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Essentially nothing found here is original except for a few mistakes and misprints here
and there. These lecture notes are based on the book “Image Processing and Analysis” by
Tony Chan and Jackie Shen.

1 Image representations

In order to start talking about image processing we first need to describe ways to store, encode
and interpret images. Imaging is part science, part art: there is no best way to represent all
images, as each image has its own key features that need to be represented well, but there
are large classes of images that can be efficiently represented in similar fashion, and that is
going to be our focus here.

We will mostly deal with idealized unpixelized images that we will consider as a function
(physical image) u(x, y) of two variables defined in an image window that will typically be an
(open) rectangle

Ω = {(x, y) ∈ R2 : x ∈ (a, b), y ∈ (c, d)}.

We usually deal not with an image directly but with its representation (or transform T ) that
allows us to store it. Mathematically, this means that we have access to (or choose to use)
the transform w = T u that maps the class of physical images U to its range W that is called
the transform space.

A representation is lossless if any physical image u ∈ U can be reconstructed exactly
from its representation w = T u. That is, there exists a reconstruction transform R that
maps W to U in a one-to-one way. In other words, two different images u1 and u2 have
two different representations w1 = T u1 and w2 = T u2. In that case we have a well-defined
reconstruction formula u = R(T u). In the imaging jargon the representation T is called the
analysis transform, and the reconstruction map R is called the synthesis transform, since it
is used to synthesize the image from the recording.

Lossless transforms offer best quality as you can recover the original image exactly but are
both expensive in terms of memory – after all, you do not lose any information, – and often
useless and unappreciated – in the age when most images are viewed either on a (relatively
small) computer screens, or, G-d forbid, a tiny iPhone screen, only the main visually impor-
tant visual features need to be reconstructed, and this is what the best lossy algorithms do
efficiently.
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If the representation is lossy, meaning that there exist two images u1 and u2 with the
same representation w = T u1 = T u2, we obviously can not recover the image exactly from
its representation via the synthesis transform: the task is to design the synthesis transform
in a way that would recover “the best” of the candidates u1 and u2 (or possibly an infinite
number of candidate physical images that all have the same representation). This is where
decisions are made – and where science meets art.

We now describe several image spaces we will use – the difference here is not purely
mathematical. As we will see, same images (functions) may be very close to each other or
very far from each other, depending on the way we measure the distance between images, or,
in other words, depending on the space of functions we consider. For example, consider the
functions

u(x) =

{
0, x outside [0, 1]
1, x ∈ [0, 1],

and

vn(x) =

{
0, x outside [1/n, 1]
1, x ∈ [1/n, 1].

If we measure the distance in the sup-norm, the distance between these functions is one for
all n:

sup
x∈R
|u(x)− vn(x)| = 1.

On the other hand, these functions look very similar to each other for all n – so if the very
precise location of the jump is not terribly important then the function vn(x) (for n large) is
a very good approximation for the function u(x). Therefore, depending on our needs, we will
measure the distance in different ways.

1.1 Images as distributions

The class of generalized functions or distributions is probably the largest one can consider.
It is also necessary if we would like to consider images that can not be described by ordinary
functions, such as (i) a hot spot – a very bright spot idealized to be localized at a single
point, which we can take to be at the origin (x, y) = (0, 0), (ii) a uniform bright line which
we can take, for instance, to be {x1 = 0}, or (iii) a non-uniformly bright line that is localized
at x1 = 0 but whose intensity depends on the vertical coordinate x2.

In order to define what a generalized function is, we consider the set of test functions

D(Ω) = {φ ∈ C∞(Ω), supp φ ⊂ Ω},

that is, the support of u is a compact subset of Ω that is contained strictly inside Ω. A
generalized function (or a distribution) u is a linear functional on D(Ω), that is, for any test
function φ ∈ D(Ω) the value 〈u, φ〉 is defined, and this functional is linear:

〈u, aφ+ bψ〉 = a〈u, φ〉+ b〈u, ψ〉, for all a, b ∈ R.

Going back to our examples, we can define a bright spot at a point p = (a, b) ∈ Ω as the
delta function u = δ(x− p), x = (x1, x2). This is a distribution such that 〈u, φ〉 = φ(a, b) for
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any test function φ ∈ D(Ω). A uniform bright line {x1 = a} can be defined as a distribution
v such that

〈v, φ〉 =

ˆ
R
φ(a, x2)dx2,

for any test function φ ∈ D(Ω). Finally, a non-uniform bright line {x1 = a}, with an intensity
distribution r(x2) can be described as the distribution w such that

〈w, φ〉 =

ˆ
R
r(x2)φ(a, x2)dx2.

Exercise 1.1 Show that these definitions make sense. Consider a sequence of classical (albeit
discontinuous) functions

un(x) =

{
n2/
√
π, |x| ≤ 1/n,

0, otherwise,

vn(x) =

{
n/2, |x1| ≤ 1/n,

0, otherwise,

wn(x) =

{
b(x2)n/2, |x1| ≤ 1/n,

0, otherwise,

that intuitively approximate a bright spot at p = (0, 0), a uniform bright line, and a bright
line of a non-uniform intensity, both along {x1 = 0}, and show that for any test function
φ ∈ D(Ω) we have

lim
n→∞

ˆ
R2

un(x)φ(x)dx = φ(0, 0),

lim
n→∞

ˆ
R2

vn(x)φ(x)dx =

ˆ
R
φ(0, x2)dx2,

lim
n→∞

ˆ
R2

wn(x)φ(x)dx =

ˆ
R
b(x2)φ(0, x2)dx2.

In practice, images can usually be thought of as positive functions, and this extends to
their representation as generalized functions.

Definition 1.2 A distribution u is positive if for any non-negative test function φ ∈ D(Ω)
we have 〈u, φ〉 ≥ 0.

This greatly reduces the class of distributions – for instance, the value of 〈u, φ〉 can not depend
on the derivatives of φ, as can be seen from the following simple observation.

Theorem 1.3 Let u be a non-negative distribution on Ω. Then for any compact subset K of
Ω there exists a constant CK so that for any test function φ supported in K we have

|〈u, φ〉| ≤ CK‖φ‖∞. (1.1)

The proof is not difficult: a basic fact from the real analysis is that given any compact set
K there exists a smooth non-negative function ψ that is supported in Ω and ψ(x) = 1 for all
x ∈ K. Then, for any test function φ ∈ D(Ω) supported in K, the function

ζ(x) = ‖φ‖∞ψ(x)− φ(x)
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is non-negative. As the distribution u is non-negative, it follows that 〈u, ζ〉 ≥ 0, which is
equivalent to

〈u, φ〉 ≤ ‖φ‖∞〈u, ψ〉.

Replacing φ by (−φ) we get the inequality (1.1) with CK = 〈u, ψ〉.
Let us now discuss how to quantify the information content of an image understood as a

distribution. Human vision is essentially based on observing variations in patterns and not
the absolute value of patterns1. Therefore, in order to understand the information that is
contained in the image u(x) in an open set U ⊂ Ω, we can restrict ourselves to test functions
φ supported inside U and of mean zero:

ˆ
U

φ(x)dx = 0, (1.2)

and consider

Iu = sup
{
〈u, φ〉 : φ ∈ D(Ω), supp φ ⊂ U, ‖φ‖∞ ≤ 1,

ˆ
U

φ(x)dx = 0
}
.

For example, Iu = 0 for any image u(x) ≡ const – as we wish for reasons explained above.
We can substitute the mean zero test functions by those which are the divergence of a vector
field g = (g1, g2) with g1,2 ∈ D(Ω) and supported in U :

I ′u = sup
{
〈u, φ〉 : φ ∈ D(Ω), φ = ∇ · g, g = (g1, g2), supp g1,2 ⊂ U, ‖g1,2‖∞ ≤ 1

}
. (1.3)

Note that if φ = ∇ · g with g = 0 on ∂U then φ satisfies (1.2). Using the Stokes’ formula

ˆ
Ω

u(∇ · g)dx = −
ˆ
U

(∇u · g)dx,

we see that (1.3) is nothing but the total variation of u:

TVU(u) = sup
{
〈u, φ〉 : φ ∈ D(Ω), φ = ∇ · g, g = (g1, g2), supp g1,2 ⊂ U, ‖g1,2‖∞ ≤ 1

}
.

(1.4)
This is the first time in these notes that the total variation norm of an image appears – it
will show up very frequently from now on, as it plays a very important role in this subject.

If we know that an image u is not just a distribution but an Lp(U) function, we can define
its average over a set U as

〈u〉U =
1

|U |

ˆ
U

u(x)dx,

and define the information content of u on U as its p-mean oscillation

σp(u|U) =

(
1

|U |

ˆ
U

|u− 〈u〉U |pdx
)1/p

.

1For instance, a skier in flat light does not care if the uniform color he sees has any particular shade of
white or grey – he wants to see the variations in the terrain!
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1.2 Images as functions of bounded variation

Working with the space of distributions is not very convenient from the practical point of
view as this space is huge and includes many functions we would never consider as an image.
In addition, it is not a Banach space, so solving optimization problems in this space maybe
unnecessarily complicated. Therefore, it is important to have a sub-class of distributions that
includes “mostly nice” functions but is not too restrictive so that it contains sufficiently rough
functions that correspond to real world images. A convenient space for that purpose is the
space of BV functions. An L1 function u belongs to the class BV (Ω) if its gradient (in the
sense of distributions) satisfies

TV (u) := sup{〈∇u, g〉 : g = (g1, g2), g1,2 ∈ D(Ω), ‖g‖∞ ≤ 1} < +∞. (1.5)

This is a Banach space with the norm

‖u‖BV = ‖u‖L1 + TV (u).

