A geometric approach to Carlitz-Dedekind sums

Asia R. Matthews
joint work with
Matthias Beck
San Francisco State University

A little background

The Dedekind eta function under $S L_{n}(\mathbb{Z})$:

$$
\eta(\tau)=\mathbf{e}^{\frac{\pi i \tau}{12}} \Pi_{n=1}^{\infty}\left(1-\mathbf{e}^{2 \pi ı n \tau}\right)
$$

A little background

The Dedekind eta function under $S L_{n}(\mathbb{Z})$:

$$
\eta(\tau)=\mathrm{e}^{\frac{\pi \tau}{12}} \Pi_{n=1}^{\infty}\left(1-\mathrm{e}^{2 \pi 1 n \tau}\right)
$$

analysis, number theory, combinatorics
q -series
Weierstrass elliptic functions
modular forms
Kronecker limit formula

Richard Dedekind circa 1880

Richard Dedekind circa 1880

Definition (Dedekind sum): For relatively prime positive integers a and b,

$$
\mathrm{s}(a, b)=\sum_{k=1}^{b-1}\left(\left(\frac{k a}{b}\right)\right)\left(\left(\frac{k}{b}\right)\right)
$$

Richard Dedekind circa 1880

Definition (Dedekind sum): For relatively prime positive integers a and b,

$$
\mathrm{s}(a, b)=\sum_{k=1}^{b-1}\left(\left(\frac{k a}{b}\right)\right)\left(\left(\frac{k}{b}\right)\right)
$$

where

$$
((x))=\left\{\begin{array}{ll}
\{x\}-1 / 2 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z}, \\
0 & \text { if } x \in \mathbb{Z}
\end{array}\right\}
$$

where do these sums show up?

where do these sums show up?

analysis, number theory, combinatorics
theta functions
group actions on manifolds
integer-point enumeration in polytopes

back to Dedekind sums

$$
\mathrm{s}(a, b)=\sum_{k=1}^{b-1}\left(\left(\frac{k a}{b}\right)\right)\left(\left(\frac{k}{b}\right)\right)
$$

back to Dedekind sums

$$
\mathrm{s}(a, b)=\sum_{k=1}^{b-1}\left(\left(\frac{k a}{b}\right)\right)\left(\left(\frac{k}{b}\right)\right)
$$

can take a long time to compute: $\mathrm{s}(3,100)=\sum_{k=1}^{99}\left(\left(\frac{3 k}{100}\right)\right)\left(\left(\frac{k}{100}\right)\right)$

Theorem (Dedekind reciprocity):

$$
\mathrm{s}(a, b)+\mathrm{s}(b, a)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b}+\frac{1}{a b}+\frac{b}{a}\right)
$$

Theorem (Dedekind reciprocity):

$$
\mathrm{s}(a, b)+\mathrm{s}(b, a)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b}+\frac{1}{a b}+\frac{b}{a}\right)
$$

Example: $s(3,100)+s(100,3)=-\frac{1}{4}+\frac{1}{12}\left(\frac{3}{100}+\frac{1}{300}+\frac{100}{3}\right)$
so, $\sum_{k=1}^{99}\left(\left(\frac{3 k}{100}\right)\right)\left(\left(\frac{k}{100}\right)\right)+\sum_{k=1}^{2}\left(\left(\frac{100 k}{3}\right)\right)\left(\left(\frac{k}{3}\right)\right)=-\frac{1}{4}+\frac{1}{12}\left(\frac{3}{100}+\frac{1}{300}+\frac{100}{3}\right)$

Theorem (Dedekind reciprocity):

$$
\mathrm{s}(a, b)+\mathrm{s}(b, a)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b}+\frac{1}{a b}+\frac{b}{a}\right)
$$

