

$$
\left(\mathrm{e}^{a}, \mathrm{e}^{w_{1}}, \ldots, \mathrm{e}^{w_{N}}\right): M_{i k} \mapsto \mathrm{e}^{a+\sum_{j:(i \leq j<k) c y c} w_{j}} M_{i k}
$$

Introduce $z_{i}, i=1, \ldots, N$, such that $z_{i+1}-z_{i}=w_{i}$, and $\epsilon=\sum_{i=1}^{N} w_{i}$.
Remark: if $\epsilon=0$, then the action is simply conjugation by $\operatorname{diag}\left(\mathrm{e}^{z_{1}}, \ldots, \mathrm{e}^{z_{N}}\right)$ and scaling by e^{a}.
\rightarrow Equivariant cohomology $H_{T}^{*}\left(M_{N}(\mathbb{C})\right) \subset \mathbb{C}\left[a, w_{1}, \ldots, w_{N}\right] \subset \mathbb{C}\left[a, \epsilon, z_{1}, \ldots, z_{N}\right]$ generated by the weights $\left[M_{i k}\right]_{T}=a+\sum_{j:(i \leq j<k) c y c} w_{j}$.

This action preserves the product \bullet; therefore it preserves E and its components E_{π}.
\rightarrow Each E_{π} is pushed forward by inclusion to some cohomology class in $H_{T}^{*}\left(M_{N}^{0}(\mathbb{C})\right)$.

Multidegrees

Algebraic formulation: Purely algebraic framework of equivariant cohomology for invariant subschemes of a complex vector space W :
multidegree $\operatorname{mdeg}_{W} X$ of a T-invariant scheme $X \subset W$ defined by
(1) If $X=W=\{0\}$ then $\operatorname{mdeg}_{W} X=1$.
(2) If X has top-dimensional components X_{i} with multiplicity $m_{i}, \operatorname{mdeg}_{W} X=\sum_{i} m_{i} \operatorname{mdeg}_{W} X_{i}$.
(3) If X is a variety and H is a T-invariant hyperplane in W,
(a) If $X \not \subset H$, then $\operatorname{mdeg}_{W} X=\operatorname{mdeg}_{H}(X \cap H)$.
(b) If $X \subset H$, then $\operatorname{mdeg}_{W} X=[W / H]_{T} \operatorname{mdeg}_{H} X$.

Remark 1: $\operatorname{mdeg}_{W} X$ is a homogeneous polynomial, of degree the codimension of X in W.
Remark 2: Integral formula:

$$
\operatorname{mdeg} X \propto \int_{X} \mathrm{~d} \mu(x) \exp \left(-\pi \sum_{i}\left|x_{i}\right|^{2}\left[x_{i}\right]\right)
$$

Remark 3: here, $\left.\operatorname{mdeg} X\right|_{a=1, w_{i}=0}=\operatorname{deg} X$.

Multidegree of E_{π}

What is mdeg E_{π} ? $\left(\operatorname{deg} E_{\pi}\right.$?)
Example 1: $N=4$. Three components:
\star One component of degree 1 :

$$
E_{1}=\left\{M=\left(\begin{array}{cccc}
0 & 0 & m_{13} & m_{14} \\
m_{21} & 0 & 0 & m_{24} \\
m_{31} & m_{32} & 0 & 0 \\
0 & m_{42} & m_{43} & 0
\end{array}\right)\right\}
$$

* Two components of degree 3:

$$
\begin{aligned}
& E_{2}=\left\{\begin{array}{cccc}
\left.M=\left(\begin{array}{cccc}
0 & m_{12} & m_{13} & m_{14} \\
m_{21} & 0 & 0 & m_{24} \\
m_{31} & m_{32} & 0 & m_{34} \\
0 & m_{42} & m_{43} & 0
\end{array}\right) \quad \begin{array}{l}
m_{12} m_{24}+m_{13} m_{34}=0 \\
m_{31} m_{12}+m_{34} m_{42}=0 \\
m_{13} m_{31}-m_{24} m_{42}=0
\end{array}\right\} \\
E_{3}=S\left(E_{2}\right)
\end{array}, l\right.
\end{aligned}
$$

where S is the cycling automorphism $M_{i j} \mapsto M_{i+1 j+1} . \Rightarrow \operatorname{deg} E=7$.
Example 2: $N=6:\left(\operatorname{deg} E_{\pi}\right)=(1,3,3,3,13,13,13,13,13,13,31,31,31,63,63) . \operatorname{deg} E=307$.