An example of a BV function is an L1-function with a gradient that is also in L1 – this is the
Sobolev class W 1,1(Ω). This is because we have the inequality

|〈∇u, g〉| ≤ ‖∇u‖L1‖g‖∞,

so that the supremum in (1.5) is finite. An important difference between W 1,1 functions and
BV is that the former may not have sharp edges – discontinuity along a curve, and the latter
can. For example, consider a function u(x) = H(x1), where H(x) is the Heaviside function,
defined on the square Ω = (−1, 1)× (−1, 1). Its distributional gradient is ∇u(x) = (δ(x1), 0)
which is not an L1-function but it is in BV (Ω) since

|〈∇u, g〉| =
∣∣∣∣ˆ 1

−1

g1(0, x2)dx2

∣∣∣∣ ≤ 2‖g‖∞.

Allowing edges is critical for good image representations as they are present in most real
world images. Of course, Lp functions also can have edges, the advantage of working with BV
functions is that the ‖u‖BV takes into account the number of edges while the Lp-norm does
not: each edge “costs” in the BV-norm but not in the Lp-norm.

Let us now recall some basic properties of BV functions as we will extensively use them.

Theorem 1.4 (L1-lower semicontinuity) Assume that un → u in L1(Ω). If un are uniformly
bounded in BV (there exists M so that ‖un‖BV ≤ M for all n), then u is BV as well and
‖u‖BV ≤M . Moreover, we have

ˆ
Ω

|∇u| ≤ lim inf
n→∞

ˆ
Ω

|∇un|. (1.6)

The proof is not long. Let

g = (g1, g2) ∈ D(Ω) with ‖g‖∞ ≤ 1, (1.7)

then

〈∇u, g〉 = −
ˆ

Ω

u(∇ · g)dx = − lim
n→∞

ˆ
Ω

un(∇ · g)dx, (1.8)
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as un → u in L1(Ω), so that∣∣∣∣ˆ
Ω

u(∇ · g)dx−
ˆ

Ω

un(∇ · g)dx

∣∣∣∣ ≤ ‖u− un‖L1(Ω)‖∇ · g‖L∞(Ω).

However, as each un is BV and from properties (1.7) of g(x) we conclude that

−
ˆ

Ω

un(∇ · g)dx ≤
ˆ

Ω

|∇un|.

Hence, (1.8) implies that
TV (u) ≤ lim inf

n→∞
TV (un),

and, since ‖un‖L1 → ‖u‖L1 , we deduce that

‖u‖BV ≤ lim inf
n→∞

‖un‖BV ,

which finishes the proof.
It follows from Theorem 1.4 that BV(Ω) is a Banach space. Indeed, let un be a Cauchy

sequence in BV(Ω). The definition of the BV norm implies that un is also Cauchy in L1(Ω).
Let u be its limit in L1(Ω) (which we know is a Banach space), then for each m fixed we have,
from Theorem 1.4 ˆ

Ω

|∇um −∇u| ≤ lim inf
n→∞

ˆ
Ω

|∇um −∇un|.

The right side goes to zero as m→ +∞ since un is a Cauchy sequence in BV(Ω). Therefore,
the sequence um also converges to u in BV(Ω). Hence, BV(Ω) is a Banach space.

One can show that BV(Ω) functions have a trace on the boundary ∂Ω, as do functions
from W 1,1(Ω). It is reasonable to ask how close the spaces W 1,1(Ω) and BV(Ω) are. First,
one can prove the following approximation result.

Theorem 1.5 For any function u ∈ BV(Ω), one can find a sequence of smooth approxi-
mations un ∈ C∞(Ω), which all have the same trace gn ≡ g, such that un → u in L1(Ω)
and ˆ

Ω

|∇un|dx→
ˆ

Ω

|∇u|. (1.9)

We can not hope for a better result than this, that is, we can not expect that for any u ∈ BV(Ω)
we can find a sequence un ∈ C∞(Ω) so that

ˆ
Ω

|∇un −∇u| → 0,

as n → ∞. Indeed, let Ω = [−1, 1] × [−1, 1] and u(x1, x2) = H(x1), the Heaviside function,
so that ∇u = δ(x1). Then, if such approximation were to exist, we would have a sequence
of smooth functions wn = ∂un/∂x1 that would approximate δ(x1) in the L1-sense, which is
impossible.

Still, Theorem 1.6 provides a convenient tool to transplant many of the results on W 1,1(Ω)-
functions to BV(Ω)-functions. Let u ∈ BV(Ω) and f = T (u) be its trace. We say that a
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functional L(u, f) on BV(Ω) is L1-lower semicontinuous if for any sequence un ∈ BV(Ω) with
un → u in L1(Ω) and such that the traces of all un are the same: fn = T (un) ≡ f = T (u),
one has

L(u, f) ≤ lim inf
n→∞

L(un, f).

Corollary 1.6 Let L(u, f) be an L1-lower semi-continuous functional in BV(Ω) and that
E(t) is a continuous function of t. If

L(u, f) ≤ E(|∇u|(Ω)) (1.10)

for any u ∈ W 1,1(Ω) then the same inequality holds for all u ∈ BV(Ω).

Indeed, let un be the approximating sequence from Theorem 1.5. The lower semicontinuity
property of L(u, f) and L1-convergence of un to u imply that

L(u, f) ≤ lim inf
n→∞

L(un, f). (1.11)

On the other hand, the bound (1.10) implies that

L(un, f) ≤ E(|∇un|(Ω)). (1.12)

Finally, it follows from Theorem 1.5 and continuity of the function E(t) that

E(|∇un|(Ω))→ E(|∇u|(Ω)). (1.13)

Corollary 1.6 follows from the last three inequalities.
Another consequence of Theorem 1.5 is crucial to establish existence of solutions to various

variational problems used in imaging.

Theorem 1.7 Let Ω be a Lipschitz domain, and un be a bounded sequence in BV(Ω). Then
un has a subsequence that converges in L1(Ω).

For the proof, we use Theorem 1.5 to find functions wn ∈ C∞(Ω) such that

ˆ
Ω

|wn − un|dx ≤
1

n
,

and ˆ
Ω

|∇wn|dx ≤
ˆ

Ω

|∇un|+ 1.

As un are uniformly bounded in BV(Ω), it follows that wn is uniformly bounded in W 1,1(Ω).
Sobolev embedding theorem (of W 1,1(Ω) into L1(Ω)) implies that wn has a subsequence wnk
that converges in L1(Ω) to a function w. The triangle inequality implies that

‖unk − w‖L1(Ω) ≤ ‖unk − wnk‖L1(Ω) + ‖wnk − w‖L1(Ω) ≤
1

n
+ ‖wnk − w‖L1(Ω),

whence unk also converges to w in L1(Ω).
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The co-area formula

The co-area formula rephrases the total variation of a function in terms of its level sets,
connecting two notions that are crucial in many imaging applications.

Let us start with a smooth function u(x, y) and assume that ∇u(p) 6= 0 for some p =
(x, y) ∈ Ω. Without loss of generality we may further assume that uy(p) 6= 0. The implicit
function theorem implies that locally near p we can ’solve for y”: for each λ close to λ0 = u(p)
there exists a level curve y = y(x, λ) so that u(x, y(x, λ)) = λ. We may further parametrize
the level set (x, y(x, λ)) by the arclength s:

x = x(s), y = y(x(s), λ).

This gives the local coordinates

x = x(s, λ), y = y(s, λ),

keeping the identity
u(x(s, λ), y(s, λ)) = λ.

Differentiating with respect to s and λ gives

0 = (xs, ys) · ∇u, (1.14)

and
1 = (xλ, yλ) · ∇u. (1.15)

Moreover, as s is the arclength parameter, we have

x2
s + y2

s = 1.

The last two identities imply that the vectors ∇u and (xs, ys) do not vanish. It follows then
from (1.14) that ∇u is parallel to the unit vector (−ys, xs):

∇u = ±|∇u|(−ys, xs).

Inserting this into (1.15) gives

1 = ±|∇u|(−xλys + yλxs). (1.16)

The expression in the parenthesis is simply the Jacobian of the map (s, λ) → (x, y), that is,
we have:

|∇u|dxdy = dsdλ, (1.17)

or, in other words (assuming that the change of variables is global),

ˆ
Ω

|∇u|dxdy =

ˆ ∞
−∞

(ˆ |γλ|
0

ds

)
dλ, (1.18)

with the integral in the right side taken over all possible values of λ, and s varying from s = 0
to s = |γλ|, the arclength of the level set curve γλ = {u(x, y) = λ}. We can integrate the
s-variable out in (1.18) to obtainˆ

Ω

|∇u|dxdy =

ˆ ∞
−∞
|γλ|dλ, (1.19)
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which is the co-area formula for smooth functions.
The above argument does not quite apply for general BV functions for the simple reason

that we need to understand first what we understand by a level set γλ of a (possibly discon-
tinuous) BV function. The second issue is that the level set of a BV function may be terribly
irregular – what do we mean by its arclength?

The way around these issues is to define the super-level set (or a cumulative level set)

Eλ = {(x, y) ∈ Ω : u(x, y) < λ}.