Example: $s(3,100)+s(100,3)=-\frac{1}{4}+\frac{1}{12}\left(\frac{3}{100}+\frac{1}{300}+\frac{100}{3}\right)$
so, $\sum_{k=1}^{99}\left(\left(\frac{3 k}{100}\right)\right)\left(\left(\frac{k}{100}\right)\right)+\sum_{k=1}^{2}\left(\left(\frac{100 k}{3}\right)\right)\left(\left(\frac{k}{3}\right)\right)=-\frac{1}{4}+\frac{1}{12}\left(\frac{3}{100}+\frac{1}{300}+\frac{100}{3}\right)$

Note: $\mathrm{s}(a, b)=\mathrm{s}(a \bmod b, b)$
(Dedekind reciprocity was proved algebraically)

Leonard Carlitz about a hundred years later

Leonard Carlitz about a hundred years later

Definition (Carlitz polynomial): For indeterminates u and v, and relatively prime positive integers a and b,

$$
\mathrm{c}(u, v ; a, b)=\sum_{k=1}^{a-1} u^{k-1} v^{\left\lfloor\frac{k b}{a}\right\rfloor}
$$

Leonard Carlitz about a hundred years later

Definition (Carlitz polynomial): For indeterminates u and v, and relatively prime positive integers a and b,

$$
\mathrm{c}(u, v ; a, b)=\sum_{k=1}^{a-1} u^{k-1} v\left\lfloor\frac{k b}{a}\right\rfloor
$$

$\lfloor x\rfloor$ is the greatest integer less than or equal to x,

$$
\lfloor x\rfloor=x-\{x\}
$$

Theorem (Carlitz reciprocity): For indeterminates u and v, and relatively prime positive integers a and b,

$$
(u-1) \mathrm{c}(u, v ; a, b)+(v-1) \mathrm{c}(v, u ; b, a)=u^{a-1} v^{b-1}-1
$$

Theorem (Carlitz reciprocity): For indeterminates u and v, and relatively prime positive integers a and b,

$$
(u-1) \mathrm{c}(u, v ; a, b)+(v-1) \mathrm{c}(v, u ; b, a)=u^{a-1} v^{b-1}-1
$$

(proved algebraically)

Hey!

Dedekind reciprocity follows from Carlitz reciprocity: apply the operators $u \partial u$ once and $v \partial v$ twice and set $u=v=1$.

Hey!

Dedekind reciprocity follows from Carlitz reciprocity: apply the operators $u \partial u$ once and $v \partial v$ twice and set $u=v=1$.

$$
(u-1) \mathrm{c}(u, v ; a, b)+(v-1) \mathrm{c}(v, u ; b, a)=u^{a-1} v^{b-1}-1
$$

$$
\mathrm{s}(a, b)+\mathrm{s}(b, a)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b}+\frac{1}{a b}+\frac{b}{a}\right)
$$

Hey!

Dedekind reciprocity follows from Carlitz reciprocity: apply the operators $u \partial u$ once and $v \partial v$ twice and set $u=v=1$.

$$
\begin{gathered}
(u-1) \sum_{k=1}^{a-1} u^{k-1} v^{\left\lfloor\frac{k b}{a}\right\rfloor}+(v-1) \sum_{k=1}^{b-1} v^{k-1} u^{\left\lfloor\frac{k a}{b}\right\rfloor}=u^{a-1} v^{b-1}-1 \\
\Downarrow \\
\sum_{k=1}^{b-1}\left(\left(\frac{k a}{b}\right)\right)\left(\left(\frac{k}{b}\right)\right)+\sum_{k=1}^{a-1}\left(\left(\frac{k b}{a}\right)\right)\left(\left(\frac{k}{a}\right)\right)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b}+\frac{1}{a b}+\frac{b}{a}\right)
\end{gathered}
$$

Goals

- We know that Dedekind sums appear naturally in polyhedral geometry; we show that Carlitz polynomials appear naturally as well.

Goals

- We know that Dedekind sums appear naturally in polyhedral geometry; we show that Carlitz polynomials appear naturally as well.
- We give novel geometric proofs of Carlitz' reciprocity theorem, some of its generalizations, and some new reciprocity theorems.

