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A little background

The Dedekind eta function under SL,(Z) :

77(7-) _ eﬁl—[zo:1 (1 o e27r1n7')
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A little background

The Dedekind eta function under SL,(Z) :

() = eFFILE, (1 - e277)

analysis, number theory, combinatorics

g-series

Weierstrass elliptic functions
modular forms

Kronecker limit formula
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Richard Dedekind circa 1880

— Typeset by Foil TEX —



Richard Dedekind circa 1880

Definition (Dedekind sum): For relatively prime positive integers a and b,

-5 () ()
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Richard Dedekind circa 1880

Definition (Dedekind sum): For relatively prime positive integers a and b,
b—1
ka k
b) = — —
=3 ((5)) ()

where

r}—1/2 ifzeR\Z,
((”7)):{({) if z € }
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where do these sums show up?
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where do these sums show up?

analysis, number theory, combinatorics
theta functions
group actions on manifolds

integer-point enumeration in polytopes
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back to Dedekind sums

-5 () (1)
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back to Dedekind sums

-5 () ()

can take a long time to compute: s(3,100) = 229:1 ((E’T%)) ((%))
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Theorem (Dedekind reciprocity):

s (a,b) +s(b,a) =

— Typeset by Foil TEX —



Theorem (Dedekind reciprocity):

1 1 1 b
s(a,b) + s (b,a) = —Z+—(9+—+_)

Erample: 5(3,100) +5(100,3) =~} + 1 ¢y + gl + 139

co, 0%, (25) (i) + 2y ((299) ((5)) = —3+ 45 (i + 5t +190)
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Theorem (Dedekind reciprocity):

I 1 I b
s(a,b) +s(b,a) = —Z+—(g+—+—)

Erample: 5(3,100) +5(100,3) =~} + 1 ¢y + gl + 139

>0, Z ((100)) ((100)) + Zk- 1 ((10%)) ((%)) =it (o t3mt3)

Note: s(a,b) = s(a mod b, b)

(Dedekind reciprocity was proved algebraically)

— Typeset by Foil TEX — 6



Leonard Carlitz about a hundred years later
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Leonard Carlitz about a hundred years later

Definition (Carlitz polynomial): For indeterminates u and v, and relatively
prime positive integers a and b,

a—1
¢ (u,v;a,b) = Z wb= 1y 7]
k=1
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Leonard Carlitz about a hundred years later

Definition (Carlitz polynomial): For indeterminates u and v, and relatively
prime positive integers a and b,

a—1
¢ (u,v;a,b) = Z wb= 1y 7]
k=1

| x| is the greatest integer less than or equal to x

2] =2 —{z}

— Typeset by Foil TEX — 7



Theorem (Carlitz reciprocity): For indeterminates u and v, and relatively
prime positive integers a and b,

(w—1)c(u,v;a,b) + (v —1)c(v,u;b,a) = u* "1 —1
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Theorem (Carlitz reciprocity): For indeterminates u and v, and relatively
prime positive integers a and b,

(w—1)c(u,v;a,b) + (v —1)c(v,u;b,a) = u* "1 —1

(proved algebraically)
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Hey!

Dedekind reciprocity follows from Carlitz reciprocity: apply the operators
uOdu once and vov twice and set u = v = 1.
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Hey!
Dedekind reciprocity follows from Carlitz reciprocity: apply the operators

uOu once and vov twice and set u=v = 1.

(w—1)c(u,v;a,b) + (v —1)c(v,u;b,a) = u bt -1

1 1 fa 1 b
S(ajb)—i_s(&a):—Z—FE(E_F%—F&)
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Hey!

