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What is a reductive monoid??

Naively speaking, it is the Zariski closure of
a reductive group. More precisely, suppose
p . Gog — GL(V) is a (rat.) representation.
Then

M(p) ;= C* - p(Gg) C End(V),

IS a reductive monoid.

We will denote by G the group of invertible
elements in M(p).



Some questions about reductive monoids:
e The unit group G (hence any Borel sub-
group) of the monoid acts on M. What can
be said about the orbits?

e How do you classify them?

e \What is the representation theory?

For the answers and other useful stuff see the
text book: Linear Algebraic Monoids by Lex
Renner. Also, there is an excellent expose
by Lois Solomon, called An introduction to
reductive monoids.



The following two examples are from the
Solomon’s article.

Example 1. Let V = C% ® C4, and consider
p:.:SLs— GL(V) defined by

p(g)(v @) =gv®gv.

Then, C* . p(SLy) = {g®g| g € GL4} and
hence

M(p) = C*- p(SLa)

{a®al a € My}
My.
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Example 2. Now, considero : SLgs — GL(V)
defined by

(@) =gv® (g )W
Then the unit group of M (o) is very similar

to that of M (p), however, these monoids are
different in a fundamental way.

The difference can be read off from the idem-
potents E(M(p)) = {e € M(p)|e? = e}.



T C G is a maximal torus, then M(p) con-
tains the affine toric variety T. Therefore
E(T) C E(M(p)).

E(M(p)) is a poset: e< f <= e = fe. We
consider E(T) with the induced partial order.



Theorem -an eye opener: Let T'C Ty be
a subtorus of the diagonal invertible n X n
matrices. Let x1,....,xn € X(T) be the re-
strictions of the coordinate functions on Ty
to T'. Let

L={\€ Xy (x;,\) >0,for 1 <i<n}

be the associated polyhedral cone.

Then the face lattice of L is anti-isomorphic
to the lattice of idempotents E(T).



If furthermore G is semisimple and 0 € M,
then we can replace the face lattice of the
cone with the face lattice of a polytope.

In this spirit;

e E(T) C M(p) of the example 1 is isomor-
phic to the face lattice of the standard 4-
simplex.

e E(T) C M(o) is the face lattice of the
cuboctahedron.






Definition.The cross section lattice A C E(T)
IS the sublattice

N :={ee€ E(T)| Be C eB}.

Theorem (Putcha) Let M be a reductive
monoid with the unit group G. Then

M = |_| GeG
eceN



Let R= Ng(T)/T, where No(T) is the Zariski
closure in M.

Theorem (Renner)

e R is a finite monoid.

e [ he group of units of R is the Weyl group
W, and R=WE(R),

E(R) = E(T),

For e ¢ A\, GeG = |, cwew BrB,

M = ||,.cr BrB,

Bruhat-Chevalley order on W extends to

:U‘ e o o
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Remark. For r € R,
BrB & (Cf(r)—rk('r) % (C*)rk(r)’

where rk(r) = dim(Tr) and £(r) = dim(BrB).
Definition. (Renner)

H(M,q) = Z qﬁ(r)—’rk(r)(q . 1)7“]{(7").
reR
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Remarks.

e T his definition works for any variety with
finitely many B x B orbit.

o H(M,q) = Y cepn H(GeG, q).

e If M is quasi-smooth, then Renner shows
that (H(M,q) —1)/(¢qg—1) is the intersection
homology Poincare polynomial of M\{0}/C*.
Question. Would it be interesting to study

HM(q,t) — Z qﬁ(r)—rk(r)trk(r)
reR

Answer: Of course!
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Theorem (Can, Renner) Let M be a reduc-
tive monoid, and let e € A. Then there exists
a B x B equivariant fibration

G(e) > GeG — G/P x G/P~,

where P is a maximal parabolic subgroup and
G(e) is a unit group of a submonoid of M.

Corollary: Hq.q(g,t) = Hg/P(q,t)QHg(e)(q,t).
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Theorem.(C., R.) Let M = M,, be the monoid
of n X n matrices. Then, the H-polynomial
Hyr(g,t) is equal to

n

Hu(a,t) = 3 (Kg![)] a@1t
k=0 q

Something hilarious: replace t by ¢ — 1,
then everything cancels to q”z.
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Classic Laguere polynomials:

L%a)(m) — (a +|1)n i (_n)kxk ’

n! r—o (@ + 1),k!
where (a)r = ala+ 1)(a+2) ---(a+ k—1),
and a € C. These polynomials satisfy the
orthogonality relation

/OOO Lq(za) (:B)L%(:B)x(a)e_wdx = dmnl (a+n+1)/n!,
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Moak's g-analogue of the Laguere polynomi-
als is defined as

L (25 q) =

@i s (0D L=k (g ot L)k
(:0)n k=0 (¢*T1;0)1(q:9)k ’

where (¢% @) = (L1—a)(1—agq) - (1 —ag®™1).
These also satisfy certain orthogonality rela-
tions similar to classical case.
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Theorem.(C., R.)

. )

Hyp,(0,6) = t"q~ G [l LV (=
q

Corollary.
The length generating function 3,.cg,, qt(r)
IS given by

Hyr (0,9) = ¢~ @[] 1L (=¢™; )
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qg-ROoOK polynomials

R(F;q) = ¢m(GF)
C

Here F is a right justified Ferrers board in
an n X n grid of squares, and the sum is over
all placements C' of k nonattacking rooks on

the squares of F
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Theorem. (C., R.) Let F be a Ferrers board
of shape ). And let Mf)n C M, be the set
of all rank k matrices of shape A. Then the
(¢,t) — H polynomial of M’)‘f,n is given by

_ 1
H, . (q,t) =t =F Ry (F; ).
AN q

Note: UP_,MF is an affine subspace of M,
of dimension |\|.
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Definition. Let Sp, = {g € GLy|g'Jg = J}
be the symplectic group, where n = 21, J =

( 0 & ) e My, where Ej is the | x | anti-
—E; O

diagonal (1,...,1). Set G = C*- Gg C GLn.
Then the symplectic monoid M Spy, is defined
as the Zariski closure of G in M,,.
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Theorem.(C., R.) The (q,t)-H polynomial
of the symplectic monoid M Sp,, is
HMSpn(Q7t)

2
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We have been thinking about/work in
progress:

e \We can define H polynomials for matrix
Schubert varieties. In fact, we can do it for
any interval in the poset R (w.r.t. Bruhat-
Chevalley order). So, we have been thinking
about the relationship between intersection
homology Poincare polynomial and the H-
polynomials.

e A conjecture of Garsia and Remmel says
that ¢-Rook polynomials are unimodal for
any A and k. Remember Stanley’'s proof of
unimodality for h-polynomials. So, we have
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been thinking about applying Hard-Lefchetz
theorem..

e Other families of orthogonal polynomials
specializing to the (q,t)-H polynomial of M Spy
or of MSO,.