Goals

- We know that Dedekind sums appear naturally in polyhedral geometry; we show that Carlitz polynomials appear naturally as well.
- We give novel geometric proofs of Carlitz' reciprocity theorem, some of its generalizations, and some new reciprocity theorems.
- We realize the equivalence of Carlitz polynomials and the integer-point transform of a two-dimensional analogue of the Mordell-Pommersheim tetrahedron.

Goals

- We know that Dedekind sums appear naturally in polyhedral geometry; we show that Carlitz polynomials appear naturally as well.
- We give novel geometric proofs of Carlitz' reciprocity theorem, some of its generalizations, and some new reciprocity theorems.
- We realize the equivalence of Carlitz polynomials and the integer-point transform of a two-dimensional analogue of the Mordell-Pommersheim tetrahedron.
- We give an intrinsic geometric reason why Dedekind sums appear in the lattice point enumerator of the tetrahedron by applying Brion's decomposition theorem to the Mordell-Pommersheim tetrahedron.

Motivation

a Carlitz polynomial: $\mathrm{c}(u, v ; a, b)$

Motivation

a Carlitz polynomial: $\mathrm{c}(u, v ; a, b)$

Motivation

a Carlitz polynomial: $\mathrm{c}(u, v ; a, b)$

A pointed cone, K, is the intersection of finitely many half-spaces that meet in exactly one point, the vertex.

Motivation

a Carlitz polynomial: $\mathrm{c}(u, v ; a, b)$

A pointed cone, K, is the intersection of finitely many half-spaces that meet in exactly one point, the vertex.

$$
\begin{aligned}
& K_{1}=\left\{\lambda_{2} \mathbf{e}_{2}+\lambda(a, b): \lambda_{2}, \lambda \geq 0\right\} \quad \text { (closed) } \\
& K_{2}=\left\{\lambda_{1} \mathbf{e}_{1}+\lambda(a, b): \lambda_{1}>0, \lambda \geq 0\right\} \quad \text { (half-open) }
\end{aligned}
$$

How do we list the integer points in each cone?

$$
\Pi_{1}=\left\{\lambda_{2} \mathbf{e}_{2}+\lambda(a, b): 0 \leq \lambda_{2}, \lambda<1\right\}
$$

How do we list the integer points in each cone?

$$
\Pi_{1}=\left\{\lambda_{2} \mathbf{e}_{2}+\lambda(a, b): 0 \leq \lambda_{2}, \lambda<1\right\}
$$

Note:

$$
\left\{(k, y) \in \Pi_{1} \cap \mathbb{Z}^{2}\right\}=\left\{(0,0),\left(k,\left\lfloor\frac{k b}{a}\right\rfloor+1\right): 1 \leq k \leq a-1\right\}
$$

Integer points in the fundamental parallelograms

$$
\begin{gathered}
\Pi_{1}=\left\{\lambda_{2} \mathbf{e}_{2}+\lambda(a, b): 0 \leq \lambda_{2}, \lambda<1\right\} \\
\Pi_{2}=\left\{\lambda_{1} \mathbf{e}_{1}+\lambda(a, b): 0<\lambda_{1} \leq 1,0 \leq \lambda<1\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
& \left\{(k, y) \in \Pi_{1} \cap \mathbb{Z}^{2}\right\}=\left\{(0,0),\left(k,\left\lfloor\frac{k b}{a}\right\rfloor+1\right): 1 \leq k \leq a-1\right\} \\
& \left\{(x, k) \in \Pi_{2} \cap \mathbb{Z}^{2}\right\}=\left\{(1,0),\left(\left\lfloor\frac{k a}{b}\right\rfloor+1, k\right): 1 \leq k \leq b-1\right\}
\end{aligned}
$$

Discrete \rightarrow continuous

Discrete \rightarrow continuous

\checkmark nicer

Discrete \rightarrow continuous

Our generating function takes integer points and embeds them as the multidegree of a monomial.

$$
\text { Example: }(a, b) \rightarrow u^{a} v^{b}
$$

Discrete \rightarrow continuous

Our generating function takes integer points and embeds them as the multidegree of a monomial.

$$
\text { Example: }(a, b) \rightarrow u^{a} v^{b}
$$

Definition: If S is a rational polyhedron,

$$
\sigma_{S}(\mathbf{z})=\sigma_{S}\left(z_{1}^{m_{1}}, z_{2}^{m_{2}}, \ldots, z_{d}^{m_{d}}\right):=\sum_{\mathbf{m} \in S \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{m}}
$$

is called the integer-point transform of S.