Dedekind reciprocity follows from Carlitz reciprocity: apply the operators
uOu once and vOv twice and set u = v =1.

a—1 b—1
(u—1) Zuk_le%J + (v —1) ka_luL%J = 2 bt — ]
k=1 k=1

4

1) N(63) B8 1 (CO) () ERemA Coety
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Goals

e \We know that Dedekind sums appear naturally in polyhedral geometry;
we show that Carlitz polynomials appear naturally as well.
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Goals

e \We know that Dedekind sums appear naturally in polyhedral geometry;
we show that Carlitz polynomials appear naturally as well.

e We give novel geometric proofs of Carlitz' reciprocity theorem, some of
its generalizations, and some new reciprocity theorems.
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Goals

e \We know that Dedekind sums appear naturally in polyhedral geometry;
we show that Carlitz polynomials appear naturally as well.

e We give novel geometric proofs of Carlitz' reciprocity theorem, some of
its generalizations, and some new reciprocity theorems.

e We realize the equivalence of Carlitz polynomials and the integer-point
transform of a two-dimensional analogue of the Mordell-Pommersheim
tetrahedron.
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Goals

e \We know that Dedekind sums appear naturally in polyhedral geometry;
we show that Carlitz polynomials appear naturally as well.

e We give novel geometric proofs of Carlitz' reciprocity theorem, some of
its generalizations, and some new reciprocity theorems.

e We realize the equivalence of Carlitz polynomials and the integer-point
transform of a two-dimensional analogue of the Mordell-Pommersheim
tetrahedron.

e We give an intrinsic geometric reason why Dedekind sums appear in
the lattice point enumerator of the tetrahedron by applying Brion's
decomposition theorem to the Mordell-Pommersheim tetrahedron.
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Motivation

a Carlitz polynomial: c(u,v;a,b)
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Motivation

a Carlitz polynomial: c(u,v;a,b)

W

(a,b)
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Motivation

a Carlitz polynomial: c(u,v;a,b)

W

(a,b)

A pointed cone, K , is the intersection of finitely many half-spaces that
meet in exactly one point, the vertex.
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Motivation

a Carlitz polynomial: c(u,v;a,b)

W

A pointed cone, K , is the intersection of finitely many half-spaces that
meet in exactly one point, the vertex.

K1 = {Xses+ Aa,b) : Ao, A > 0} (closed)
Ky = {M\e1+ Xa,b): Ay >0, >0} (half-open)
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How do we list the integer points in each cone?

II; = {)\262 —I—)\(a, b) 0 < M, A< 1}
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How do we list the integer points in each cone?

II; = {)\262 —I—)\(a, b) 0 < M, A< 1}

Note:

kb

{(kyy) el1NZ*} = {(0,0), (k {—J +1) 0 1 gkga—l}

a
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Integer points in the fundamental parallelograms

Hl :{A2e2+)\(a,b):0§)\2,)\< 1}
:{)\161—|—>\(a,b):O<>\1§1,0§)\<1}

and

{(k,y) eT,NZ?} = { ( { J )
{(x,k) eTLNZ?} = {(1 0), qujL >
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Discrete — continuous
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Discrete — continuous

Our generating function takes integer points and embeds them as the
multidegree of a monomial.

Example: (a,b) — u0’
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Discrete — continuous

Our generating function takes integer points and embeds them as the
multidegree of a monomial.

Example: (a,b) — u0’

Definition: If .S is a rational polyhedron,

os(z) = os (27", 292, ..., 257) == Z z™

me SNZ4

is called the integer-point transform of S .
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The integer-point transform of our vertex cones

The integer points inside II; are (k, L%bj + 1) for 1 <k <a-—1 and are
encoded in the generating function as

a—1 -
uovo — E ukv LTJ +1
k=1
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The integer-point transform of our vertex cones

The integer points inside II; are (k, L%bj + 1) for 1 <k <a-—1 and are
encoded in the generating function as

a—1

ulo® + Z wkpl@]+1 = 1 + uv c(u, v;a, b)
k=1
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The integer-point transform of our vertex cones

The integer points inside II; are (k, L%bj + 1) for 1 <k <a-—1 and are
encoded in the generating function as

a—1
ulo® + Z wkpl@]+1 = 1 + uv c(u, v;a, b)
k=1

Therefore,
1+ wuwve(u,v;a,b)