General relation scheme \leftrightarrow statistical model

Conjecture [PZJ]: There is a natural way to index irreducible components E_{π} of E with crossing link patterns π of size $N=2 n$, in such a way that their multidegrees are solutions of rational $q \mathrm{KZ}$ equation associated to the Brauer algebra

$$
\operatorname{mdeg} E_{\pi}=\Psi_{\pi}^{(\epsilon)}\left(z_{1}, \ldots, z_{2 n}\right)
$$

In particular, for $\epsilon=0$, these multidegrees are th components of the eigenvector of the inhomogeneous Brauer loop model. And if $\epsilon=0, z_{i}=0$, the degrees are the components of the homogeneous model.

Proof for $\epsilon=0$ in [AK,ZJ '05]; full proof to appear in [AK,ZJ '07].

Corollary: the sum $\sum_{\pi} \Psi_{\pi}^{(\epsilon)}\left(z_{1}, \ldots, z_{2 n}\right)$ is the multidegree of E itself.

Definition of the E_{π}

Define $s_{i}(M):=\sum_{j=1}^{N} M_{i j} M_{j i}$ for $M \in E=\{M \bullet M=0\}$.
Two simple lemmas:
(1) E (and therefore each E_{π}) is stable by \bullet-conjugation by any invertible matrix.
(2) $s_{i}(M)=s_{i}\left(P \bullet M \bullet P^{-1}\right)$ for all $i, M \in E, P$ invertible.

Motivates the following two equivalent definitions:

$$
E_{\pi}=\overline{\bigcup_{t \text { diag }} O r b(\pi t)}=\overline{\left\{P \bullet \pi t \bullet P^{-1}, t \text { diag, } P \operatorname{inv}\right\}} \quad(\pi \equiv \text { the matrix of involution } \pi)
$$

$$
=\overline{\left\{M \in E: s_{i}(M)=s_{j}(M) \text { if and only if } j \in\{i, \pi(i)\}\right\}}
$$

Special case: "trivial" component. $\pi_{0}=$
and only if $j \in\{i, \pi(i)\}\}\left(\begin{array}{cccccc}0 & \cdots & 0 & \star & \cdots & \star \\ \star & 0 & \cdots & 0 & \star & \cdots \\ & \ddots & \ddots & & \ddots & \ddots \\ \star & \cdots & \star & 0 & \cdots & 0 \\ \ddots & \ddots & & \ddots & \ddots & \\ \cdots & 0 & \star & \cdots & \star & 0\end{array}\right)$

$$
\operatorname{mdeg} E_{\pi_{0}}=\prod_{\substack{1 \leq i<j \leq 2 n \\ j-i<n}}\left(a+z_{i}-z_{j}\right) \prod_{\substack{1 \leq i<j \leq 2 n \\ j-i>n}}\left(a+z_{j}-z_{i}-\epsilon\right)
$$

Geometric action of Brauer algebra

Embed $\left(M_{N}(\mathbb{C}), \bullet\right)$ in upper triangular infinite periodic matrices: $(M=U+L)$

* "Sweeping": Define $L_{i}=\{$ invertible matrices with off-diagonal elements at $(i, i+1),(i+1, i)\}$, $B_{i}=\{$ invertible matrices with off-diagonal elements at $(i+1, i)\}$ and

$$
S_{i}: L_{i} \times_{B_{i}} M_{N}(\mathbb{C}) \rightarrow M_{N}(\mathbb{C})
$$

$$
(P, M) \rightarrow P M P^{-1}
$$

If $S_{i \mid L_{i} \times{ }_{B_{i}} X}$ generically one-to-one, then

$$
\operatorname{mdeg}\left(S_{i}\right) X=-\left(a+z_{i}-z_{i+1}\right) \partial_{i}\left(\frac{1}{a+z_{i}-z_{i+1}} \operatorname{mdeg} X\right)
$$

where $\partial_{i}=\frac{1}{z_{i+1}-z_{i}}\left(\tau_{i}-1\right)$ and $\tau_{i} F\left(z_{i}, z_{i+1}\right)=F\left(z_{i+1}, z_{i}\right)$.

* "Cutting": Imposing an additional equation that decreases dimension by 1 amounts to multiplying by the weight of the equation.

Geometric action of Brauer algebra cont'd

Now consider a component E_{π}. Sweeping with L_{i} stays within upper triangular matrices only if $M_{i i+1}=0$. Therefore we must distinguish two cases:
\star Assume π has no arch between i and $i+1$. Then $E_{\pi} \subset\left\{M: M_{i, i+1}=0\right\}$. Thus, sweep first. The result is upper triangular but not in $E \Rightarrow$ impose $(M \bullet M)_{i+1, i}=0$.