The integer-point transform of our vertex cones

The integer points inside Π_{1} are $\left(k,\left\lfloor\frac{k b}{a}\right\rfloor+1\right)$ for $1 \leq k \leq a-1$ and are encoded in the generating function as

$$
u^{0} v^{0}+\sum_{k=1}^{a-1} u^{k} v^{\left\lfloor\frac{k b}{a}\right\rfloor+1}
$$

The integer-point transform of our vertex cones

The integer points inside Π_{1} are $\left(k,\left\lfloor\frac{k b}{a}\right\rfloor+1\right)$ for $1 \leq k \leq a-1$ and are encoded in the generating function as

$$
u^{0} v^{0}+\sum_{k=1}^{a-1} u^{k} v^{\left\lfloor\frac{\lfloor b}{a}\right\rfloor+1}=1+u v \mathrm{c}(u, v ; a, b)
$$

The integer-point transform of our vertex cones

The integer points inside Π_{1} are $\left(k,\left\lfloor\frac{k b}{a}\right\rfloor+1\right)$ for $1 \leq k \leq a-1$ and are encoded in the generating function as

$$
u^{0} v^{0}+\sum_{k=1}^{a-1} u^{k} v^{\left\lfloor\frac{k b}{a}\right\rfloor+1}=1+u v \mathrm{c}(u, v ; a, b)
$$

Therefore,

$$
\sigma_{K_{1}}=\frac{1+u v \mathrm{c}(u, v ; a, b)}{(1-v)\left(1-u^{a} v^{b}\right)}
$$

So we have

So we have

$$
\sigma_{K_{1}}(u, v)=\frac{1+u v \mathrm{c}(u, v ; a, b)}{(v-1)\left(u^{a} v^{b}-1\right)}
$$

So we have

$$
\sigma_{K_{1}}(u, v)=\frac{1+u v \mathrm{c}(u, v ; a, b)}{(v-1)\left(u^{a} v^{b}-1\right)}
$$

and

$$
\sigma_{K_{2}}(u, v)=\frac{u+u v \mathrm{c}(v, u ; b, a)}{(u-1)\left(u^{a} v^{b}-1\right)}
$$

Putting it together

$$
\sigma_{K_{1}}(u, v)+\sigma_{K_{2}}(u, v)=\sigma_{Q}(u, v)
$$

Putting it together

$$
\sigma_{K_{1}}(u, v)+\sigma_{K_{2}}(u, v)=\sigma_{Q}(u, v)
$$

$$
\frac{1+u v \mathrm{c}(u, v ; a, b)}{(v-1)\left(u^{a} v^{b}-1\right)}+\frac{u+u v \mathrm{c}(v, u ; b, a)}{(u-1)\left(u^{a} v^{b}-1\right)}=\frac{1}{(u-1)(v-1)}
$$

Putting it together

$$
\begin{gathered}
\sigma_{K_{1}}(u, v)+\sigma_{K_{2}}(u, v)=\sigma_{Q}(u, v) \\
\frac{1+u v \mathrm{c}(u, v ; a, b)}{(v-1)\left(u^{a} v^{b}-1\right)}+\frac{u+u v \mathrm{c}(v, u ; b, a)}{(u-1)\left(u^{a} v^{b}-1\right)}=\frac{1}{(u-1)(v-1)} \\
\Rightarrow(u-1) \mathrm{c}(u, v ; a, b)+(v-1) \mathrm{c}(v, u ; b, a)=u^{a-1} v^{b-1}-1
\end{gathered}
$$

