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Brauer Loop Scheme and Orbital Varieties (P. Zinn-Justin)

Plan of the talk
e The Brauer B(1) Loop model: ¢ Definition

¢ Transfer Matrix and Perron—Frobenius eigenvector

¢ Multi-parameter generalization

o qKZ equation
e The Brauer Loop scheme: ¢ Degenerate matrix product; definition of the scheme

¢ Torus action and Equivariant Cohomology
© Geometric action of Brauer

¢ Application: degree of the commuting variety
e Relation to Orbital Varieties: ¢ Nilpotent orbits of order 2, Orbital Varieties and B-orbits

& From the Brauer loop scheme to B-orbits
o Temperley—Lieb action and Hotta construction

¢ Relation to Schubert varieties
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The Brauer B(1) loop model
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Brauer model of loops
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Probability that external vertex i is connected to vertex j? (proba: -\k = -J/- =4/9, =1/9)

— vector ¥,,, whose components are indexed by crossing link patterns, satisfying

7,0, =V,

where T, is the transfer matrix that adds a row to the semi-infinite cylinder.
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Brauer model of loops cont’d
NB: m = crossing link pattern, or chord diagram, or Brauer diagram, or fixed-point free involution.

Ezxzample: for n =3 (N = 2n = 6), up to normalization, W3 reads

1 6 1 6 1 6 1 6 1 6
Vs = Z%H 3 Z@H 3 2@5+ 3 2@5+ 13 2@5
4 4 4 4 4
1 6 1 6 1 6 1 6 1 6
+13 2@54— 13 2@5+ 13 Z@SJr 13 2@54— 13 2@5
3 4 3 4 4 3 4 3 4

1 6 1 6 1 6 1 6 1 6

+31 Z@S—I— 31 2®5+ 31 2@5+ 63 2®5+ 63 2@5
3 4 4 4 4 4

Conjecture [PZJ '04] (now theorem [AK, PZJ '05]): these numbers are degrees of the irreducible

components of the Brauer loop scheme.
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Inhomogeneous Brauer model of loops [PDF, PZJ '04]
Introduce local probabilities dependent on the column ¢ via a parameter z; respecting integrability

of the model (i.e. satisfying Yang—Baxter equation).

1=1

To(t;zr oo 200) W0 (21, ..oy 200) = V(21,1 220)
* Polynomiality.
The W, (21,...,22,) can be chosen to be coprime polynomials; they are then of total degree 2n(n—1)
and of partial degree at most 2(n — 1) in each z;, with integer coefficients.
* Factorization, Recursion relations...— entirely fixed (see next slides)

* Sum rule.

o
U_ (21, ... 2,) = Pf O
2 (e ) s

a— (2 — 2)*

ZZ'—Zj

) .
1<4,7<2n 1<i<j<2n
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Brauer algebra B(3)

¢ Generators ¢;, f;, i =1,..., N — 1 and relations
e? = Be; €;iCit1€; = €; eie; =eje; |i—7j| >1
=1 (fifin)’ =1 fifi=fifi li—j|>1
fieci=¢eifi=¢€; eififix1 =eieip1 = fir1fieiv1 eir1fifir1 = €ip16i = fifir1ei eif; = fieq

¢ Action on link patterns: rewrite link patterns on a line i —j]>1

0 L O A ‘mﬁ s Lo\

2 3 3

3
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The Brauer B(1) loop model
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Rational ¢KZ equation

o R-matrix: 1:@% 6i=@>, fi=®
}v?%( _ a—u@—i—au@—i— (1—05/2)u (a—u)®

a+u)(a—(1—75/2)u)
Satisfies Yang—Baxter equation: Ri(u)RHl(u +0)R;i(v) = Rip1(v)Ri(u + v)Riy1(u) and unitarity

equation: R;(u)R;(—u) = 1.

Fix € and consider the following system of equations:
Rz(zz - Zi+1)\IJ£L€)(Zl, ceey ZN) = \117(16)(21, ce ey Rl Rgy e ,ZN) 1= 1, e

pU) (21, an) =0 (2o, 2N, 21 + €)
where p is the rotation of link patterns.

In general, no polynomial solutions. But if § = % there is a solution uniquely fixed by

\Ifgfo): H (@ + 2z — 2z;) H (a+2z; — 2 —€) o =

1<i<j<2n 1<i<jij<2n
j—i<n Jj—i>n

Claim: when ¢ = 0 we recover our eigenvector ¥,,.
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From ¢KZ equation back to the Brauer loop model

00

Applied to the transfer matrix:

t-z | t=Z,, 2%
Zi7%mn - S
or more explicitly
Rz(zz — Zi_|_1)Tn(t’Zl, ce ey Riy Rty e ey Zgn) = Tn(t\zl, N 2 S /7 I ,Zgn)Ri(Zi — Zi—{-l)

The intertwining relation implies (NB: fixing the normalization is non-trivial!)