TELT T =) (1 — umd)
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So we have
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So we have
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o i, (U, v) =

1 4+ uvc(u,v;a,b)

(v —1)(ub —1)
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So we have

1 4+ uvc(u,v;a,b)

75, (1 0) = T (e — 1)

and
u + uv c(v, u; b, a

)
(u—1)(u® —1)

0K, (U, U)
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Putting it together

or,(u,v) + o, (u,v) = og(u,v)
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Putting it together

0K, (u,v) + OKo (u,v) = UQ(uv v)

1 4+ uvc(u,v;a,b)

u+ uvc(v,u; b, a)

1

(v —1)(ub —1)
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(u—1)(v—1)
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Putting it together

0K, (u,v) + OKo (u,v) = UQ(uv v)

1 +wuve(u,v;a,b)  u+uve(v,u;b,a) 1

(v—1)(u®—1)  (u—1)(u*®—-1) (u—1)(v—1)

= (u—1)c(u,v;a,b) + (v — 1) c(v,u;b,a) = u* 1 -1
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Carlitz reciprocity in n dimensions

Definition:

a1—1 LkaQJ Lkag
. . k-1, [ a1 ay

C(UL, Uy v v ey Up AL, A2y e v ey () = E uy U T Uug
k=1
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Carlitz reciprocity in n dimensions

Definition:
azl_l o B bl
. . k—1_ L a1 al al
C(u17u27'°'7un7a17a27"'7an) T Uy Uy Us Tt Un
k=1
Theorem (Berndt—Dieter): If aq,as9,...,a, are pairwise relatively prime
positive integers, then
(u1 — 1) c(ug, ug, ..., Up; 1,02, . .., Ap)
+ (u2 — 1) C (UQ,Ug, ceey Up, Ur; A2, 03, . .. 7anaafl)
4 (U — 1) C (U ULy e e ey U1 Oy ALy e v ey Gy 1)
1 -1 _
= u T ug? T - 1

— Typeset by Foil TEX — 17



— Typeset by Foil TEX —

What else can we do?
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Other geometric pictures
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Other geometric pictures

Two rays in the first quadrant:

— Typeset by Foil TEX —

19



Other geometric pictures

Two rays in the first quadrant:
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Other geometric pictures

Two rays in the first quadrant:

W

Theorem (Beck, Matthews):
(u—1) (u® = 1) c(u,v;c,d) + (v — 1) (u0® — 1

L ua—l—c—l,vb—i—d—l L ua,Ub L ucvd + ua—l,Ub + uc,U

_ua—l,Ub—l L uc—lvd—l +1
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c(v,u;b,a)
—1
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Other geometric pictures
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Other geometric pictures

Perpendicular rays in the plane:
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Other geometric pictures

Perpendicular rays in the plane:

Theorem (Beck,M):

w (v —1) (u_bva — 1) C (’U_l, u; a, b)
+u to(u — 1) (ubv_a — 1) C (u_l, v; b, a)
= u (u_bfua — 1) + v (ubv_a — 1)
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Other geometric pictures
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A triangle:
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Other geometric pictures
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Other geometric pictures

A triangle:

Definition: A vertex cone K, of a polytope P is the smallest cone with
vertex v that contains P.
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Theorem (Brion 1988): Suppose P is a rational convex polytope. Then we
have the following identity of rational functions:

op(z)= >  ok,(2)

v a vertex of P

where z := (21, 29,...,2n) .
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The triangle

Consider the triangle P :

The integer-point transform of the vertex cone K, ¢ ) is given by

utt +uve (v,ut; b, a)
(u—1) (u=b—1)

O-K(a,(),())(uav) — =
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Brion’s theorem applied to the triangle

Then using Brion's theorem we have

JP ('U/, 'U) — OK(a,O,O) (u7 U) —l_ OK(O,b,O) (U, U) —l_ OK(O,O,O) (u7 ’U)
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Brion’s theorem applied to the triangle

