Equivalence of Mirror Families Constructed from Toric Degenerations of Flag Varieties

Joe Rusinko
University of Georgia

May 31, 2007

- Typeset by FoilTEX -

Definition. Let $G=S L_{n+1}(\mathbb{C})$ and B the subgroup of upper triangular matrices. Then we say say that G / B is the complete flag variety of type $A_{n} .(n \geq 2)$

The Weyl group of G is the symmetric group S_{n+1} with simple reflections denoted s_{1}, \cdots, s_{n}. Let ω_{0} denote the unique element of S_{n+1} of maximal length.

There are many different ways of writing ω_{0} as a product of simple reflections.
Definition. We call $a \overline{\omega_{0}}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$ a reduced decomposition of ω_{0} if $\overline{\omega_{0}}=\omega_{0}$ and $N=\frac{n(n+1)}{2}$. Lemma. Generic elements of $\left|-K_{G / B}\right|$ are smooth Calabi-Yau varieties.
Question. Can we find a family of varieties mirror to these generic anti-canonical hypersurfaces?

Answer. YES! By constructions of Givental, Batyrev (et.al.). We review the Batyrev's construction which uses small toric degenerations of G / B.
Definition. A normal Gorenstein toric Fano variety $Y \subset \mathbb{P}^{m}$ is called a small toric degeneration of X, if there exists a Zariski open neighborhood U of $0 \subset \mathbb{A}^{1}$ and an irreducible subvariety $X \subset \mathbb{P}^{m} \times U$ such that the morphism $\pi: \widetilde{X} \mapsto U$ is flat and:

1. the fiber $X_{t}:=\pi^{-1}(t) \subset \mathbb{P}^{m}$ is smooth for all $t \in U \backslash 0$;
2. the special fiber $X_{0}:=\pi^{-1}(0) \subset \mathbb{P}^{m}$ has at worst Gorenstein terminal singularities and X_{0} is isomorphic to $Y \subset \mathbb{P}^{m}$;
3. $\operatorname{Pic}(\widetilde{X} / U) \cong \operatorname{Pic}\left(X_{t}\right)$ for all $t \in U$.

Given a small toric degeneration of the pair $\left(G / B,-K_{G / B}\right)$ to a toric variety X_{Δ} corresponding to a reflexive polytope Δ. We can take look at the toric variety associated to the dual polytope Δ^{*} in $M_{\mathbb{R}}$.

Δ^{*}
We can view M as the lattice of monomials in $\mathbb{C}\left[t_{1}, t_{1}^{-1}, \cdots, t_{N}, t_{N}^{-1}\right]$.
Definition. $V\left(X_{\Delta^{*}}\right)$ is the family of hypersurfaces in $T=\operatorname{Spec}\left(\mathbb{C}\left[t_{1}, t_{1}^{-1}, \cdots, t_{N}, t_{N}^{-1}\right]\right)$ satisfying the equations $1=\quad \sum \quad a_{i} T^{m_{i}}$ where $a_{i} \in \mathbb{C}^{*}$. vertices m_{i} of Δ^{*}
Conjecture. (Batyrev) Generic elements of the subfamily of $V\left(\Delta^{*}\right)$ whose coefficients satisfy a set of relations called box equations are birational to mirrors of generic elements of $\left|-K_{G / B}\right|$.

Construction. (Caldero-Alexeev-Brion) For any choice of reduced decomposition $\overline{\omega_{0}}$ there exists a degeneration of the pair $\left(G / B,-K_{G / B}\right)$ to a toric pair $\left(X_{\Delta}, \mathcal{O}_{X_{\Delta}}(1)\right)$ corresponding to a polytope $\Delta=$ $\Delta\left(\overline{\omega_{0}}\right)$. We call these degenerations string degenerations.
Question. What is known about these degenerations and their corresponding polytopes?