One can show that the result is $E_{\pi} \cup E_{f_{i} \pi}$.

$$
-\left(a+b+z_{i+1}-z_{i}\right)\left(a+z_{i}-z_{i+1}\right) \partial_{i}\left(\frac{\operatorname{mdeg} E_{\pi}}{a+z_{i}-z_{i+1}}\right)=\operatorname{mdeg} E_{f_{i} \cdot \pi}+\operatorname{mdeg} E_{\pi}
$$

* Assume π has an arch between i and $i+1$. Then cut with $M_{i, i+1}=0$, sweep, then cut with $(M \bullet M)_{i+1, i}=0$.

One can show that the result is $\bigcup_{\pi^{\prime} \neq \pi: e_{i} \pi^{\prime}=\pi} E_{\pi^{\prime}} \cap\left\{M \in E: s_{i}(M)=s_{\pi(i)}(M) \forall i\right\}$

$$
-\left(a+b+z_{i+1}-z_{i}\right)\left(a+z_{i}-z_{i+1}\right) \partial_{i} \operatorname{mdeg} E_{\pi}=(a+b) \sum_{\pi^{\prime} \neq \pi: e_{i} \pi^{\prime}=\pi} \operatorname{mdeg} E_{\pi^{\prime}}
$$

Application: (multi)degree of the commuting variety

Define the commuting variety to be the scheme

$$
C=\left\{(X, Y) \in M_{n}(\mathbb{C})^{2}: X Y=Y X\right\}
$$

It is a classical difficult problem to compute the degree of C. (previously known up to $n=4$ only) Observation [A. Knutson '03]: there is a Gröbner degeneration from $C \times V$ to E_{π} where $N=2 n$
and $\pi=$

In particular, $\operatorname{deg} C=\operatorname{deg} E_{\pi}=1,3,31,1145$,
[dG, N] 154881, 77899563, 147226330175, 1053765855157617,
[PZJ] 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463,

$$
\log \operatorname{deg} C \sim n^{2} \times \log 2 \quad n \rightarrow \infty
$$

Orbital varieties

We work with $G=G L(N), \mathfrak{g}=\mathfrak{g l}(N) . B=\{$ invertible upper triangular matrices $\}$,
$\mathfrak{b}=\{$ upper triangular matrices $\}$.
We are interested in nilpotent orbits:

$$
\mathcal{O}=\left\{g M g^{-1}, g \in G\right\} \quad M^{N}=0
$$

Nilpotent orbits are entirely characterized by the sizes of blocks of the Jordan decomposition of M, or equivalently by a Young diagram:

$$
M=\left(\begin{array}{c}
\boxed{0} \\
\\
\\
\begin{array}{|lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\hline
\end{array}
\end{array}\right) \quad \rightarrow \begin{array}{|}
\square & \lambda_{1}=2 \\
\lambda_{2}=1 \\
\lambda_{3}=1
\end{array}
$$

Nilpotent orbit closures $\overline{\mathcal{O}}$ are (irreducible) algebraic varieties:

$$
\overline{\mathcal{O}}=\left\{M: \operatorname{rank} M^{i} \leq \sum_{j>i} \lambda_{j} \quad i=1, \ldots, k\right\}
$$

To $\overline{\mathcal{O}}$ one associates its orbital varieties $\left\{X_{\gamma}\right\}$ which are the irreducible components of $\overline{\mathcal{O}} \cap \mathfrak{b}$.

Orbital varieties are indexed by standard Young tableaux. [Spaltenstein, 1976]
Indeed, to an $M \in \mathcal{O} \cap \mathfrak{b}$, one can associate a tableau as the sequence of Young diagrams of successive restrictions of M to the first n basis vectors. Components are closures of M with a given SYT.

$$
\begin{aligned}
& \begin{array}{llll}
M=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
M=\left(\begin{array}{lll}
0 & 0 & \star \\
0 & 0 & \star \\
0 & 0 & 0
\end{array}\right)
\end{array} \\
& M=\left(\begin{array}{ccc}
0 & \star & \star \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& M=\left(\begin{array}{ccc}
0 & \star & \star \\
0 & 0 & \star \\
0 & 0 & 0
\end{array}\right) \\
& \equiv \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}
\end{aligned}
$$

In particular, the number of components of $\overline{\mathcal{O}} \cap \mathfrak{b}$ is the dimension of the corresponding irrep of \mathcal{S}_{N}.