Then using Brion's theorem we have
JP(“’? ’U) — OK(a,O,O) (U, U) + OK(O,b,O) (U, U) + O-K(O’O’O)(Uﬂ U)

utt +uve (v,utb,a) VT wvbe (u, vt a,b)
(u—1) (w2t —1)  (v—1)(uv=0—1)
1
(u—1)(v—1)

_1_
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Brion’s theorem applied to the triangle

Then using Brion's theorem we have
JP(“’? ’U) — OK(a,O,O) (U, U) + OK(O,b,O) (U, U) + O-K(O’O’O)(Uﬂ U)

utt +uve (v,utb,a) VT wvbe (u, vt a,b)
(u—1) (w2t —1)  (v—1)(uv=0—1)
1
(u—1)(v—1)

Theorem (Beck, M):

_1_

o+l 1

(u—"1)op(u,v) = uve (v,u~'b,a) +u (u +0") = ——
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A tetrahedron

{0.0.c})

{0.b. .0}

{(a.0.0})
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A tetrahedron

{0.0,.c)
¥
(0.b.0O)
{a.0_0)
Definition (DRC sum):

c—1b—1 .
_ jaka|
c(u,v,w;a,b,c):= g g ul B ik

k=0 j=0
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A tetrahedron

e \

{0.b.0)

{a.0. 0}

Definition (DRC sum):

c—1b—-1

c(u,v,w;a,b,c):= Z Z AR maral N

k=0 j=0

Integer-point transform:

u(tt2)a (u—1)+c(utv,w;a,b,c)l

UtK(a,O,O)(u’ v, w) = (u—1) (u® — o) (u* — we)
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Brion’s theorem applied to the tetrahedron

Theorem (Beck, M):

(u—1)(v—1)(w—1) (u* — v°) (u* — w°) (v* — W) orp(u,v,w)

= w2y — 1) (w—1) (v —w®) [(u—1) + ¢ (vt v,w;a,b,c)]
—pF2b(y — 1) (w — 1) (u® — w) [(v—1) +¢ (v, u,w;b,a,c)]
+w2De(y — 1) (w — 1) (u® —0°) [(w = 1) + & (w™ u,v;¢,a,b)]

— (u® =) (u* — we) (v* — we)
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Something to think about

Theorem (Mordell-Pommersheim 1951, 1993): Let ¢tP be the dilated
tetrahedron and let a,b and ¢ be pairwise relatively prime. Then

b b bc+ 1
Lip(t) = % 42 il ac;— e t* + (—s(bc,a) — s(ca,b) —s(ab,c))t

N §+a+b+c+1 bc+ca,+a,b+ 1 ol
4 4 12\ a b c abc

where L;p(t) is the lattice-point enumerator for the t'* dilate of P C R
and is equivalent to # (tP N Zd) , the discrete volume of tP .
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JtP(la 17 1) — LtP(t)
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DRC to Dedekind
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DRC to Dedekind

JtP(la 17 1) — LtP(t)
orp(u, v, w) =

w2y — 1) (w —1) (v* —w®) [(u—1) 4+ ¢ (v, v,w;a,b,c)]

—pF2b(y — 1) (w — 1) (u® — w) [(v—1) +¢ (v, u,w;b,a,c)]

(u—1)(w—1) (u* —v*) [(w—=1)+¢(wtu,v;c a,b)
— (u® =) (u* — w®) (v* — we)

(u—1)(v—1)(w—1) (u® = v°) (u* — we) (v* — w°)

+w(t—i—2)c
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A nice result

b b bc+ 1
Lp(t) = % 342 T ac;— cr t* + (—s(bc,a) — s(ca,b) —s(ab,c))t

N §+a+b+c+1 bc+ca+ab+ 1 ol
4 4 12\ a D c abc
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some questions

what happens given a rational triangle?

should we generalize this application of Brion's theorem to n dimensions?
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