On the H polynomials of reductive monoids

Mahir Bilen Can
Lex Renner

What is a reductive monoid?

Naively speaking, it is the Zariski closure of a reductive group. More precisely, suppose $\rho: G_{0} \rightarrow G L(V)$ is a (rat.) representation.
Then

$$
M(\rho):=\overline{\mathbb{C}^{*} \cdot \rho\left(G_{0}\right)} \subseteq \operatorname{End}(V)
$$

is a reductive monoid.

We will denote by G the group of invertible elements in $M(\rho)$.

Some questions about reductive monoids:

- The unit group G (hence any Borel subgroup) of the monoid acts on M. What can be said about the orbits?
- How do you classify them?
- What is the representation theory?

For the answers and other useful stuff see the text book: Linear Algebraic Monoids by Lex Renner. Also, there is an excellent exposé by Lois Solomon, called An introduction to reductive monoids.

The following two examples are from the Solomon's article.
Example 1. Let $V=\mathbb{C}^{4} \otimes \mathbb{C}^{4}$, and consider $\rho: S L_{4} \rightarrow G L(V)$ defined by

$$
\rho(g)\left(v \otimes v^{\prime}\right)=g v \otimes g v^{\prime}
$$

Then, $\mathbb{C}^{*} \cdot \rho\left(S L_{4}\right)=\left\{g \otimes g \mid g \in G L_{4}\right\}$ and hence

$$
\begin{aligned}
M(\rho)=\overline{\mathbb{C}^{*} \cdot \rho\left(S L_{4}\right)} & =\left\{a \otimes a \mid a \in M_{4}\right\} \\
& \cong M_{4}
\end{aligned}
$$

Example 2. Now, consider $\sigma: S L_{4} \rightarrow G L(V)$ defined by

$$
\sigma(g)\left(v \otimes v^{\prime}\right)=g v \otimes\left(g^{-1}\right)^{t} v^{\prime}
$$

Then the unit group of $M(\sigma)$ is very similar to that of $M(\rho)$, however, these monoids are different in a fundamental way.

The difference can be read off from the idempotents $E(M(\rho))=\left\{e \in M(\rho) \mid e^{2}=e\right\}$.
$T \subseteq G$ is a maximal torus, then $M(\rho)$ contains the affine toric variety \bar{T}. Therefore $E(\bar{T}) \subseteq E(M(\rho))$.
$E(M(\rho))$ is a poset: $e \leq f \Longleftrightarrow e=f e$. We consider $E(\bar{T})$ with the induced partial order.

Theorem -an eye opener: Let $T \subseteq \mathbf{T}_{\mathbf{n}}$ be a subtorus of the diagonal invertible $n \times n$ matrices. Let $\chi_{1}, \ldots, \chi_{n} \in X(T)$ be the restrictions of the coordinate functions on $\mathbf{T}_{\mathbf{n}}$ to T. Let

$$
\mathcal{L}=\left\{\lambda \in X_{*} \mid\left\langle\chi_{i}, \lambda\right\rangle \geq 0, \text { for } 1 \leq i \leq n\right\}
$$

be the associated polyhedral cone.

Then the face lattice of \mathcal{L} is anti-isomorphic to the lattice of idempotents $E(\bar{T})$.

If furthermore G is semisimple and $0 \in M$, then we can replace the face lattice of the cone with the face lattice of a polytope.

In this spirit;

- $E(\bar{T}) \subseteq M(\rho)$ of the example 1 is isomorphic to the face lattice of the standard 4simplex.
- $E(\bar{T}) \subseteq M(\sigma)$ is the face lattice of the cuboctahedron.

Definition. The cross section lattice $\wedge \subseteq E(\bar{T})$ is the sublattice

$$
\wedge:=\{e \in E(\bar{T}) \mid B e \subseteq e B\} .
$$

Theorem (Putcha) Let M be a reductive monoid with the unit group G. Then

$$
M=\bigsqcup_{e \in \Lambda} G e G
$$

Let $R=\overline{N_{G}(T)} / T$, where $\overline{N_{G}(T)}$ is the Zariski closure in M.
Theorem (Renner)

- R is a finite monoid.
- The group of units of R is the Weyl group W, and $R=W E(R)$,
- $E(R)=E(\bar{T})$,
- For $e \in \wedge, G e G=\bigsqcup_{r \in W e W} B r B$,
- $M=\bigsqcup_{r \in R} B r B$,
- Bruhat-Chevalley order on W extends to R.

Remark. For $r \in R$,

$$
B r B \cong \mathbb{C}^{\ell(r)-r k(r)} \times\left(\mathbb{C}^{*}\right)^{r k(r)}
$$

where $r k(r)=\operatorname{dim}(T r)$ and $\ell(r)=\operatorname{dim}(\operatorname{Br} B)$.
Definition. (Renner)

$$
H(M, q)=\sum_{r \in R} q^{\ell(r)-r k(r)}(q-1)^{r k(r)}
$$

Remarks.

- This definition works for any variety with finitely many $B \times B$ orbit.
- $H(M, q)=\sum_{e \in \Lambda} H(G e G, q)$.
- If M is quasi-smooth, then Renner shows that $(H(M, q)-1) /(q-1)$ is the intersection homology Poincare polynomial of $M \backslash\{0\} / \mathbb{C}^{*}$. Question. Would it be interesting to study

$$
H_{M}(q, t)=\sum_{r \in R} q^{\ell(r)-r k(r)} t^{r k(r)}
$$

Answer: Of course!