If the function u(x, y) is smooth then the level set γλ = ∂Eλ. In general we define the
perimeter of Eλ as

Per(Eλ) =

ˆ
Ω

|∇χEλ |,

that is, the total variation of the indicator function of Eλ. Then we have the following result.

Theorem 1.8 (The co-area formula) Let u ∈ BV(Ω), then
ˆ

Ω

|∇u| =
ˆ ∞
−∞

Per(Eλ)dλ. (1.20)

We are not going to present the rigorous proof here – a careful treatment can be found in the
book by Evans and Gariepy.

Notice that (1.20) can be nicely interpreted for edges: an edge is essentially a very thin
domain Ω where the function takes “many” values, and the perimeter of each level set is O(1)
– the length of the edge, making the right side of (1.20) “anomalously large” relative to the
size of the small neighborhood around the edge. Hence, the TV measure of u in a narrow
domain near the edge is much larger than the domain volume – the right side of the co-area
formula (1.20) is O(1) even if Ω has a small volume in such case. This means that the TV
measure can detect edges in this way automatically.

1.3 Level-set representation

As we have started discussing level sets, it is appropriate to recall the level set representation
for functions developed by Osher, Sethian, Fedkiw and others in the context of imaging.

Let u be a sufficiently smooth function. For each real number λ, a level set of u(x) is

γλ = {x ∈ Ω : u(x) = λ}.

The level sets are disjoint: γλ ∩ γµ = ∅ for λ 6= µ, and the whole domain Ω is partitioned into
the level sets:

Ω =
⋃
λ∈R

γλ.

A value λ is regular if the gradient ∇u does not vanish anywhere on γλ. In that case, the level
set γλ is a regular one-dimensional curve (that may consist of several components). Otherwise,
λ is singular, and a point x0 where ∇u(x0) = 0 is called a critical point.

When we deal with non-smooth functions, we consider instead the cumulative level sets

Fλ(u) = {x ∈ Ω : u(x) ≤ λ}.
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Given a function u we have a one-parameter family of cumulative level sets {Fλ(u), λ ∈ R}.
This is what we called previously the analysis step – we record the function as a family of
cumulative level sets. How can we do the synthesis, that is, recover the function u from its
cumulative level sets? The synthesis is simple: assume we are given a family of sets Fλ that
satisfy the following compatibility conditions: (i) for any λ ≤ µ we have Fλ ⊆ Fµ, and

Fλ =
⋂
µ>λ

Fµ,

and (ii) the set

F−∞ =
⋂
λ∈R

Fλ

is empty while

Ω =
⋃
λ∈R

Fλ.

Then we set
u(x) = inf{µ : x ∈ Fµ}. (1.21)

Condition (ii) above ensures that the function u(x) is defined everywhere in Ω and is finite.
Let us show that for this synthesized function u(x) the sets Fλ are the cumulative level sets:

Fλ = {x ∈ Ω : u(x) ≤ λ}. (1.22)

First, if u(x) ≤ λ then
inf{µ : x ∈ Fµ} ≤ λ,

hence there exists some µ ≤ λ so that x ∈ Fµ, in which case property (i) above implies that
x ∈ Fλ. This shows that

{x ∈ Ω : u(x) ≤ λ} ⊆ Fλ.

On the other hand, if x ∈ Fλ, the definition of u(x) implies that u(x) ≤ λ, which in turn
means that

Fλ ⊆ {x ∈ Ω : u(x) ≤ λ}.

Therefore, we have the required identity (1.22).
Let us show that u(x) given by (1.21) is the unique function that has the cumulative level

sets Fλ. Suppose there exists another function v such that

Fλ(u) = Fλ(v) for all λ ∈ R.

This means that for any x ∈ Ω and any λ ∈ R we have u(x) ≤ λ if and only if v(x) ≤ λ.
Then if at some point x ∈ Ω we have u(x) < v(x), we would take λ = (u(x) + v(x))/2 to
reach a contradiction.

Hence, the cumulative level set representation of a function u(x) gives a lossless represen-
tation of u(x).
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1.4 The Mumford-Shah Free Boundary Image Model

The Mumford-Shah free boundary image model works well for images that represent various
objects under the assumption that each object has nearly uniform properties, and the main
goal is to capture correctly the interfaces between the objects while the texture does not vary
much inside each object. In this case the image can be approximated by piece-wise constant
or piece-wise smooth functions, and that is what the Mumford-Shah model does.

1.4.1 Piecewise constant 1D images

Let us first look at what happens in one dimension. Let u(x) be a function defined on the
real line R with

lim
x→±∞

u(x) = 0.

We say that u(x) is a piecewise constant function if for any point x0 there exists an interval
(x0 − ε, x0 + ε) on which u(x) can be written as

u(x) = a+ bH(x− x0).

Here a and b are two constants (that depend on x0), and H(x) is the Heaviside function:

H(x) =

{
0, x < 0
1, x ≥ 0.

The constant b is the jump of u at x0:

b = [u]x0 = u(x+
0 )− u(x−0 ).

We will denote by
J = Ju = {x : [u]x 6= 0}

the jump set of u.

Theorem 1.9 The jump set of any piecewise constant function u is closed and isolated.

Therefore, J can be enumerated as J = {xk} with k ∈ S, where S is a (finite or infinite)
subset of Z (in particular, S can coincide with Z if xn extends both to positive and negative
infinity), and

. . . < xn < xn+1 < . . .

Then the function u(x) can be written as

u(x) =
∑
n∈S

cnχ[xn,xn+1)(x).

The gradient (derivative as we are in 1D) is a sum of a bunch of delta functions:

∇u(x) =
∑
k∈S

bkδ(x− xk).
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Here bk = ck − ck−1 are the jumps at xk. Therefore, a simple way to encode a piecewise
constant function is as follows: we can simply record the locations and values of the jumps
(xn, bn). With this information we can recover the function u(x) as

u(x) = u(0) +

ˆ x

0

∇u = u(0) +
∑

xn∈(0,x]

bn. (1.23)

The unknown constant u(0) is easy to find from the condition u(±∞) = 0:

u(0) = − lim
K→+∞

∑
xn∈(0,K]

bn.

Therefore, (1.23) gives a lossless synthesis of the piece-wise constant function u(x) from the
data (xn, bn).

1.4.2 Piecewise smooth 1D images

We now generalize the above idea to piecewise smooth images, still in one dimension. We say
that a compactly supported function u(x) is piece-wise smooth if for each x0 ∈ R there exists
an interval (x0 − ε, x0 + ε) where we can write

u(x) = a(x) + b(x)H(x− x0),

with smooth functions a(x) and b(x) – once again, the choice of the functions depends on the
point x0. There is also not a unique way to choose the functions a(x) and b(x) even when x0

is fixed. What is fixed are the values b(x0) and b′(x0): they are given by

b(x0) = [u]x0 = u(x+
0 )− u(x−0 ),

and
b′(x0) = [u′]x0 = u′(x+

0 )− u′(x−0 ).

As before, the jump set of u is the set Ju = {x : [u]x 6= 0}. Since the function u(x) has
compact support, Ju is a finite set:

Ju{x1 < x2 < . . . < xN}.

We also set x0 = −∞ and xN+1 = +∞ for convenience. Let us denote the derivative
gn(x) = u′(x) on the interval (xn, xn+1). Then a convenient way to encode the function u(x)
is by the following data:

g0(x) and (xn, bn, gn(x)), 1 ≤ n ≤ N.

Note that compared to the piece-wise constant images we need to record g′n(x) in addition to
(xn, bn), in order to hope for a lossless recovery. Such representation is efficient if each gn(x)
is not too complicated and can be well approximated by, say, a lower order polynomial – that
is, when u(x) itself is not too oscillatory. The function u(x) can be recovered from this data
as

u(x) =
∑

xn∈(−∞,x]

bn +

ˆ x

−∞

N∑
n=0

gn(y)χ(xn,xn+1)(y)dy.

12



Another interesting data to encode a piecewise smooth function uses the second derivatives
– this also gives the first instance when we see the use of differential equations in imaging.
The Poisson representation records the following data:

f0(x) and (xn, u
+
n , u

−
n , fn(x)), 1 ≤ n ≤ N.

Here we have denoted fn(x) = u′′(x) on (xn, xn+1). This representation is particularly efficient
when u(x) is nearly linear on each interval (xn, xn+1) as the functions fn(x) are all very small
then and easy to encode by very few bits.

In order to recover u(x) losslessly on the interval (xn, xn+1) we solve the second order
Poisson equation:

u′′(x) = fn(x), xn < x < xn+1, (1.24)

with the boundary data
u(x+

n ) = u+
n , u(x−n+1) = u−n+1. (1.25)

This problem has a unique solution that allows a lossless synthesis of u(x) from the Poisson
data. It is worthwhile to look at the explicit solution of (1.24)-(1.25). It can be written as

u(x) = l(x) + w(x), (1.26)

with the linear function

l(x) = u+
n +

u−n+1 − u+
n

xn+1 − xn
(x− xn),

and the function w(x) that solves the homogeneous problem

w′′(x) = fn(x), xn < x < xn+1, (1.27)

with the boundary data
w(x+

n ) = 0, w(x−n+1) = 0. (1.28)

To find w(x) we decompose in the sine series

fn(x) =
∞∑
k=1

ak

√
2

xn+1 − xn
sin

(
πk

x− xn
xn+1 − xn

)
,

then the sine series for w(x) is

w(x) =
∞∑
k=1

wk

√
2

xn+1 − xn
sin

(
πk

x− xn
xn+1 − xn

)
,

with
wk =

ak
π2k2

.