Carlitz reciprocity in n dimensions

Definition:

$$
\mathrm{c}\left(u_{1}, u_{2}, \ldots, u_{n} ; a_{1}, a_{2}, \ldots, a_{n}\right):=\sum_{k=1}^{a_{1}-1} u_{1}^{k-1} u_{2}^{\left\lfloor\frac{k a_{2}}{a_{1}}\right\rfloor} u_{3}^{\left\lfloor\frac{k a_{3}}{a_{1}}\right\rfloor} \cdots u_{n}^{\left\lfloor\frac{k a_{n}}{a_{1}}\right\rfloor}
$$

Carlitz reciprocity in n dimensions

Definition:

$$
\mathrm{c}\left(u_{1}, u_{2}, \ldots, u_{n} ; a_{1}, a_{2}, \ldots, a_{n}\right):=\sum_{k=1}^{a_{1}-1} u_{1}^{k-1} u_{2}^{\left\lfloor\frac{k a_{2}}{a_{1}}\right\rfloor} u_{3}^{\left\lfloor\frac{k a_{3}}{a_{1}}\right\rfloor} \cdots u_{n}^{\left\lfloor\frac{k a_{n}}{a_{1}}\right\rfloor}
$$

Theorem (Berndt-Dieter): If $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime positive integers, then

$$
\begin{aligned}
&\left(u_{1}-1\right) \mathrm{c}\left(u_{1}, u_{2}, \ldots, u_{n} ; a_{1}, a_{2}, \ldots, a_{n}\right) \\
& \quad+\left(u_{2}-1\right) \mathrm{c}\left(u_{2}, u_{3}, \ldots, u_{n}, u_{1} ; a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right) \\
&+\cdots+\left(u_{n}-1\right) \mathrm{c}\left(u_{n}, u_{1}, \ldots, u_{n-1} ; a_{n}, a_{1}, \ldots, a_{n-1}\right) \\
&= u_{1}^{a_{1}-1} u_{2}^{a_{2}-1} \cdots u_{n}^{a_{n}-1}-1
\end{aligned}
$$

What else can we do?

Other geometric pictures

Other geometric pictures

Two rays in the first quadrant:

Other geometric pictures

Two rays in the first quadrant:

Other geometric pictures

Two rays in the first quadrant:

Theorem (Beck, Matthews):

$$
\begin{aligned}
&(u-1)\left(u^{a} v^{b}-1\right) \mathrm{c}(u, v ; c, d)+(v-1)\left(u^{c} v^{d}-1\right) \mathrm{c}(v, u ; b, a) \\
&= u^{a+c-1} v^{b+d-1}-u^{a} v^{b}-u^{c} v^{d}+u^{a-1} v^{b}+u^{c} v^{d-1} \\
&-u^{a-1} v^{b-1}-u^{c-1} v^{d-1}+1
\end{aligned}
$$

Other geometric pictures

Other geometric pictures

Perpendicular rays in the plane:

Other geometric pictures

Perpendicular rays in the plane:

Theorem (Beck,M):

$$
\begin{aligned}
& u v^{-1}(v-1)\left(u^{-b} v^{a}-1\right) \mathrm{c}\left(v^{-1}, u ; a, b\right) \\
& \quad+u^{-1} v(u-1)\left(u^{b} v^{-a}-1\right) \mathrm{c}\left(u^{-1}, v ; b, a\right) \\
& =\quad u\left(u^{-b} v^{a}-1\right)+v\left(u^{b} v^{-a}-1\right)
\end{aligned}
$$

Other geometric pictures

Other geometric pictures

A triangle:

Other geometric pictures

A triangle:

Definition: A vertex cone K_{v} of a polytope P is the smallest cone with vertex \mathbf{v} that contains P.

Theorem (Brion 1988): Suppose P is a rational convex polytope. Then we have the following identity of rational functions:

$$
\sigma_{P}(\mathbf{z})=\sum_{\mathrm{v} \text { a vertex of } P} \sigma_{K_{\mathrm{v}}}(\mathbf{z})
$$

where $\mathbf{z}:=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.