‘Ifn( cey Rl Ry e ) = Rz(zz - Zz‘+1)‘1’n(- <oy Ry Ry e )
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Deformed matrix product

For P, (Q two N X N matrices define the product P e ():

(P.Q)zk: Z Piijlc i,kzl,...,N

J: (i<j<k) cyc

where (i < 7 < k) cyc means that i, j, k are in cyclic order: (and i =k = i =j = k)

(Mpn(C), e, +) associative algebra. A matrix is invertible iff its diagonal elements are non-zero.
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The affine scheme E

Define in the space MY (C) of matrices with zero diagonals:

E={McM}C): MeM =0}

Explicitly, the equations defining the scheme FE read:

> MM, =0 Vik
7:(i<i<k) eye

What are the components of 7 what is their dimension?

Experimental answer: to simplify, in what follows we assume N even (N = 2n). Then

1) E is equidimensional:

E:UEﬂ

7

with dim E, = N?/2.

2) E, and each of its components, are generically reduced.

(examples in three slides...)
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Torus action and equivariant cohomology
Action of T' = (C*)N*1 on My (C):
(e, e™t, ..., e"N) : My — e’ T Zj:(i§j<’“) cyc ijik:
Introduce z;, i =1,..., N, such that z;11 — z; = w;, and € = Zf\il w;.
Remark: if e =0, then the action is simply conjugation by diag(e**, ..., e*N) and scaling by e®.
— Equivariant cohomology H7(Mny(C)) C Cla,wy,...,wx| C Cla,€, 21,...,2n] generated by the

weights [Miklr = a+ D5 i<ick) cye Wit

This action preserves the product e; therefore it preserves E and its components E .

— Each E is pushed forward by inclusion to some cohomology class in Hx (MY, (C)).
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Multidegrees

Algebraic formulation: Purely algebraic framework of equivariant cohomology for invariant subschemes
of a complex vector space W:
multidegree mdegy;; X of a T-invariant scheme X C W defined by
(1) If X =W = {0} then mdegy, X = 1.
(2) If X has top-dimensional components X; with multiplicity m;, mdegy, X = ). m; mdegy, X;.
(3) If X is a variety and H is a T-invariant hyperplane in W,

(a) If X ¢ H, then mdegy, X = mdegy (X N H).

(b) If X C H, then mdegy, X = [W/H|r mdeg X.

Remark 1. mdegy, X is a homogeneous polynomial, of degree the codimension of X in W.

Remark 2: Integral formula:

mdeg X /
X

dp(z) exp <—7TZ Ak [51%'])

Remark 3: here, mdeg X|4=1 w;—0 = deg X.
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Multidegree of E,
What is mdeg E? (deg E;7?)
Example 1: N = 4. Three components:

* One component of degree 1:

0 0 mi3z may
L . mao1 0 0 Moy
Er=qM= m31 m3z 0O 0

0 My  1Ny3 0
* Two components of degree 3:

0  mi2 miz may
ma1 0 0  moy
m31 m32 0 mgy

0 myo my3 O

mM12Mag + mi3msg = 0
ms31mi2 + msgmye = 0
mM13M31 — MogMye = 0

Ey={ M=

Es = S(F»)
where S is the cycling automorphism M;; — M; 1 j11. = deg b = 7.

Ezample 2 N = 6: (deg E;) = (1,3,3,3,13,13,13,13,13,13, 31, 31, 31,63, 63). deg E = 307.
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General relation scheme « statistical model
Conjecture [PZJ]: There is a natural way to index irreducible components E,. of E with crossing
link patterns 7 of size N = 2n, in such a way that their multidegrees are solutions of rational ¢gKZ

equation associated to the Brauer algebra

mdeg E, = U9 (2, ..., z0,)

In particular, for e = 0, these multidegrees are th components of the eigenvector of the inhomogeneous

Brauer loop model. And if e =0, z; = 0, the degrees are the components of the homogeneous model.

Proof for e = 0 in [AK,ZJ "05]; full proof to appear in [AK,ZJ '07].

Corollary: the sum \Ifgf)(zl, ..., Zoy) is the multidegree of E itself.
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Definition of the E,
Define s;(M) := Zj\le M;;M;; for M € E = {M e M = 0}.
Two simple lemmas:
(1) E (and therefore each E) is stable by e-conjugation by any invertible matrix.
(2) s;(M) =s;,(PeMeP 1) forall i, M € E, P invertible.