1. The polytope Δ is conjectured to be integral.
2. * The dual polytope Δ^{*} is integral.
3. The f-vectors for different Δ vary greatly, but the number of integral points remains the same.
4. For $\overline{\omega_{0}}=s_{1} s_{2} s_{1}, \cdots, s_{n} s_{n-1} \cdots s_{1}$ corresponds to the sagbi, or Gonciulea/Lakshmibai, degeneration which was used in the original mirror construction of Batyrev (et. al.).
5. * There exist examples of string degenerations which aren't small.

Question. Can we construct mirror families using the string degenerations?
Question. How do these mirror families depend on the choice of $\overline{\omega_{0}}$?

We attempt to mimic Batyrev's construction
Definition. Since Δ^{*} is an integral polytope we can still define $V\left(X_{\Delta^{*}}\right)$
Question. What are the appropriate box equations to use in the string degeneration?

Note that the box equations correspond to relationships between the facets of Δ. So we need to understand these facets.
Fact. Δ is the intersection of two polyhedral cones known respectively as the string and λ-cones. The sting cone was defined by Berenstein and Zelevinsky, and given a combinatorial description by Gleizer and Postnikov. The λ-cone was defined by Littelmann.

Fix $\overline{\omega_{0}}$ and draw a string diagram: For example the string diagram for $n=3$ and reduced word decomposition $\overline{\omega_{0}}=s_{3} s_{1} s_{2} s_{1} s_{3} s_{2}$:

Theorem. (Gleizer and ${ }^{b_{4}}{ }^{b_{3}}$ Postnikov ${ }_{2}{ }_{b_{1}}$ The string cone can be completely described in terms of certain types of oriented paths on this graph known as rigorous paths. Each rigorous path defines a facet of the string cone.
Lemma. The λ-cone can be completely described in terms of the combinatorics of this graph. Every point of intersection t_{i} determines a facets of the λ-cone. Definition. Given a rigorous path p or an intersection point t_{i} we denote the corresponding monomial in the equations defining $V\left(X_{\Delta^{*}}\right)$ by T^{p} and $T^{\lambda_{i}}$.

Combinatorial Box equations:

Definition. The closed $b_{4}{ }^{b_{3}}$ bounded $b_{2} b_{1}{ }_{1}$ regions of the string cone are called boxes. Each box has a top vertex and a bottom vertex. We denote the corresponding coordinates $t_{\text {top }}$ and $t_{\text {bot }}$.
Definition. Let $T^{\lambda_{\text {top }}}$ (resp. $T^{\lambda_{\text {bot }}}$) be the monomial corresponding to the λ-inequality associated to $t_{\text {top }}$ (resp. $t_{b o t}$).

Definition. For every two string inequalities p_{1} and p_{2} with corresponding monomials $T^{p_{1}}$ and $T^{p_{2}}$ satisfying the following box conditions:

1. there exists a box with corresponding monomials $T^{\lambda_{\text {top }}}$ and $T^{\lambda_{\text {bot }}}$ such that $T^{p_{1}} T^{\lambda_{\text {top }}}=T^{p_{2}} T^{\lambda_{\text {bot }}}$,
2. the $t_{\text {top }}$ degree of $T^{p_{1}}=-1$,
3. the $t_{\text {bot }}$ degree of $T^{p_{2}}=1$,
we define an equation $a_{p_{1}} a_{\lambda_{t o p}}=a_{p_{2}} a_{\lambda_{b o t}}$. We call the collection of all such equations the combinatorial box equations.

$$
\overline{\omega_{0}}=s_{3} s_{1} s_{2} s_{1} s_{3} s_{2}
$$

- Typeset by FoilTEX -

Definition. Let $F_{\overline{\omega_{0}}}$ be the subfamily of hypersurfaces in $V\left(X_{\Delta^{*}}\right)$ whose coefficients satisfy the combinatorial box equations.
Theorem. When the string degenerations is small, this is precisely the family defined by Batyrev.
Question. Do the families $F_{\overline{\omega_{0}}}$ make good mirror candidates when the degeneration isn't small? And how do they compare for different choices of $\overline{\omega_{0}}$?