The triangle

Consider the triangle P :

The integer-point transform of the vertex cone $K_{(a, 0,0)}$ is given by

$$
\sigma_{K_{(a, 0,0)}}(u, v)=-\frac{u^{a+1}+u^{a} v \mathrm{c}\left(v, u^{-1} ; b, a\right)}{(u-1)\left(u^{-a} v^{b}-1\right)}
$$

Brion's theorem applied to the triangle

Then using Brion's theorem we have

$$
\sigma_{P}(u, v)=\sigma_{K_{(a, 0,0)}}(u, v)+\sigma_{K_{(0, b, 0)}}(u, v)+\sigma_{K_{(0,0,0)}}(u, v)
$$

Brion's theorem applied to the triangle

Then using Brion's theorem we have

$$
\begin{aligned}
\sigma_{P}(u, v)= & \sigma_{K_{(a, 0,0)}}(u, v)+\sigma_{K_{(0, b, 0)}}(u, v)+\sigma_{K_{(0,0,0)}}(u, v) \\
= & -\frac{u^{a+1}+u^{a} v \mathrm{c}\left(v, u^{-1} ; b, a\right)}{(u-1)\left(u^{-a} v^{b}-1\right)}-\frac{v^{b+1}+u v^{b} \mathrm{c}\left(u, v^{-1} ; a, b\right)}{(v-1)\left(u^{a} v^{-b}-1\right)} \\
& +\frac{1}{(u-1)(v-1)}
\end{aligned}
$$

Brion's theorem applied to the triangle

Then using Brion's theorem we have

$$
\begin{aligned}
\sigma_{P}(u, v)= & \sigma_{K_{(a, 0,0)}}(u, v)+\sigma_{K_{(0, b, 0)}}(u, v)+\sigma_{K_{(0,0,0)}}(u, v) \\
= & -\frac{u^{a+1}+u^{a} v \mathrm{c}\left(v, u^{-1} ; b, a\right)}{(u-1)\left(u^{-a} v^{b}-1\right)}-\frac{v^{b+1}+u v^{b} \mathrm{c}\left(u, v^{-1} ; a, b\right)}{(v-1)\left(u^{a} v^{-b}-1\right)} \\
& +\frac{1}{(u-1)(v-1)}
\end{aligned}
$$

Theorem (Beck, M):

$$
(u-1) \sigma_{P}(u, v)=u^{a} v \mathrm{c}\left(v, u^{-1} ; b, a\right)+u\left(u^{a}+v^{b}\right)-\frac{v^{b+1}-1}{v-1}
$$

A tetrahedron

A tetrahedron

Definition (DRC sum):

$$
\overline{\mathrm{c}}(u, v, w ; a, b, c):=\sum_{k=0}^{c-1} \sum_{j=0}^{b-1} u^{\left\lfloor\frac{j a}{b}+\frac{k a}{c}\right\rfloor} v^{j} w^{k}
$$

A tetrahedron

Definition (DRC sum):

$$
\overline{\mathrm{c}}(u, v, w ; a, b, c):=\sum_{k=0}^{c-1} \sum_{j=0}^{b-1} u^{\left\lfloor\frac{j a}{b}+\frac{k a}{c}\right\rfloor} v^{j} w^{k}
$$

Integer-point transform:

$$
\sigma_{t K_{(a, 0,0)}}(u, v, w)=\frac{u^{(t+2) a}\left[(u-1)+\overline{\mathrm{c}}\left(u^{-1}, v, w ; a, b, c\right)\right]}{(u-1)\left(u^{a}-v^{b}\right)\left(u^{a}-w^{c}\right)}
$$