(extended) Joseph polynomials

There is a natural torus action on $\overline{\mathcal{O}} \cap \mathfrak{b}$ and each of its components: conjugation by diagonal matrices.

$$
M \rightarrow D M D^{-1}, \quad D \in\left(\mathbb{C}^{\star}\right)^{N} \quad \Rightarrow\left[M_{i j}\right]=z_{i}-z_{j}
$$

Joseph polynomials $=$ multidegrees of orbital varieties.
Form a basis of an irreducible representation of the symmetric group [Joseph]. Identical to the Springer representation.

Additional \mathbb{C}^{\star} action by scaling: $\left[M_{i j}\right]=a+z_{i}-z_{j}, i<j$.
\rightarrow (extended) Joseph polynomials

$$
J_{\gamma}\left(a, z_{1}, \ldots, z_{N}\right)=\operatorname{mdeg}_{\mathfrak{b}} X_{\gamma}
$$

The usual Joseph polynomials are $J_{\gamma}\left(0, z_{1}, \ldots, z_{N}\right)$.

Orbital varieties of order 2

We now specialize to orbits of matrices of maximal rank that square to zero:

Standard Young tableaux can be more conveniently described as non-crossing link patterns:

1	2	5
3	4	6

Orbital varieties of order 2 can then be described more explicitly as closures of B-orbits of upper triangles of involutions corresponding to the link pattern:

$$
\pi_{<}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
\vdots & \ddots & 1 & 0 & 0 & 0 \\
& & & 0 & 0 & 0 \\
& & & & 0 & 0 \\
\vdots & & & & \ddots & 1 \\
0 & \cdots & & & \cdots & 0
\end{array}\right) \quad X_{\pi}=\overline{\left\{g \pi_{<} g^{-1}, g \text { upper triangular }\right\}}
$$

More upper triangular orbits

In fact, there are more B-orbits than the orbital varieties. To any fixed-point-free involution, i.e. to any (not necessarily non-crossing) link pattern, is associated a B-orbit.

$$
\pi_{<}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\vdots & \ddots & 1 & 0 & 0 & 0 \\
& & & 0 & 0 & 0 \\
& & & & 0 & 1 \\
\vdots & & & & \ddots & 0 \\
0 & \cdots & & \cdots & 0
\end{array}\right) \quad X_{\pi}=\overline{\left\{g \pi_{<} g^{-1}, g \text { upper triangular }\right\}}
$$

What can we say about the multidegrees $J_{\pi}\left(a, z_{1}, \ldots, z_{N}\right)=\operatorname{mdeg}_{\mathfrak{b}} X_{\pi}$?

The Brauer loop scheme as a flat limit

There is a better way to "break into pieces" an orbit closure $\overline{\mathcal{O}}$: take its "flat limit" as one scales to zero the strict lower triangular part of the matrix.

In the order 2 case we obtain the Brauer loop scheme of E. Indeed, an alternate definition of E ("interpolation" between usual and deformed product) is:
if $R_{N}(\mathbb{C})$ is the subspace of upper triangular matrices and

$$
R_{N}(\mathbb{C}[t])=R_{N}(\mathbb{C}) \oplus t M_{N}(\mathbb{C}) \oplus t^{2} M_{N}(\mathbb{C}) \oplus \cdots
$$

then our algebra is isomorphic to $R_{N}(\mathbb{C}[t]) / t R_{N}(\mathbb{C}[t]): M \mapsto U+t L$.
In this language, it is more convenient to rewrite the weights in the following (non-cyclic invariant) way:

$$
\left[M_{i j}\right]= \begin{cases}{\left[U_{i j}\right]=a+z_{i}-z_{j}} & i \leq j \\ {\left[L_{i j}\right]=b+z_{i}-z_{j}} & i>j\end{cases}
$$

with $b=a-\epsilon$.

From the Brauer loop scheme to Orbital Varieties

Consider the operation: $E_{\pi} \mapsto E_{\pi} \cap \mathfrak{b}$. We find easily: $E_{\pi} \cap \mathfrak{b}=X_{\pi}$ i.e. components of the Brauer scheme are in one-to-one correspondence with B-orbits.