Every two reduced word decompositions $\overline{\omega_{0}}$ and ${\overline{\omega_{0}}}^{\prime}$ can be linked by a finite sequence of the following two braid move:

1. 2-move: exchanges $\left(s_{i}, s_{j}\right)$ with $\left(s_{j}, s_{i}\right)$ where $|i-j|>1$
2. 3-move: exchanges $\left(s_{i}, s_{j}, s_{i}\right)$ with $\left(s_{j}, s_{i}, s_{j}\right)$ where $|i-j|=1$

Lustzig gave was a piecewise linear map between $\Delta\left(\overline{\omega_{0}}\right)$ and $\Delta\left({\overline{\omega_{0}}}^{\prime}\right)$ which differ by a braid move given by:

1. 2-move: $\left(x_{i}, x_{j}\right) \rightarrow\left(x_{j}, x_{i}\right)$
2. 3-move:
$\left(x_{i}, x_{j}, x_{k}\right) \rightarrow$
$\left(\max \left(x_{k}, x_{j}-x_{i}\right), x_{i}+x_{k}, \min \left(x_{i}, x_{j}-x_{k}\right)\right)$. Note that i, j and k are consecutive integers.

Give picture of A_{3} case and how they are linked by braid moves.

Theorem. For $\overline{\omega_{0}}$ and ${\overline{\omega_{0}}}^{\prime}$ differing by a 2-move. The families $F_{\overline{\omega_{0}}}$ and $F_{\overline{\omega_{0}}}$ are isomorphic.

Examining how the facets of Δ change under a 3-move will help us define a birational map between the corresponding $F_{\overline{\omega_{0}}}$ and $F_{\overline{\omega_{0}}}$.

Figure 1: String Diagrams for $\overline{\omega_{0}}=\mathbf{s}_{3} \mathbf{s}_{1} s_{2} s_{1} s_{3} s_{2}$ and ${\overline{\omega_{0}}}^{\prime}=\mathbf{s}_{1} \mathbf{s}_{3} s_{2} s_{1} s_{3} s_{2}$

Figure 2: String diagrams for $\overline{\omega_{0}}=s_{3} \mathbf{S}_{1} \mathbf{s}_{2} \mathbf{s}_{1} s_{3} s_{2}$ and ${\overline{\omega_{0}}}^{\prime}=s_{3} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{1} \mathbf{S}_{\mathbf{2}} s_{3} s_{2}$

Theorem. We have a complete classification of how the λ and string inequalities change under a 3-move.

$b_{3} b_{2} b_{1}$

$b_{3} b_{2} b_{1}$

$b_{3} b_{2} b_{1}$

$b_{3} b_{2} b b_{3} b_{2} b_{1}$

This understanding of how the inequalities change shows us what $F_{\overline{\omega_{0}}}$ looks like before and after a braid move.

Theorem. For any two reduced words $\overline{\omega_{0}}$ and $\overline{\omega_{0}}$ there exists an explicit birational map between $F_{\overline{\omega_{0}}}$ and $F_{\overline{\omega_{0}}}$.

The method of the proof went has follows:

1. Attempt to define a change of coordinates which gives a birational map between $V\left(X_{\Delta^{*}}\right)$ and $V\left(X_{\Delta^{\prime *}}\right)$
2. This isn't possible unless we we restrict to a subfamily satisfying box equations whenever Box Condition 1 is met.
3. Try to show that this map preserves the box equations.
4. In order to show this we need that box conditions 2 and three are satisfied.

Since mirror properties are invariant under birational maps we get the answers to our original two questions.
Answer. The families $F_{\overline{\omega_{0}}}$ are appropriate mirror candidates constructed from the string degenerations Answer. The mirror family is essentially independent of the choice of reduced decomposition.
Remark. In the language of tropical geometry, the maps between individual fibers can be given by a particular geometric lift of the piecewise linear map between the string cones.