Brion's theorem applied to the tetrahedron

Theorem (Beck, M):

$$
\begin{gathered}
(u-1)(v-1)(w-1)\left(u^{a}-v^{b}\right)\left(u^{a}-w^{c}\right)\left(v^{b}-w^{c}\right) \sigma_{t P}(u, v, w) \\
=u^{(t+2) a}(v-1)(w-1)\left(v^{b}-w^{c}\right)\left[(u-1)+\overline{\mathrm{c}}\left(u^{-1}, v, w ; a, b, c\right)\right] \\
-v^{(t+2) b}(u-1)(w-1)\left(u^{a}-w^{c}\right)\left[(v-1)+\overline{\mathrm{c}}\left(v^{-1}, u, w ; b, a, c\right)\right] \\
+w^{(t+2) c}(u-1)(w-1)\left(u^{a}-v^{b}\right)\left[(w-1)+\overline{\mathrm{c}}\left(w^{-1}, u, v ; c, a, b\right)\right] \\
-\left(u^{a}-v^{b}\right)\left(u^{a}-w^{c}\right)\left(v^{b}-w^{c}\right)
\end{gathered}
$$

Something to think about

Theorem (Mordell-Pommersheim 1951, 1993): Let $t P$ be the dilated tetrahedron and let a, b and c be pairwise relatively prime. Then

$$
\begin{aligned}
L_{t P}(t)= & \frac{a b c}{6} t^{3}+\frac{a b+a c+b c+1}{4} t^{2}+(-\mathrm{s}(b c, a)-\mathrm{s}(c a, b)-\mathrm{s}(a b, c)) t \\
& +\left(\frac{3}{4}+\frac{a+b+c}{4}+\frac{1}{12}\left(\frac{b c}{a}+\frac{c a}{b}+\frac{a b}{c}+\frac{1}{a b c}\right)\right) t+1
\end{aligned}
$$

where $L_{t P}(t)$ is the lattice-point enumerator for the $t^{t h}$ dilate of $P \subset \mathbb{R}^{d}$ and is equivalent to $\#\left(t P \cap \mathbb{Z}^{d}\right)$, the discrete volume of $t P$.

DRC to Dedekind

$$
\sigma_{t P}(1,1,1)=L_{t P}(t)
$$

DRC to Dedekind

$$
\begin{aligned}
& \sigma_{t P}(1,1,1)=L_{t P}(t) \\
& \begin{array}{r}
\sigma_{t P}(u, v, w)= \\
\quad u^{(t+2) a}(v-1)(w-1)\left(v^{b}-w^{c}\right)\left[(u-1)+\overline{\mathrm{c}}\left(u^{-1}, v, w ; a, b, c\right)\right] \\
-v^{(t+2) b}(u-1)(w-1)\left(u^{a}-w^{c}\right)\left[(v-1)+\overline{\mathrm{c}}\left(v^{-1}, u, w ; b, a, c\right)\right] \\
+w^{(t+2) c}(u-1)(w-1)\left(u^{a}-v^{b}\right)\left[(w-1)+\overline{\mathrm{c}}\left(w^{-1}, u, v ; c, a, b\right)\right] \\
\quad-\left(u^{a}-v^{b}\right)\left(u^{a}-w^{c}\right)\left(v^{b}-w^{c}\right)
\end{array} \\
& \quad \div(u-1)(v-1)(w-1)\left(u^{a}-v^{b}\right)\left(u^{a}-w^{c}\right)\left(v^{b}-w^{c}\right)
\end{aligned}
$$

A nice result

$$
\begin{aligned}
L_{P}(t)= & \frac{a b c}{6} t^{3}+\frac{a b+a c+b c+1}{4} t^{2}+(-\mathrm{s}(b c, a)-\mathrm{s}(c a, b)-\mathrm{s}(a b, c)) t \\
& +\left(\frac{3}{4}+\frac{a+b+c}{4}+\frac{1}{12}\left(\frac{b c}{a}+\frac{c a}{b}+\frac{a b}{c}+\frac{1}{a b c}\right)\right) t+1
\end{aligned}
$$

some questions

what happens given a rational triangle?
should we generalize this application of Brion's theorem to n dimensions?