Motivates the following two equivalent definitions:

E, = U Orb(rt) = { P et e P~1,t diag, P inv } (m = the matrix of involution 7)

t diag
:{MEE:Si(M):sj(M)ifandonlyifje{i,ﬁ(i)}}(() e 0 K e *\
0 : 0 %
Special case: “trivial” component. Ty = , By = . * 0 0

mdeg E,, = H (@ + 2z — 2j) H (a+2z; — 2z —€)

1<i<j<2n 1<i<j<2n
Jg—i<n j—i>n
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Geometric action of Brauer algebra

Embed (Mp(C),e) in upper triangular infinite periodic matrices: (M =U + L)
j=i j=i+N

NN
U *

U
0 L
R

* “Sweeping”: Define L; = {invertible matrices with off-diagonal elements at (i,7 + 1), (i + 1,%)},

B; = {invertible matrices with off-diagonal elements at (i + 1,7)} and
Si : Lz X B; MN(C) — MN<(C)

(P,M) — PMP~!
|f Si|Lz'><BZ-X generically one-to-one, then

1

a+ Zj — Zit1

mdeg(S;) X = —(a+ z; — 2;11)0; ( mdeg X)

1
Zi+1—%4

where (9z = (Ti — 1) and TZ'F(Z,',ZZ'+1) = F(Zi+1,2i).

* “Cutting”: Imposing an additional equation that decreases dimension by 1 amounts to multiplying

by the weight of the equation.
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Geometric action of Brauer algebra cont’d
Now consider a component E,. Sweeping with L; stays within upper triangular matrices only if
M;;+1 = 0. Therefore we must distinguish two cases:
x Assume 7 has no arch between ¢ and ¢+ 1. Then E; C {M : M, ;41 = 0}. Thus, sweep first. The
result is upper triangular but not in E = impose (M e M);y1,; = 0.

One can show that the result is £ U Ey, .
mdeg F.

—(a4+b4 211 — z)(a+ z; — Zz‘+1)8z'( > = mdeg Ey,.» + mdeg E.

a + 2 — Zi+1

*x Assume 7 has an arch between ¢ and 7 + 1. Then cut with M, ;11 = 0, sweep, then cut with

One can show that the result is (J 1 .c.pen B N{M € E: 5;(M) = s53;)(M) Vi}

I —o

—(a+b+ zit1 — zi)(a + 2 — zi41)0;mdeg B = (a + b) Z mdeg Er

! FEmie; =1
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Application: (multi)degree of the commuting variety

Define the commuting variety to be the scheme
C={(X,Y)e M,(C)*: XY =YX}

It is a classical difficult problem to compute the degree of C'. (previously known up to n = 4 only)

Observation [A. Knutson '03]: there is a Grobner degeneration from C' x V to E, where N = 2n

and ™ =

In particular, degC = deg ., = 1, 3, 31, 1145,
[dG, N] 154881, 77899563, 147226330175, 1053765855157617,
[PZJ] 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463,

log deg C' ~ n? x log 2 n — 0o
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Orbital varieties
We work with G = GL(N), g = gl(N). B = {invertible upper triangular matrices},
b = {upper triangular matrices}.

We are interested in nilpotent orbits:
O={gMg',geGt M"=0

Nilpotent orbits are entirely characterized by the sizes of blocks of the Jordan decomposition of M,

or equivalently by a Young diagram:

0
01 0 AL =2
M = 0 0 1 — Ay =
00 0 A3 =

Nilpotent orbit closures O are (irreducible) algebraic varieties:

@:{M:rankMiSZ)\j i=1,...,k}

Jj>1

To O one associates its orbital varieties { X} which are the irreducible components of O N b.
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Orbital varieties are indexed by standard Young tableaux. [Spaltenstein, 1976]
Indeed, to an M € ONb, one can associate a tableau as the sequence of Young diagrams of successive

restrictions of M to the first n basis vectors. Components are closures of M with a given SYT.

0O 0 O
M=10 0 O — = 11213
0O 0 O
0 0 % 5
M=]10 0 % — = 3
0O 0 O
0 % %
M=|0 0 o0 . - ;3
0O 0 O
0 %= % 1
M=10 * — = 2
0 0 3

In particular, the number of components of © N b is the dimension of the corresponding irrep of Sy .
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(extended) Joseph polynomials

There is a natural torus action on ONb and each of its components: conjugation by diagonal matrices.
M — DMD_l, IDRS ((C*)N = [MZJ] = Z; — Zj

Joseph polynomials = multidegrees of orbital varieties.

Form a basis of an irreducible representation of the symmetric group [Joseph]. Identical to the
Springer representation.

Additional C* action by scaling: [M;;| =a+ 2z, — 25, 1 < J.