Therefore, if fk is regular meaning that ak decay reasonably fast, the coefficients wk are much
smaller than ak for large k. therefore, in order to represent w(x) reasonably accurately we
need to record relatively few coefficients of fn(x) – this is one of the advantages of the Poisson
representation.
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1.4.3 Piecewise smooth 2D images

The approach we used in one dimension to descrive piece-wise continuous functions is more
difficult to realize in 2D since the jump sets may have a very complicated geometry. Let Ω be
a bounded open domain with a Lipschitz boundary. A Lipschitz partition of Ω is a partition
of Ω as a finite union

Ω =
N⋃
n=1

Ωn

⋃
Γ. (1.29)

Here each Ωn is a connected open Lipschitz domain (an object in the image), and Γ is a closed
subset of Ω that has a finite one-dimensional Hausdorff measure H1(Γ) <∞.

Theorem 1.10 Consider a Lipschitz partition of Ω as above. Then (i) ∂Γ = Γ, (ii) ∂Ωn ⊆ Γ
for all n = 1, . . . , N , and

(iii) Γ =
N⋃
n=1

∂Ωn.

The proof is, once again, simple: (i) follows from the fact that Γ has no interior – the sets
in R2 that have interior ponts can not have finite one-dimensional Hausodorff measure. The
second property holds since Ωn are open and pairwise disjoint. Given (ii), to show (iii) we
only need to verify that

Γ ⊆
N⋃
n=1

∂Ωn. (1.30)

Assume that z ∈ Γ. Then (i) implies that z ∈ ∂Γ, hence there exists a sequence zk that
converges to z such that each zk 6∈ Γ. As there are only finitely many sets Ωk there has to be
a set Ωm such that infinitely many zk belong to Ωm. This means that z ∈ ∂Ωm, proving (1.30).

We will then say that a function u(x) is piecewise smooth if there exists a Lipschitz
partition of Ω and N smooth functions Uk(x), k = 1, . . . , N defined in Ωk such that

u(x) =
N∑
k=1

Uk(x)χk(x),

where χk(x) = χΩk(x).
Following what we did in one dimension, we may build a Poisson representation of a

piecewise smooth function as follows. Set

fn(x) = ∆Un(x) for x ∈ Ωn,

in each sub-domain Ωn. As each function Un(x) is smooth inside Ωn, its trace φn(x) = Un(x)
for x ∈ γn = ∂Ωn is well defined – this is the limit value of u(x) as it approaches the boundary
∂Ωn from inside Ωn. The Poisson representation for a piece-wise smooth function u(x) then
consists of the following data:

{(γn, φn(x), fn(x)) : 1 ≤ n ≤ N}. (1.31)
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The functions Un(x) are then recovered by solving the Poisson equation inside each Ωn:

∆Un = fn for x ∈ Ωn, (1.32)

Un = φn for x ∈ ∂Ωn.

The advantage of this representation is that solving the Poisson equation regularizes the noise
in fn. Indeed, let us consider one domain Ωk with k fixed and let ψm, m = 1, 2, . . . , be the
basis of the eigenfunctions for the Dirichlet Laplacian in Ωk:

−∆ψm = λmψm for x ∈ Ωk, (1.33)

ψm = 0 for x ∈ ∂Ωk,

normalized so that ‖ψm‖L2 = 1. Assume for simplicity that the boundary data φk = 0. The
functions ψm form a basis for L2(Ωk), hence fk can be decomposed as

fk(x) =
∞∑
m=1

cmψm(x),

with

cm =

ˆ
Ωk

fk(x)ψm(x)dx.

The solution of (1.32) is then given by

Un = −
∑
m

cm
fm
λm

ψm(x). (1.34)

The point is that if the data fn is noisy then the noisy has mostly components in large m –
and these are divided by λm, and λm → +∞ as m → +∞. Therefore, a small noise in fn
translates into a smaller noise for Un – the advantage of the Poisson representation is therefore
that it is much less sensitive to noise than a “straight” recording of Un.

1.4.4 The Mumford-Shah model

In practice, given an image it is quite a non-trivial task to decide where the boundary between
various objects (domains Ωn in the decomposition described in the previous section) is – this
is the basic image segmentation problem. An additional difficulty is dealing with the noise
and blurring effects that are present in any image. We now describe the Mumford-Shah model
that we will encounter also later, that offers one way to deal with these issues.

The recording step in an imaging process can be split into the following steps:

3D scene ⇒ an ideal 2D image u ⇒ blur K ⇒ add noise n ⇒ an observed image u0.

Therefore, the “ideal image” u and the recording u0 are related by

u0 = K[u] + n.

Even if the original image u is piecewise smooth, the recording u0 is not, due to blurring and
noise. The goal of image segmentation is to extract the information about the boundaries of
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the objects from the blurred noisy image u0. In the Mumford-Shah model this is done via a
minimization problem. Let us explain how the cost functional is constructed. Let us assume
that the original image u came from a domain decomposition

Ω =
M⋃
m=1

Ωm

⋃
Γ,

and that the restrictions um = u|Ωm are smooth functions. The energy of u is defined as

E(u,Γ) = E1(Γ) + E2(u|Γ).

It is natural to take the “edge energy” E1(Γ) to be the length of the interface (or its one-
dimensional Hausdorff measure):

E1(Γ) = H1(Γ) = |Γ|.

The simplest energy of the patches um is their Sobolev H1-norm – it penalizes “unnecessary
fluctuations” (a good image is simple):

E2(u|Γ) =
M∑
m=1

ˆ
Ωm

|∇um|2dx.

The combined energy is, therefore:

E(u,Γ) = αH1(Γ) + β
M∑
m=1

ˆ
Ωm

|∇um|2dx. (1.35)

The two weights α and β can be chosen according to our preference – whether we penalize
more “rough edges” or “rough texture”.

Let us assume that the noise n is homogeneous Gaussian white noise. Then its variance
can be estimated (if u is given) empirically as

σ2 =
1

|Ω|

ˆ
Ω

(u0 −K(u))2dx.

The Mumford-Shah minimization problem is then to minimize both the energy of the image
and the noise variance: minimize

E(u,Γ|u0) = αH1(Γ) + β

M∑
m=1

ˆ
Ωm

|∇um|2dx+ λ

ˆ
Ω

(u0 −K(u))2dx. (1.36)

We assume here that we know the blur operator K. Once again, we can choose the weights
α, β and λ according to the nature of the problem.

To summarize: the Mumford-Shah model says that given a recorded blurred noisy im-
age u0(x) we recover the “best candidate” for the original image is the function u(x) that
minimizes the total energy (1.36).
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1.4.5 Special BV images

One difficulty in Mumford-Shah model is minimizing over the set of edges Γ – the collection
of all edge sets is not a very nice space to use, it has no obvious structure that would allow
to use common minimization tools. Essentially, the question is: given a general BV function
u(x) – what is the set of its edges?

A natural candidate for such space is the subspace of BV(Ω) that consists of special BV
functions called SBV(Ω) that we will now describe. Let u be a candidate in the Mumford-
Shah model with an edge set Γ, which we assume to be piecewise C1, and let H1 be the 1D
Hausdorff measure on Γ. For almost every point x ∈ Γ we can define the normal νx to Γ and
the corresponding jump:

[u]x = lim
ε→0

(u(x+ ενx)− u(x− ενx)).

This allows us to define a vector-valued measure

Ju = [u]xνxdH1.

It is important to note that it is irrelevant for Ju if we switch the direction of the normal –
then both ν and [u]x switch sign! Then for a Borel subset γ ⊆ Γ we set

Ju(γ) =

ˆ
γ

[u]xνxdH1.

Let now u ∈ BV(Ω) and let Du be the (distributional) derivative of u. Using the Radon-
Nikodym theorem we can decompose it as

Du = ∇u+Dsu,

where ∇u is a measure absolutely continuous with respect to the Lebesgue measure: ∇u =
fdx, with f ∈ L1, and Dsu is singular with respect to the Lebesgue measure. Ideally, we
would like to say that Dsu = Ju but things are not that simple. The singular part can be
further decomposed as

Dsu = D1u+Dcu,

where, roughly, D1u is a measure that has one-dimensional support, and Dcu is supported on
a set with the Hausdorff dimension strictly between d = 1 and d = 2.

Let us now explain how one can find the component D1u for a general BV function u.
Given a point x ∈ Ω, a radius ρ > 0 and λ ∈ R, we set

{u > λ}x,ρ = {y ∈ Ω ∩Bz,ρ : u(y) > λ}.

We say that u is approximately no greater than λ at x if

lim
ρ↓0

|{u > λ}x,ρ|
|Bx,ρ|

= 0, (1.37)

and write u .x λ. Intuitively this means that if we blow-up a neighborhood around x we will
see fewer and fewer points where u takes values larger than λ. We also define

u+(x) = inf{λ : u .x λ}, (1.38)
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and
u−(x) = sup{λ : u &x λ}, (1.39)

It is easy to verify that u−(x) ≤ u+(x). The jump set of a BV(Ω) function u is

Su = {x ∈ Ω : u+(x) > u−(x)}. (1.40)

Intuitively, Su is where u has jumps. For instance, for the Heaviside function H(x) we have
H+(0) = 1, and H−(0) = 0. Therefore, the set Su is a natural candidate for the set Γ in the
Mumford-Shah model. A remarkable general result is that for any BV(Ω) function u the set
Su can be decomposed as a union of (possible countably many) rectifiable curves and a set
S ′u that has the Hausdorff dimension less than one:

Su = S ′u

∞⋃
k=1

γk, (1.41)

where each γk is a compact subset of a rectifiable curve. Therefore, at each point of γk we
can define the normal ν and the jump [u] = u+ − u−. It can also be shown that

D1u = [u]νdH1 = Ju

is supported on Su. Therefore, the vector Radon measure Du of an arbitrary BV function u
can be decomposed as

Du = ∇u+ Ju +Dcu.

