Equivalence of Mirror Families Constructed from Toric Degenerations of Flag Varieties

Joe Rusinko University of Georgia

May 31, 2007

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Definition. Let $G = SL_{n+1}(\mathbb{C})$ and B the subgroup of upper triangular matrices. Then we say say that G/B is the complete flag variety of type A_n . $(n \ge 2)$

The Weyl group of G is the symmetric group S_{n+1} with simple reflections denoted s_1, \dots, s_n . Let ω_0 denote the unique element of S_{n+1} of maximal length.

There are many different ways of writing ω_0 as a product of simple reflections.

Definition. We call a $\overline{\omega_0} = s_{i_1}s_{i_2}\cdots s_{i_N}$ a reduced decomposition of ω_0 if $\overline{\omega_0} = \omega_0$ and $N = \frac{n(n+1)}{2}$. **Lemma.** Generic elements of $|-K_{G/B}|$ are smooth

Calabi-Yau varieties.

Question. Can we find a family of varieties mirror to these generic anti-canonical hypersurfaces?

Answer. YES! By constructions of Givental, Batyrev (et.al.). We review the Batyrev's construction which uses small toric degenerations of G/B.

Definition. A normal Gorenstein toric Fano variety $Y \subset \mathbb{P}^m$ is called a small toric degeneration of X, if there exists a Zariski open neighborhood U of $0 \subset \mathbb{A}^1$ and an irreducible subvariety $\widetilde{X} \subset \mathbb{P}^m \times U$ such that the morphism $\pi : \widetilde{X} \mapsto U$ is flat and:

- 1. the fiber $X_t := \pi^{-1}(t) \subset \mathbb{P}^m$ is smooth for all $t \in U \setminus 0;$
- 2. the special fiber $X_0 := \pi^{-1}(0) \subset \mathbb{P}^m$ has at worst Gorenstein terminal singularities and X_0 is isomorphic to $Y \subset \mathbb{P}^m$;
- 3. $\operatorname{Pic}(\widetilde{X}/U) \cong \operatorname{Pic}(X_t)$ for all $t \in U$.

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Given a small toric degeneration of the pair $(G/B, -K_{G/B})$ to a toric variety X_{Δ} corresponding to a reflexive polytope Δ . We can take look at the toric variety associated to the dual polytope Δ^* in $M_{\mathbb{R}}$.

We can view M as the lattice of monomials in $\mathbb{C}[t_1, t_1^{-1}, \cdots, t_N, t_N^{-1}].$

Definition. $V(X_{\Delta^*})$ is the family of hypersurfaces in $T = Spec(\mathbb{C}[t_1, t_1^{-1}, \cdots, t_N, t_N^{-1}])$ satisfying the equations $1 = \sum_{vertices \ m_i \ of \ \Delta^*} a_i T^{m_i}$ where $a_i \in \mathbb{C}^*$.

Conjecture. (Batyrev) Generic elements of the subfamily of $V(\Delta^*)$ whose coefficients satisfy a set of relations called box equations are birational to mirrors of generic elements of $|-K_{G/B}|$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Construction. (Caldero-Alexeev-Brion) For any choice of reduced decomposition $\overline{\omega_0}$ there exists a degeneration of the pair $(G/B, -K_{G/B})$ to a toric pair $(X_{\Delta}, \mathcal{O}_{X_{\Delta}}(1))$ corresponding to a polytope $\Delta =$ $\Delta(\overline{\omega_0})$. We call these degenerations string degenerations.

Question. What is known about these degenerations and their corresponding polytopes?

- 1. The polytope Δ is conjectured to be integral.
- 2. * The dual polytope Δ^* is integral.
- 3. The f-vectors for different Δ vary greatly, but the number of integral points remains the same.
- 4. For $\overline{\omega_0} = s_1 s_2 s_1, \cdots, s_n s_{n-1} \cdots s_1$ corresponds to the sagbi, or Gonciulea/Lakshmibai, degeneration which was used in the original mirror construction of Batyrev (et. al.).
- 5. * There exist examples of string degenerations which aren't small.

[–] Typeset by FoilT $_{\!E\!X}$ –

Question. Can we construct mirror families using the string degenerations?

Question. How do these mirror families depend on the choice of $\overline{\omega_0}$?

We attempt to mimic Batyrev's construction **Definition.** Since Δ^* is an integral polytope we can still define $V(X_{\Delta^*})$

Question. What are the appropriate box equations to use in the string degeneration?

Note that the box equations correspond to relationships between the facets of Δ . So we need to understand these facets.

Fact. Δ is the intersection of two polyhedral cones known respectively as the string and λ -cones. The sting cone was defined by Berenstein and Zelevinsky, and given a combinatorial description by Gleizer and Postnikov. The λ -cone was defined by Littelmann. Fix $\overline{\omega_0}$ and draw a string diagram: For example the string diagram for n = 3 and reduced word decomposition $\overline{\omega_0} = s_3 s_1 s_2 s_1 s_3 s_2$:

Theorem. (Gleizer and Postnikov) The string cone can be completely described in terms of certain types of oriented paths on this graph known as rigorous paths. Each rigorous path defines a facet of the string cone.