In the multidegree language this corresponds to $b \rightarrow \infty$:

$$
\Psi_{\pi}\left(a, b, z_{1}, \ldots, z_{N}\right)^{b \rightarrow \infty} b^{\#} J_{\pi}\left(a, z_{1}, \ldots, z_{N}\right)
$$

Now, take $b \rightarrow \infty$ limit in the Brauer $\mathrm{B}(\beta) q \mathrm{KZ}$ equation. Recall that $\beta=\frac{2 b}{a+b} \Rightarrow$ limit of the degenerate Brauer algebra $B(2)$.

$$
\begin{gathered}
e_{i}^{2}=2 e_{i} \quad e_{i} e_{i \pm 1} e_{i}=e_{i} \quad e_{i} e_{j}=e_{j} e_{i} \quad|i-j|>1 \\
f_{i}^{2}=0 \quad f_{i} f_{i+1} f_{i}=f_{i+1} f_{i} f_{i+1} \quad f_{i} f_{j}=f_{j} f_{i} \quad|i-j|>1 \\
f_{i} e_{i}=e_{i} f_{i}=0 \quad f_{i+1} f_{i} e_{i+1}=f_{i} f_{i+1} e_{i}=0 \quad e_{i} f_{j}=f_{j} e_{i} \quad|i-j|>1 \\
a+u
\end{gathered}
$$

$q \mathbf{K Z}$ equation for Orbital Varieties/ B-orbits

$$
\check{R}_{i}\left(z_{i}-z_{i+1}\right) J\left(z_{1}, \ldots, z_{N}\right)=J\left(z_{1}, \ldots, z_{i+1}, z_{i}, \ldots, z_{N}\right)
$$

$\diamond e_{i}$ equation:

$$
-\left(a+z_{i}-z_{i+1}\right) \partial_{i} J_{\pi}=\sum_{\pi^{\prime} \neq \pi: e_{i} \pi^{\prime}=\pi} J_{\pi^{\prime}}
$$

Related to Hotta's construction of the Joseph polynomials: cut with $M_{i+1}=0$ then sweep.
Indeed TL(2) is a quotient of the symmetric group! Equivalently the usual generators of the symmetric group $s_{i}=1-e_{i}$ are given by $s_{i}=-\tau_{i}+a \partial_{i}$.
$\diamond f_{i}$ equation: if i and $i+1$ are unconnected and the arches starting from $i, i+1$ do not cross,

$$
-\left(a+z_{i}-z_{i+1}\right) \partial_{i} \frac{J_{\pi}}{a+z_{i}-z_{i+1}}=J_{f_{i} \pi}
$$

NB: $f_{i} \pi$ has one more crossing than π.
Looks very similar to relations between Schubert polynomials. Indeed. . .

Matrix Schubert varieties and (double) Schubert polynomials

Consider the crossing link patterns π for which $\pi(i)>n$ for $i \leq n . \quad(N=2 n)$

Such patterns are in one-to-one correspondence with $\sigma \in \mathcal{S}_{n}$:

The corresponding matrices are contained in the upper right square: $M=\left(\begin{array}{cc}0 & p(M) \\ 0 & 0\end{array}\right)$. Also, recall that the matrix Schubert varieties are defined by

$$
\tilde{X}_{\sigma}=\left\{M \in M(n, \mathbb{C}): \operatorname{rank} M_{i \times j} \leq \operatorname{rank} \sigma_{i \times j} \quad i, j=1, \ldots, n\right\}=\overline{B_{-} \sigma B_{+}}
$$

Proposition: $p\left(X_{\pi}\right)$ is the mirror image of matrix Schubert variety \tilde{X}_{σ}; thus,

$$
\begin{aligned}
J_{\pi}\left(a, z_{1}, \ldots, z_{N}\right)= & \prod_{1 \leq i<j \leq n}\left(a+z_{i}-z_{j}\right) \prod_{n+1 \leq i<j \leq N}\left(a+z_{i}-z_{j}\right) \\
& S_{\sigma}\left(a+z_{n}, \ldots, a+z_{1} ; z_{n+1}, \ldots, z_{N}\right)
\end{aligned}
$$

where the S_{σ} are the double Schubert polynomials.
Remark: relation to the flag variety $G / B:\left(G=G L(n), T=\mathbb{C}^{n}\right)$

$$
H^{*}(G / B) \simeq H_{B}^{*}(G) \simeq H_{T}^{*}(G) \stackrel{i^{*}}{\Vdash} H_{T}^{*}(\mathfrak{g})=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]
$$

$i^{*}\left(S_{\sigma}\left(z_{1}, \ldots, z_{n} ; 0, \ldots, 0\right)\right)$ linear basis of $H^{*}(G / B)$.