We say that a function in BV(Ω) is special if its Cantor component Dcu of the gradient
vanishes everywhere. This subspace of BV(Ω) is denoted SBV(Ω).

Replacing the edge set Γ by the jump set Su we get the weak Mumford-Shah functional
that is defined for all functions u ∈ SBV(Ω): given an image u0 we set

E(u) = αH1(Su) + β

ˆ
Ω

|∇u|2dx+ γ

ˆ
Ω

(u0 −K[u])2dx. (1.42)

A remarkable result is that a solution of this weak energy minimizing problem exists and
that (u,Γ = S̄u) is the solution of the original strong formulation. A nice reference for this
compactness result as well as other basic facts about SBV functions is the elegant short paper
by Alberti and Mantegazza2 that also has references to the original papers by Ambrosio and
DiGiorgi.

2 Introduction to denoising and filtering techniques

2.1 Diffusive filtering

Let us first consider a very simple filtering algorithm on a discrete lattice Z2: given a discrete
image uij we filter it to get a new image

ũij = uij + ε
∑

(kl)∼(ij)

hij,klukl. (2.1)

2G. Alberti and C. Mantegazza, A note on the theory of SBV functions, Boll. Un. Mat. Ital. Sezione B,
11, 1997, 375–382.
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Here the notation (ij) ∼ (kl) means that the vertices (ij) and (kl) are “neighbors” on the
lattice (which in the simplest case can be literally neighbors in Z2 but can be more general).
In order for the filter to do “local averaging” and conserve the total mass

M =
∑
i,j

uij,

so that ∑
i,j

uij =
∑
ij

ũij,

we need to have ∑
(kl)∼(ij)

hijkl = 0, (2.2)

for all vertices (ij) ∈ Z2. The most canonical example of such filter is taking the 5-point
stencil when we set

(kl) ∼ (ij) if and only if |i− k|+ |l − j| ≤ 1,

and
hij,kl = 1 if |i− k|+ |j − l| = 1,

and hij,ij = −4. The filter is then, explicitly:

ũij = uij + ε[ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij]. (2.3)

Thinking of the lattice step as ∆x = ∆y and filtering as a time-stepping evolution with a
time step ∆t so that

uij = u(t, i∆x, j∆y),

and
ũij = (t+ ∆t, i∆x, j∆y),

we can take ε = D∆t/(∆x)2, with a fixed constant D, and re-write (2.3) as

ũij − uij
∆t

= D

(
ui+1,j + ui−1,j − 2uij

(∆x)2
+
ui,j+1 + ui,j+1 − 2uij

(∆y)2

)
. (2.4)

Passing to the limit ∆x = ∆y → 0, ∆t→ 0 we obtain the heat equation

ut = D∆u, (2.5)

with the initial data u(0, x, y) = u0(x, y) which is the original unfiltered image. The heat
equation is posed in a bounded domain Ω, which is our image window, and needs to be
supplemented with the boundary conditions on the boundary ∂Ω. A natural choice are the
Neumann boundary conditions

∂u

∂n
= 0 on ∂Ω,

so as to preserve the total mass

M(t) =

ˆ
Ω

u(t, x).
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Indeed, with these boundary conditions we have

dM

dt
=

ˆ
Ω

∂u

∂t
dx =

ˆ
Ω

∆u(t, x)dx =

ˆ
∂Ω

∂u

∂n
dS = 0.

However, the evolution according to the heat equation with the Neumann boundary conditions
leads to a uniform final state:

u(t, x)→ 1

|Ω|

ˆ
Ω

u0(x)dx as t→ +∞.

This issue can not be fixed by the choice of boundary conditions: for instance, if we impose
the Dirichlet Boundary condition

u(t, x) = 0for x ∈ ∂Ω,

then in the long time limit we get

u(t, x)→ 0 as t→ +∞,

which is not much better. Therefore, if we let the heat equation run for too long time, the
evolved image will lose all its features: it will be uniformly grey which is usually very far
from what you want. One way around this problem is to impose a stopping time, stopping
the evolution before the image becomes completely smeared out but after running it for a
sufficiently long time to remove the noise. The optimal choice of the stopping time depends
on the particular problem. The basic idea of choosing the stopping time can be seen from the
Fourier transform of the solution of the heat equation in the whole space: if (2.5) is posed in
the whole space, the Fourier transform

û(t, k) =

ˆ
Rn
e−ik·xu(t, x)dx

of the solution is
û(t, k) = e−D|k|

2tû0(k). (2.6)

Therefore, roughly, if we treat as noise oscillations on the scales below λ0 = 2π/k0, we should
run the diffusion evolution for the time of the order T0 ∼ λ2

0/D so as to remove the oscillations
on scales much smaller than λ0 but keeping the variations on scales much larger than λ0.

However, if the image u0(x) has a sharp interface, the linear diffusion equation will smooth
it to the same extent as a random noise. For instance, if we consider the heat equation on
the interval −1 ≤ x ≤ 1 with the Neumann boundary conditions:

∂u

∂t
= uxx, − 1 ≤ x ≤ 1 (2.7)

ux(t,−1) = ux(t, 1) = 0,

with the initial data u0(x) = 0 for −1 ≤ x ≤ 0 and u0(x) = 1 for 0 < x ≤ 1 then

u(t, x)→ 1/2, as t→ +∞, for all x ∈ [−1, 1],
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that is, in the limit t → +∞ the initial interface is completely removed. This is certainly
not what we usually need – we need to devise a filter that removes the noise but keeps the
large scale features even if they have sharp interfaces. Therefore, one needs to modify the
simple diffusive filtering idea so that at least the sharp interfaces would not be destroyed.
One approach to address this issue is by means of a nonlinear diffusion. Once again, we start
with a discrete filter, known as the median filter:

ũij = median[ukl : (kl) ∼ (ij)]. (2.8)

In order to understand how this filter works, let us consider a linear function with a jump:
un = 0 for n > 0, and

u0 = 1, u−1 = 0.9, u−2 = 0.8, u−3 = 0.7, u−4 = 0.6, u−5 = 0.5, etc.

If we take the stensil i ∼ i − 1, i, i + 1, then the outcome of the median filter is ũn = 0 for
n > 0, and

ũ0 = 0.9, ũ−1 = 0.9, ũ−2 = 0.8, ũ−3 = 0.7, ũ−4 = 0.6, ũ−5 = 0.5, etc.

so that the jump is well preserved – though very long iterations will kill it eventually.
Similarly, in two dimensions, in the continuous case, let us take

u(x, y) = H(ax+ by + c),

that is, u(x, y) = 0 if ax + by + c < 0, and u(x, y) = 1 for ax + by + c ≥ 0. Then any
radially symmetric median filter will give ũ(x, y) = 1 if ax + by + c > 0 and ũ(x, y) = 0 if
ax+ by + c < 0 – therefore, the edge is well preserved also in two dimensions.

Let us see how we may represent filters that preserve edges in the continuous case by a
solution of a nonlinear diffusion equation. Consider a filter

ũij =
∑

(kl)∼(ij)

hij,klukl, (2.9)

but we will now allow the weights hij,kl to depend on u. For instance, consider

hij,kl =
1

Zkl
exp

(
−|uij − ukl|

α

ε

)
. (2.10)

Here ε ∈ (0, 1) is a parameter that controls how close uij and ukl have to be for ukl to
contribute to ũij. If ε � 1 is small then ukl does not affect uij if there is a big difference
between uij and ukl – this is good for preventing destruction of interfaces. On the other hand,
if |uij − ukl|α ∼ ε then this filter will try to equilibrate the values at uij and ukl. The power
α > 0 can also be tuned. Finally, the normalization constant Zkl is chosen so that∑

(ij)∼(kl)

hij,kl = 1 for any (k, l). (2.11)

Recall that this condition is needed to ensure the conservation of the total mass∑
ij

ũij = uij.
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In order to obtain a continuous limit equation, let us also impose the condition∑
(kl)∼(ij)

hij,kl = 1 for any (i, j), (2.12)

which means that the filter does local averaging. It is often reasonable to assume that hij,kl =
hkl,ij, to ensure (2.12), in the combination with (2.11). Then the filter can be re-written as

ũij − uij =
∑

(kl)∼(ij)

hij,klukl − uij, (2.13)

which, with the help of (2.12) becomes

ũij − uij =
∑

(kl)∼(ij)

hij,kl(ukl − uij). (2.14)

We consider the standard neighboring relation in two dimensions: (ij) ∼ (kl) if

|i− k|+ |j − l| ≤ 1,

as before, and also the following form for hij,kl:

hij,kl = P
(
u i+k

2
, j+l

2
,∇u i+k

2
, j+l

2

)
, (2.15)

with a smooth function u(x, y). This gives, with δ = ∆x = ∆y:

ũij − uij = hij;i+1,j(ui+1,j − uij) + hij;i−1,j(ui−1,j − uij)
+ hij;i,j+1(ui,j+1 − uij) + hij;i,j−1(ui,j−1 − uij)
= Pi+ 1

2
,j(ui+1,j − uij)− Pi− 1

2
,j(ui,j − ui−1,j)

+ Pi,j+ 1
2
(ui,j+1 − uij)− Pi,j− 1

2
(ui,j − ui,j−1)

≈ δ[(Pux)i+ 1
2
,j − (Pux)i− 1

2
,j + (Puy)i,j+ 1

2
− (Puy)i,j− 1

2
] ≈ δ2[(Pux)x + (Puy)y].