Lemma. The λ -cone can be completely described in terms of the combinatorics of this graph. Every point of intersection t_i determines a facets of the λ -cone. **Definition.** Given a rigorous path p or an intersection point t_i we denote the corresponding monomial in the equations defining $V(X_{\Delta^*})$ by T^p and T^{λ_i} . Combinatorial Box equations:

Definition. The closed bounded regions of the string cone are called boxes. Each box has a top vertex and a bottom vertex. We denote the corresponding coordinates t_{top} and t_{bot} .

Definition. Let $T^{\lambda_{top}}$ (resp. $T^{\lambda_{bot}}$) be the monomial corresponding to the λ -inequality associated to t_{top} (resp. t_{bot}).

Definition. For every two string inequalities p_1 and p_2 with corresponding monomials T^{p_1} and T^{p_2} satisfying the following box conditions:

- 1. there exists a box with corresponding monomials $T^{\lambda_{top}}$ and $T^{\lambda_{bot}}$ such that $T^{p_1} T^{\lambda_{top}} = T^{p_2} T^{\lambda_{bot}}$,
- 2. the t_{top} degree of $T^{p_1} = -1$,
- 3. the t_{bot} degree of $T^{p_2} = 1$,

we define an equation $a_{p_1}a_{\lambda_{top}} = a_{p_2}a_{\lambda_{bot}}$. We call the collection of all such equations the combinatorial box equations.

 $\overline{\omega_0} = s_3 s_1 s_2 s_1 s_3 s_2$:

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Definition. Let $F_{\overline{\omega_0}}$ be the subfamily of hypersurfaces in $V(X_{\Delta^*})$ whose coefficients satisfy the combinatorial box equations.

Theorem. When the string degenerations is small, this is precisely the family defined by Batyrev.

Question. Do the families $F_{\overline{\omega_0}}$ make good mirror candidates when the degeneration isn't small? And how do they compare for different choices of $\overline{\omega_0}$?

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Every two reduced word decompositions $\overline{\omega_0}$ and $\overline{\omega_0}'$ can be linked by a finite sequence of the following two braid move:

- 1. 2-move: exchanges (s_i, s_j) with (s_j, s_i) where |i j| > 1
- 2. 3-move: exchanges (s_i, s_j, s_i) with (s_j, s_i, s_j) where |i j| = 1

Lustzig gave was a piecewise linear map between $\Delta(\overline{\omega_0})$ and $\Delta(\overline{\omega_0}')$ which differ by a braid move given by:

- 1. 2-move: $(x_i, x_j) \to (x_j, x_i)$
- 2. 3-move: $(x_i, x_j, x_k) \rightarrow$ $(\max(x_k, x_j - x_i), x_i + x_k, \min(x_i, x_j - x_k))$. Note that i, j and k are consecutive integers.

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

Give picture of A_3 case and how they are linked by braid moves.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E \ensuremath{\mathrm{X}}$ –

Theorem. For $\overline{\omega_0}$ and $\overline{\omega_0}'$ differing by a 2-move. The families $F_{\overline{\omega_0}}$ and $F_{\overline{\omega_0}'}$ are isomorphic.

Examining how the facets of Δ change under a 3-move will help us define a birational map between the corresponding $F_{\overline{\omega_0}}$ and $F_{\overline{\omega_0}'}$.

Figure 1: String Diagrams for $\overline{\omega_0} = \mathbf{s_3s_1}s_2s_1s_3s_2$ and $\overline{\omega_0}' = \mathbf{s_1s_3}s_2s_1s_3s_2$

Figure 2: String diagrams for $\overline{\omega_0} = s_3 \mathbf{s_1} \mathbf{s_2} \mathbf{s_1} s_3 s_2$ and $\overline{\omega_0}' = s_3 \mathbf{s_2} \mathbf{s_1} \mathbf{s_2} s_3 s_2$

– Typeset by $\mbox{Foil}{\rm T}_{\!E\!}{\rm X}$ –

Theorem. We have a complete classification of how the λ and string inequalities change under a 3-move.

This understanding of how the inequalities change shows us what $F_{\overline{\omega_0}}$ looks like before and after a braid move.

Theorem. For any two reduced words $\overline{\omega_0}$ and $\overline{\omega_0}$ there exists an explicit birational map between $F_{\overline{\omega_0}}$ and $F_{\overline{\omega_0}'}$.

The method of the proof went has follows:

- 1. Attempt to define a change of coordinates which gives a birational map between $V(X_{\Delta^*})$ and $V(X_{\Delta'^*})$
- This isn't possible unless we we restrict to a subfamily satisfying box equations whenever Box Condition 1 is met.
- 3. Try to show that this map preserves the box equations.
- 4. In order to show this we need that box conditions 2 and three are satisfied.

Since mirror properties are invariant under birational maps we get the answers to our original two questions.

Answer. The families $F_{\overline{\omega_0}}$ are appropriate mirror candidates constructed from the string degenerations **Answer.** The mirror family is essentially independent of the choice of reduced decomposition.

Remark. In the language of tropical geometry, the maps between individual fibers can be given by a particular geometric lift of the piecewise linear map between the string cones.