— (extended) Joseph polynomials

Jy(a, z1,...,2y) = mdeg, X,

The usual Joseph polynomials are J,(0, 21,...,2n).
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Orbital varieties of order 2

We now specialize to orbits of matrices of maximal rank that square to zero:

Standard Young tableaux can be more conveniently described as non-crossing link patterns:

1125

slafe] it .

1 2 3 4 5 6
Orbital varieties of order 2 can then be described more explicitly as closures of B-orbits of upper

triangles of involutions corresponding to the link pattern:

/0 0O 0 1 O O\
. .. 1.0 0 0
Te = ¥ 8 8 Xr ={gm<g~1, g upper triangular}
E R
\0 - e 0)
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More upper triangular orbits
In fact, there are more B-orbits than the orbital varieties. To any fixed-point-free involution, i.e. to

any (not necessarily non-crossing) link pattern, is associated a B-orbit.

(000
ST

o o O

X, ={grn<g~1, g upper triangular}

oo o

OO R OO O

Lo

What can we say about the multidegrees J,

/
(

a,z1,...,2n) = mdeg, X 7
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The Brauer loop scheme as a flat limit
There is a better way to “break into pieces” an orbit closure O: take its “flat limit” as one scales to

zero the strict lower triangular part of the matrix.

In the order 2 case we obtain the Brauer loop scheme of E. Indeed, an alternate definition of F
(“interpolation” between usual and deformed product) is:

if Ry (C) is the subspace of upper triangular matrices and
Ry (C[t]) = Ry(C) @ tMy(C) @ t?Mn(C) & - - -

then our algebra is isomorphic to Ry (Clt])/tRn(Clt]): M — U + tL.
In this language, it is more convenient to rewrite the weights in the following (non-cyclic invariant)

way:
1 JlWUyl=a+z—2z 1<
[MZJ]_{[Lij]:b—l—Zi—Zj ’L>]

with b = a — e.
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From the Brauer loop scheme to Orbital Varieties
Consider the operation: F; — E.Nb. We find easily: E, Nb = X, i.e. components of the Brauer
scheme are in one-to-one correspondence with B-orbits.
In the multidegree language this corresponds to b — oc:
U, (a,b,z1,..., zN)bTCOOb#JW(a, Z1y-e-y ZN)

Now, take b — oo limit in the Brauer B(3) ¢KZ equation. Recall that g = f—fb = limit of the

degenerate Brauer algebra B(2).

2 . .
e; = 2¢; €;€i+1€6; = €; €;€; = €;€; "L — ]‘ > 1

fi=0 fifix1fi = fixa fifira fifi=1fifi li—j|>1

fiei=efi =0 fir1fieix1 = fifiz16i =0 eifi = fiei |t—j|>1

o) — (a—u){}—l—u@—l—u(a—u)@

a-+u
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¢KZ equation for Orbital Varieties/B-orbits

~

R’L(Zl - Zi—l—l)J(le . '7ZN) — J(Zla"'72i—|—1azia° . °7ZN)
¢ e; equation:

—(a+ 2z — 2i41)0;Jr = Z It

Tl FEmie; ' =m

Related to Hotta's construction of the Joseph polynomials: cut with M, ;11 = 0 then sweep.
Indeed TL(2) is a quotient of the symmetric group! Equivalently the usual generators of the symmetric
group s; = 1 — e; are given by s; = —7; + a0;.

¢ f; equation: if ¢ and 7 + 1 are unconnected and the arches starting from ¢, ¢ + 1 do not cross,

—(CL -+ Z; — Zi+1>ai . = inﬁ

NB: f;m has one more crossing than .

Looks very similar to relations between Schubert polynomials. Indeed. ..
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Matrix Schubert varieties and (double) Schubert polynomials

Consider the crossing link patterns m for which (i) > n for ¢ < n

= 2n
Such patterns are in one-to-one correspondence with ¢ € S, D

The corresponding matrices are contained in the upper right square: M = (0 0 )

Also, recall that the matrix Schubert varieties are defined by
Xo={M e M(n,C) :rank M, ; <ranko;x; ¢,j=1,...,n} =B_oBy

Proposition: p(X, ) is the mirror image of matrix Schubert variety X, thus,

Jﬂ(a,zl,...,ZN): H <G+Zi—2j) H (CL—I—ZZ'—ZJ')

1<i<y<n n+1<i<j<N
So(a 4 zZn,y ooy + 215 2p41, -5 ZN)

where the S, are the double Schubert polynomials.

Remark: relation to the flag variety G/B: (G = GL(n), T = C")
H*(G/B) ~ H5(G) ~ H3(G)«H71(g) = Clz1, ..., 2n]

i*(So (21, .- +,2n;0,...,0)) linear basis of H*(G/B).