Let us take a time step ∆t = ε, that is, uij = u(t, iδ, jδ) and ũij = u(t+ ε, iδ, jδ):

εut ≈ δ2[(Pux)x + (Puy)y]. (2.16)

Assuming ε = δ2 we get a nonlinear diffusion equation

ut = ∇ · [P (u,∇u)∇u]. (2.17)

A difficult question to which we will come back often is which nonlinear diffusion equation
should be used for various images so that particular image features would be preserved.
Another important mathematical issue is that often the nonlinear PDE that would optimally
satisfy our requirements is highly nonlinear so that the existence theory for solutions may be
very complicated.
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2.2 Denoising methods for BV functions

The difference between L2 and TV errors

Let us first recall why the total variation means of measuring the error is different from what
you obtain with the L2 error. Let x̄ be a scalar to be measured and x1, x2, . . . , xn be the
measurements of x that contain errors. The L2 estimate for the error is

e2(x) =
N∑
k=1

(x− xk)2,

and the best prediction for x that minimizes the L2-error is

ȳ2 = argmin e2(x) =
1

N

N∑
k=1

xk.

This prediction is reasonable but is prone to huge errors if N is not too large but one of xk is
very far from x̄, due to a measurement error. For instance, if N = 10 and all xj = 1 except
for x10 = 100, we get

ȳ2 =
109

10
,

which is very far from the true value x̄ = 1.
Consider what happens if, instead of the L2 error we use the TV error

e1(x) =
N∑
k=1

|x− xk|.

Then the best TV estimate for x̄ is (this is a nice calculus exercise)

x̄1 = median(xj).

Therefore, in our previous example we would have x̄1 = 1, so that one fluke measurement
would not throw the result as far off as in the L2 estimator.

Biased iterated median filtering

Before we describe the Rudin, Osher, Fatemi denoising model based on TV minimization, we
consider a much simpler filter that will lead us to the full model. Let xk, k = 0, 1, . . . , N be
a 1D discretized signal on [0, 1]. We assume that xj = x(j/N) for some continuous function
x(t) but that the measured signal yk is noisy:

yk = xk + nk,

where nk is noise. In order to remove the noise we start an iterative estimation process based
on localized median filtering. Given the iterate x

(n)
k let us define the error estimator

eλ(z;x
(n)
k−1, x

(n)
k+1, yk) = |z − x(n)

k−1|+ |z − x
(n)
k+1|+ λ|z − yk|,
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for z ∈ R. The parameter λ regulates how much we weigh the bias toward the initial mea-
surement yk relative to the bias toward the median value that brings about smoothness and
kills the noise. We update our estimator as follows:

x
(n+1)
k = argminzeλ(z;x

(n)
k−1, x

(n)
k−1, yk), k = 0, 1 . . . , N.

When λ = 1 we simply have

x
(n+1)
k = median(x

(n)
k−1, x

(n)
k+1, yk),

but for other values of λ we have different expressions (explicit but more cumbersome). We
can define the total cost function as

Ẽλ(z;x(n), y) =
N∑
k=1

eλ(zk;x
(n)
k−1, x

(n)
k+1, yk),

and write the iteration process as

x(n+1) = argminzẼλ(z;x(n), y). (2.18)

The following theorem shows how this iteration process balances regularity and bias toward
the original measurement.

Theorem 2.1 If the above iteration process converges:

lim
n→+∞

x
(n)
k = x̄k, k = 1, 1, . . . , N,

then the limit x̄ ∈ RN is the critical point of the cost function

Eλ(z; y) =
N∑
k=0

|zk+1 − zk|+ λ
N∑
k=1

|zk − yk|. (2.19)

Proof. Equation (2.18) implies that the limit should be a fixed point of the iteration process
and x̄k should satisfy

x̄k = argminteλ(t; x̄k+1, x̄k−1, yk) = argmint[|t− x̄k+1|+ |t− x̄k−1|+ λ|t− yk|], (2.20)

for all k = 0, 1, . . . , N . On the other hand, each component z̄k, k = 1, . . . , N of the
minimizer of Eλ(z, ; y) should satisfy the minimization problem with all other components
z̄0, . . . , z̄k−1, z̄k+1, . . . , z̄N fixed:

z̄k = argmint[|t− z̄k+1|+ |t− z̄k−1|+ λ|t− yk|], (2.21)

which is exactly the same equation as (2.20). Therefore, the limit x̄ and the minimizer z̄ of
Eλ(z; y) have to coincide.
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The Rudin-Osher TV denoising model

Let us now consider the continuous version of the cost function Eλ(z; y) given by (2.19), first
in one dimension. Let x0(t) be our noisy measurement, and z(t) a guess for the true non-noisy
image. We define the cost functional as a continuous version of that in Theorem 2.1:

Eλ[z(t);x0(t)] =

ˆ 1

0

|z′(t)|dt+ λ

ˆ 1

0

|z(t)− x0(t)|dt. (2.22)

A more general form of (2.22) is

Eλ,p[z(t);x(t)] =

ˆ 1

0

|z′(t)|dt+ λ

ˆ 1

0

|z(t)− x0(t)|pdt, (2.23)

for some p ≥ 1. Then the denoising estimator is

x̄λ,p = argminzEλ,p[z;x0], (2.24)

with the minimum taken over an appropriate class of functions.
Generalizing this functional to two dimensions and taking p = 2 (which is a particularly

reasonable choice, when the noise is a Gaussian white noise), we obtain the Rudin-Osher
denoising model:

Eλ[u;u0] =

ˆ
Ω

|∇u|dx+
λ

2

ˆ
Ω

|u(x)− u0(x)|2dx, (2.25)

where u0(x) is our noisy measurement. However, the minimizer u may not be attained in the
Sobolev space W 1,1(Ω). In order to guarantee that the minimizer exists we should consider
the minimization problem over the larger class of BV(Ω) functions and modify the functional
accordingly:

ETV [u;u0] =

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

|u(x)− u0(x)|2dx, (2.26)

Theorem 2.2 Assume that u0 ∈ L2(Ω). Then the minimizer of ETV (u;u0) exists in BV(Ω)
and is unique.

Proof. The functional ETV (u;u0) is strictly convex in u – because of the second term that
is quadratic in u (the first term is linear in u and is thus convex but not strictly convex).
Therefore, the minimizer (if it exists) is unique. Existence of the minimizer can be shown
as follows. There exist u ∈ BV(Ω) such that ETV (u;u0) is finite – take, for instance, any
u ∈ L2(Ω) ∩ BV(Ω). Next, if un is a minimizing sequence such that

ETV (un;u0)→ Ē = min
u∈BV(Ω)

ETV (u;u0),

then the sequence ETV (un;u0) is uniformly bounded, hence the sequence un is bounded in
BV(Ω). As un is bounded in BV(Ω), Theorem 1.7 implies that there is a subsequence unk
which converges as k → +∞ in L1(Ω) to a limit ū. Theorem 1.4 implies that ū ∈ BV(Ω),
and, moreover,

‖ū‖BV(Ω)
≤ lim inf

k→+∞
‖unk‖BV(Ω)

.
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In addition, convergence in L1(Ω) implies that

ˆ
Ω

|ū(x)− u0(x)|2dx ≤ lim inf
k→+∞

ˆ
Ω

|unk(x)− u0(x)|2dx.

We conclude that
ETV (ū;u0) ≤ Ē = lim inf

k→+∞
ETV (unk ;u0).

As a consequence, ū is a minimizer of ETV (u;u0) over BV(Ω) and we are done.

The Euler-Lagrange equation for the Rudin-Osher model

In order to devise an algorithm to minimize the Rudin-Osher functional

ETV [u;u0] =

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

|u(x)− u0(x)|2dx, (2.27)

we will look at its formal Euler-Lagrange equation. Let us consider an infinitesimal pertur-
bation u+ δv, with δ � 1. Assuming that u and v are sufficiently smooth, we get

ETV (u+ δv;u0) =

ˆ
Ω

|∇u+ δ∇v|+ λ

2

ˆ
Ω

|u+ δv − u0|2dx

≈ ETV (u;u0) + δ

ˆ
Ω

1

|∇u|
∇u · ∇v + λδ

ˆ
Ω

v(u− u0)dx

= ETV (u;u0)− δ
ˆ

Ω

∇ ·
(

1

|∇u|
∇u
)
v + δ

ˆ
∂Ω

1

|∇u|
∂u

∂n
vdH1 + λδ

ˆ
Ω

v(u− u0)dx.

Here n is the unit normal to ∂Ω and H1 is the one-dimensional Hausdorff measure along
∂Ω. Hence, if the unique minimizer is smooth (it lives in W 1,1(Ω)), it should satisfy the
Euler-Lagrange boundary value problem

−∇ ·
(

1

|∇u|
∇u
)

+ λ(u− u0) = 0, in Ω (2.28)

∂u

∂n
= 0, on ∂Ω.