Theorem (Can, Renner) Let M be a reductive monoid, and let $e \in \Lambda$. Then there exists a $B \times B$ equivariant fibration

$$
\mathcal{G}(e) \rightarrow G e G \rightarrow G / P \times G / P^{-},
$$

where P is a maximal parabolic subgroup and $\mathcal{G}(e)$ is a unit group of a submonoid of M.

Corollary: $H_{G e G}(q, t)=H_{G / P}(q, t)^{2} H_{\mathcal{G}(e)}(q, t)$.

Theorem.(C., R.) Let $M=M_{n}$ be the monoid of $n \times n$ matrices. Then, the H-polynomial $H_{M}(q, t)$ is equal to

$$
H_{M}(q, t)=\sum_{k=0}^{n}[k]_{q}!\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}{ }_{q}^{2} q\binom{k}{2}^{k} .
$$

Something hilarious: replace t by $q-1$, then everything cancels to $q^{n^{2}}$.

Classic Laguere polynomials:

$$
L_{n}^{(\alpha)}(x)=\frac{(\alpha+1)_{n}}{n!} \sum_{k=0}^{n} \frac{(-n)_{k} x^{k}}{(\alpha+1)_{k} k!},
$$

where $(a)_{k}=a(a+1)(a+2) \cdots(a+k-1)$, and $\alpha \in \mathbb{C}$. These polynomials satisfy the orthogonality relation
$\int_{0}^{\infty} L_{n}^{(\alpha)}(x) L_{m}^{\alpha}(x) x^{(\alpha)} e^{-x} d x=\delta_{m n} \Gamma(\alpha+n+1) / n!$,

Moak's q-analogue of the Laguere polynomials is defined as

$$
\begin{aligned}
& L_{n}^{(\alpha)}(x ; q)= \\
& \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k} q^{\left({ }_{2}^{k}\right)}(1-q)^{k}\left(q^{n+\alpha+1} x\right)^{k}}{\left(q^{\alpha+1} ; q\right)_{k}(q ; q)_{k}}
\end{aligned}
$$

where $\left(q^{a} ; q\right)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$.
These also satisfy certain orthogonality relations similar to classical case.

Theorem.(C., R.)

$$
H_{M_{n}}(q, t)=t^{n} q^{-\binom{n}{2}}[n]_{q}!L_{n}^{(0)}\left(\frac{-1}{t q^{n-1}} ; q\right)
$$

Corollary.

The length generating function $\sum_{r \in R_{M_{n}}} q^{\ell(r)}$ is given by

$$
H_{M_{n}}(q, q)=q^{n-\binom{n}{2}}[n]_{q}!L_{n}^{(0)}\left(-q^{n} ; q\right)
$$

q-Rook polynomials

$$
R_{k}(\mathcal{F} ; q)=\sum_{C} q^{i n v(C, \mathcal{F})}
$$

Here \mathcal{F} is a right justified Ferrers board in an $n \times n$ grid of squares, and the sum is over all placements C of k nonattacking rooks on the squares of \mathcal{F}

	x			x	x	
0	x			x	x	
0	$*$	x	x	x	x	x
0	0	0		$*$	x	x
0	0	0			x	
0	0	0			x	
0	0	0	0	0	$*$	x

Theorem. (C., R.) Let \mathcal{F} be a Ferrers board of shape λ. And let $M_{\lambda, n}^{k} \subseteq M_{n}$ be the set of all rank k matrices of shape λ. Then the (q, t) - H polynomial of $M_{\lambda, n}^{k}$ is given by

$$
H_{M_{\lambda, n}^{k}}^{k}(q, t)=t^{k} q^{|\lambda|-k} R_{k}\left(\mathcal{F} ; \frac{1}{q}\right)
$$

Note: $\cup_{k=0}^{n} M_{\lambda, n}^{k}$ is an affine subspace of M_{n} of dimension $|\lambda|$.

Definition. Let $S p_{n}=\left\{g \in G L_{n} \mid g^{t} J g=J\right\}$ be the symplectic group, where $n=2 l, J=$ $\left(\begin{array}{cc}0 & E_{l} \\ -E_{l} & 0\end{array}\right) \in M_{n}$, where E_{l} is the $l \times l$ antidiagonal $(1, \ldots, 1)$. Set $G=\mathbb{C}^{*} \cdot G_{0} \subseteq G L_{n}$. Then the symplectic monoid $M S p_{n}$ is defined as the Zariski closure of G in M_{n}.

Theorem.(C., R.) The (q, t) -H polynomial of the symplectic monoid $M S p_{n}$ is
$H_{M S p_{n}}(q, t)$
$=1+\sum_{k=1}^{l} q^{(l-k)^{2}} t^{l-k+1} \frac{[2 l]!!!^{2}}{[2 l-2 k]!![k]!!^{2}}+q^{l^{2}} t^{l+1}[2 l]_{q}!!$

We have been thinking about/work in progress:

- We can define H polynomials for matrix Schubert varieties. In fact, we can do it for any interval in the poset R (w.r.t. BruhatChevalley order). So, we have been thinking about the relationship between intersection homology Poincare polynomial and the H polynomials.
- A conjecture of Garsia and Remmel says that q-Rook polynomials are unimodal for any λ and k. Remember Stanley's proof of unimodality for h-polynomials. So, we have
been thinking about applying Hard-Lefchetz theorem..
- Other families of orthogonal polynomials specializing to the $(q, t)-H$ polynomial of $M S p_{n}$ or of $M S O_{n}$.