This is formally an elliptic equation but it degenerates where ∇u = 0 – if the image is
homogeneous in some region the diffusion coefficient there is infinite. This is good since this
gives very fast smoothing in the regions where u should be homogeneous. On the other hand,
in the regions where u has a very large gradient, the diffusion coefficient vanishes meaning
that no smoothing takes place – this is good news for preserving the edges. Alternatively, one
could adopt a time evolution

∂u

∂t
−∇ ·

(
1

|∇u|
∇u
)

+ λ(u− u0) = 0, in Ω (2.29)

∂u

∂n
= 0, on ∂Ω,
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with some initial condition, such as u(0, x) = u0(x). Then one would hope that as t → +∞
solutions of the degenerate parabolic problem (2.29) would converge to the steady state that
solves the degenerate elliptic problem (2.28).

The natural difficulty in trying to solve the elliptic problem (2.28) or the parabolic equation
(2.29) is, obviously, in their highly nonlinear nature and the possible singularity of the diffusion
coefficient D = 1/|∇u| at the critical points of u. One natural regularization of the parabolic
equation is to consider instead

∂u

∂t
− |∇u|∇ ·

(
1

|∇u|
∇u
)
− λ|∇u|(u− u0) = 0, in Ω (2.30)

∂u

∂n
= 0, on ∂Ω.

This equation has the same steady states as the original elliptic problem (2.28) but the
degeneracy at the places where |∇u| = 0 is now removed. This approach was proposed by
Marquina and Osher and works quite well.

Another regularization works directly for the elliptic problem. The idea is to replace |∇u|
by

|∇u|a =
√
|∇u|2 + a2, (2.31)

with a small regularization parameter a� 1. The regularized elliptic problem is

−∇ ·
(

1

|∇u|a
∇u
)

+ λ(u− u0) = 0, in Ω (2.32)

∂u

∂n
= 0, on ∂Ω.

This is the Euler-Lagrange equation for the regularized cost functional

Ea[u;u0] =

ˆ
Ω

|Du|a +
λ

2

ˆ
Ω

|u(x)− u0(x)|2dx. (2.33)

The advantage of (2.32) is that there is no longer a problem at the points where ∇u(x) = 0,
and the diffusivity is still small around the edges where |∇u| is large.

Duality for the TV denoising model

The approach to the TV minimization problem described above is a primal method that
directly approaches the minimization problem. We will now describe the dual formulation
that involves a min-max problem whose critical points are the same as the minimizer of the
original problem. The primal problem is to minimize the TV cost functional

ETV [u;u0] =

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

|u(x)− u0(x)|2dx, (2.34)

Let us recall the definition of the total variation:
ˆ

Ω

|∇u| = sup

[ˆ
Ω

u(∇ · g)dx : g = (g1, g2), g1,2 ∈ C1(Ω), |g1|2 + |g2|2 ≤ 1

]
. (2.35)
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Using this expression in (2.34) gives the problem

min
u

(
sup
g

ˆ
Ω

u(∇ · g)dx+
λ

2

ˆ
Ω

|u(x)− u0(x)|2dx
)
, (2.36)

which can be re-written as

min
u

sup
g

(ˆ
Ω

u(∇ · g)dx+
λ

2

ˆ
Ω

|u(x)− u0(x)|2dx
)
. (2.37)

Here the supremum over g is taken over all admissible g as in the definition (2.35) of the total
variation. We will denote the class of these admissible functions by A.

Formally exchanging the min and the sup in (2.37) gives the max-min problem

sup
g∈A

min
u

(ˆ
Ω

u(∇ · g)dx+
λ

2

ˆ
Ω

|u(x)− u0(x)|2dx
)
. (2.38)

The minimization problem in u is now trivial – we can simply minimize pointwise the integrand

u(∇ · g) +
λ

2
(u− u0)2,

which leads to

ū = u0 −
1

λ
∇ · g, (2.39)

so that

ū(∇ · g) +
λ

2
(ū− u0)2 = u0(∇ · g)− 1

2λ
|∇ · g|2.

Substituting this back into (2.38) gives the dual formulation

sup
g∈A

ˆ
Ω

(
u0(∇ · g)− 1

2λ
|∇ · g|2

)
dx. (2.40)

If we find the critical point g = (g1, g2) of (2.40), the image ū can be recovered via (2.39). The
advantage of the dual formulation is that it is smooth in ∇g unlike the original formulation
that depends on |∇u| and is not smooth. The disadvantage is that we now deal with a
constrained optimization problem – the class A involves the pointwise constraint

g2
1 + g2

2 ≤ 1.

In order to deal with this issue, note that if at some point x ∈ Ω the maximizer |g(x)| < 1 then
at this point g(x) should satisfy the Euler-Lagrange equation for the unconstrained problem

1

λ
∇(∇ · g)−∇u0 = 0, (2.41)

while if |g(x)| = 1 at some x ∈ Ω then at such point we have

1

λ
∇(∇ · g)−∇u0 = µ(x)g, (2.42)
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with some Lagrange multiplier µ(x). In both cases we may write

µ(x) = |H(g)|,
where

H(g) =
1

λ
∇(∇ · g)−∇u0. (2.43)

Therefore, both (2.41) and (2.42) can be written simultaneously as

H(g)− |H(g)|g = 0, (2.44)

with H(g) defined by (2.43). Note that the constraint |g| ≤ 1 is enforced automatically for
the solution of (2.44). Moreover, it follows from (2.44) that H(g) = 0 where |g| < 1.

One way to solve the nonlinear equation (2.44) numerically is to consider the evolution
equation

gt = H(g)− |H(g)|g, (2.45)

and hope that the long time limit of the solution of (2.45) is the steady solution of (2.44).
One corresponding numerical scheme is the semi-explicit iteration

g(n+1) = g(n) + (H(g(n))− |H(g(n))|g(n+1))∆t,

that is,

g(n+1) =
1

1 + |H(g(n)|∆t
(g(n) +H(g(n))∆t).

Note that the primal problem for u:

−∇ ·
(
∇u
|∇u|

)
+ λ(u− u0) = 0, (2.46)

and the dual equation (2.45) for the vector g are related in a simple way. Let g solve the dual
problem (2.45), and set

u = u0 −
1

λ
∇ · g, (2.47)

then H(g) = −∇u, and thus u satisfies

∇u = |∇u|g. (2.48)

Dividing by |∇u| and taking the divergence gives

∇ ·
(
∇u
|∇u|

)
= ∇ · g,

that is, recalling (2.47):

−∇ ·
(
∇u
|∇u|

)
+ λ(u− u0) = 0, (2.49)

which is (2.46). On the other hand, the system (2.47)-(2.48) gives a primal-dual formulation
that involves both u and g as unknowns, and we will come back to it later.

A convenient regularization of this system is

u = u0 −
1

λ
∇ · g, (2.50)

∇u = |∇u|ag.
Here |∇u|a =

√
|∇u|2 + a2, as in (2.31). The regularized system may be solved iteratively.
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Properties of the minimizers of the Rudin-Osher functional

A useful Banach space associated with the Rudin-Osher functional is defined as follows.
Consider all distributions f that can be written as

f = ∇ · g =
∂g1

∂x1

+
∂g2

∂x2

, (2.51)

in the sense of distributions, with an L∞ vector valued function g:

‖g‖L∞ = sup
x∈Ω

√
g2

1 + g2
2 < +∞.

Note that the representation (2.51) is not unique: if f = ∇ · g, then f = ∇ · g′, for any
g′ = g + g0 with ∇ · g0 = 0. Given f ∈ G we set

Gf = {g ∈ L∞ : f = ∇ · g}. (2.52)

The norm in the space G is defined as

‖f‖∗ = inf
g∈Gf
‖g‖∞. (2.53)

The infimum in (2.53) is actually attained at some g ∈ Gf . In order to see that, let us assume
that gn ∈ Gf and

‖gn‖∞ → ‖f‖∗,
as n → +∞. As gn is bounded in L∞(Ω) which is the dual space of L1(Ω), it follows that
there exists a sub-sequence gnk that converges to a limit g ∈ L∞, in the weak-* topology.
That is, for any vector-valued function φ ∈ L1(Ω) we have

ˆ
Ω

(gnk · φ)dx→
ˆ

Ω

(g · φ)dx, (2.54)

as k → +∞. Moreover, we have

‖g‖∞ ≤ lim inf
k→+∞

‖gnk‖∞.

We also have, for any test function ψ ∈ C∞c (Ω), since all gnk lie in Gf :ˆ
Ω

ψfdx =

ˆ
Ω

ψ(∇ · gnk)dx = −
ˆ

Ω

(∇ψ · gnk)dx→ −
ˆ

Ω

(∇ψ · g)dx =

ˆ
Ω

ψ(∇ · g)dx,

hence ∇ · g = f and thus g ∈ Gf . We conclude that g ∈ Gf and ‖f‖∗ = ‖g‖∞.
Let us check that ‖ · ‖∗ is, indeed, a norm. It is obvious that ‖λf‖∗ = |λ|‖f‖∗. To check

the triangle inequality, notice that if g1 ∈ Gf1 and g2 ∈ Gf2 then g1 + g2 ∈ Gf1+f2 . Therefore,
if we take g1,2 so that ‖f1,2‖∗ = ‖g1,2‖∞, we see that

‖f1 + f2‖∗ ≤ ‖g1‖∞ + ‖g2‖∞ = ‖f1‖∗ + ‖f2‖∗.

Moreover, G is a Banach space. Indeed, let fn be a Cauchy sequence in G. In order to
show that the sequence fn converges to a limit in G it is sufficient to prove that fn has a
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subsequence fnk that converges strongly in G. Choose gn ∈ Gfn such that ‖fn‖∗ = ‖gn‖∞.
Then gn is a bounded sequence in L∞(Ω), thus there exists a subsequence gnk that converges
to a limit g ∈ L∞(Ω) in the weak-* topology, that is, (2.54) holds for all φ ∈ L1(Ω). As
fn = ∇ · gn, it follows that fnk → f = ∇ · g in the sense of distributions. We will show that
actually fnk converges to f in the strong topology of G:

‖fnk − f‖∗ → 0.

Let us fix k ≥ 1 and for each l ≥ k take gl;k so that

∇ · gl;k = fnl − fnk ,

and
‖gl;k‖∞ = ‖fnl − fnk‖∗ = εl;k.

Note that εl;k → 0 as l→ +∞ since the sequence fn is Cauchy. Define pl;k = gnk + gl;k, then

∇ · pl;k = fnk + (fnl − fnk) = fnl ,

so that pl;k ∈ Gfnl
. The sequence pl;k is bounded in L∞, and by the same token as before,

after possibly extracting a subsequence, pl;k converges in the weak-* topology of L∞(Ω) to
a limit qk ∈ L∞(Ω). As a consequence, the sequence fnl converges as l → +∞ to ∇ · qk as
l → +∞, in the sense of distributions, for any k fixed. Uniqueness of the limit in the sense
of distributions implies that f = ∇ · qk, for all k. We conclude that

‖fnk − f‖∗ ≤ ‖gnk − qk‖∞ ≤ lim inf
l→∞

‖gnk − pl;k‖∞ = lim inf
l→∞

‖gl;k‖∞ = lim inf
l→∞

εl;k = 0,

and we are done. Therefore, the space G is a Banach space.
We have the following observation.

Proposition 2.3 Let v ∈ G ∩ L2(Ω) and u ∈ BV(Ω), and assume that u has zero trace on
∂Ω, then ∣∣∣∣ˆ

Ω

u(x)v(x)dx

∣∣∣∣ ≤ ‖v‖∗ ˆ
Ω

|Du|. (2.55)

Proof. If φ ∈ C∞c (Ω) is a smooth test function that vanishes on ∂Ω, then for any g ∈ Gv we
have ˆ

Ω

φ(x)v(x)dx = −
ˆ

Ω

(∇φ) · gdx ≤ ‖g‖∞‖∇φ‖L1(Ω),

and thus ˆ
Ω

φ(x)v(x)dx ≤ ‖v‖∗‖∇φ‖L1(Ω).

By density this inequality extends to all φ ∈ W 1,1
0 (Ω) (the Sobolev space of W 1,1 functions

with zero trace in Ω). Theorem 1.5 says that for any u ∈ BV(Ω) with zero trace we can find
a sequence un ∈ W 1,1

0 such that un → u on L1(Ω) and

ˆ
Ω

|∇un|dx→
ˆ

Ω

|Du|.

31



It follows from the previous argument that∣∣∣∣ˆ
Ω

un(x)v(x)dx

∣∣∣∣ ≤ ‖v‖∗ ˆ
Ω

|∇un|dx,

and passing to the limit we get∣∣∣∣ˆ
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ‖v‖∗ ˆ
Ω

|Du|,

finishing the proof.
Let us now return to the Rudin-Osher minimization problem that we write now as follows:

given f ∈ L2(Ω) find

min

[ˆ
Ω

|Du|+ λ

ˆ
Ω

v2dx : u ∈ BV(Ω), v ∈ L2(Ω), u+ v = f

]
. (2.56)

Recall that our hope is that if (ū, v̄) minimize this functional, then in the decomposition
f = ū+ v̄, the function ū represents “objects’ and v̄ represents “texture and noise”. The next
result shows that is not the case if the image f is too small in the G-norm.

Theorem 2.4 Assume that Ω = R2, and that

λ‖f‖∗ ≤
1

2
. (2.57)

Then the minimizer of (2.56) is ū = 0 and v̄ = f .

Proof. Assume that f = u+ v as in (2.56) then

ˆ
R2

|Du|+ λ

ˆ
R2

|v|2dx =

ˆ
R2

|Du|+ λ

ˆ
R2

|f − u|2dx =

ˆ
R2

|Du|+ λ‖u‖2
2 + λ‖f‖2

2 − 2λ〈u, f〉.

The inequality in Proposition 2.3 implies then

ˆ
R2

|Du|+ λ

ˆ
R2

|v|2dx ≥
ˆ

R2

|Du|+ λ‖u‖2
2 + λ‖f‖2

2 − 2λ‖f‖∗
ˆ

R2

|Du|.

Using the bound (2.57) we get

ˆ
R2

|Du|+ λ

ˆ
R2

|v|2dx ≥ λ‖u‖2
2 + λ‖f‖2

2 ≥ λ‖f‖2
2,

whence the minimizer is ū = 0, v̄ = f .
Therefore, if f is too small then the Rudin-Osher minimization problem does nothing to

denoise the image, or, alternatively, simply kills the image! Let us see what happens when
λ‖f‖∗ ≥ 1/2.
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Theorem 2.5 Assume that Ω = R2, and

λ‖f‖∗ ≥
1

2
. (2.58)

Then the minimizer (ū, v̄) is characterized by the following two conditions, in addition to
f = ū+ v̄:

‖v̄‖∗ =
1

2λ
and 〈ū, v̄〉 = ‖v̄‖∗

ˆ
R2

|Dū|. (2.59)

Moreover, (2.59) implies that f = ū+ v̄ satisfies (2.58) if ū 6≡ 0.

This result says that if the image f is sufficiently large so that we do get some objects and
not only “texture and noise’ then still the level of “texture and noise” is fixed and does not
grow if f increases while keeping λ fixed, as one would naturally expect! A word of caution
is in order, however: it is the G-norm of v that has a uniform upper bound. As we will see
later, the L2-norm of v̄ can be arbitrarily large.

Proof. First, let (ū, v̄) be the minimizer of the Rudin-Osher functional, then for any
admissible perturbation h we haveˆ
|Dū|+ λ‖v̄‖2

2 ≤
ˆ
|D(ū+ εh)|+ λ‖v̄ − εh‖2

2 ≤
ˆ
|Dū|+ |ε|

ˆ
|Dh|+ λ‖v̄ − εh‖2

2, (2.60)

that is:

0 ≤ |ε|
ˆ
|Dh|+ λε2‖h‖2

2 − 2λε〈v̄, h〉,

whence

2λ|〈v̄, h〉| ≤
ˆ
|Dh|

for all admissible perturbations h. It follows that 2λ‖v̄‖∗ ≤ 1.
On the other hand, taking h = ū in (2.60) gives

2λε〈v̄, ū〉 ≤ (|1 + ε| − 1)

ˆ
|Dū|+ ε2λ2

ˆ
|ū|2dx.

As this should be true both for ε > 0 and ε < 0, we conclude that

2λ

ˆ
ū(x)v̄(x)dx =

ˆ
|Dū|.

As 2λ‖v̄‖∗ ≤ 1, it follows now that we must also have ‖v‖∗ = 1/(2λ). Therefore, the minimizer
satisfies the two conditions in (2.59). On the other hand, assume that ū + v̄ = f and (ū, v̄)
satisfies (2.59):

‖v̄‖∗ =
1

2λ
and 〈ū, v̄〉 = ‖v̄‖∗

ˆ
R2

|Dū|. (2.61)

Then for any ε and function h we have, using the duality inequality and (2.61):
ˆ
|D(ū+ εh)|+ λ

ˆ
(v̄ − εh)2 ≥ 2λ

ˆ
(ū+ εh)v̄ + λ‖v̄‖2

2 − 2λε

ˆ
v̄(x)h(x)dx+ λε2‖h‖2

2

= 2λ

ˆ
ū(x)v̄(x)dx+ λ‖v̄‖2

2 + λε2‖h‖2
2 =

ˆ
|Dū|+ λ‖v̄|22 + λε2‖h‖2

2 ≥
ˆ
|Dū|+ λ‖v̄‖2

2,
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so that (ū, v̄) is the Rudin-Osher minimizer. As a consequence, if ū 6≡ 0 we must have
λ‖f‖∗ ≥ 1/2.

Let us now understand some consequences of the previous two theorems. Think about
denoising as the map Φ : f → u, where u is the BV component of the minimizer of the
Rudin-Osher functional. In a loose sense, it does a version of soft thresholding: we represent
f = ū + v̄, with ū = Φ(f), and if ‖f‖∗ ≤ 1/(2λ), then Φ(f) = 0, while if ‖f‖∗ ≥ 1/(2λ), to
get Φ(f), we subtract from f a function v̄ with ‖v̄‖∗ = 1/(2λ).

The map Φ does not always work quite as we would think intuitively. For example, if
we have a simple image of the type f(x) = χΩ(x) where Ω is a bounded domain with a
smooth boundary, we might expect that such image would be preserved by the Rudin-Osher
functional. Sadly, Theorem 2.5 says that this is not the case – the “noise+texture” component
v has a fixed G-norm: ‖v‖∗ = 1/(2λ) and thus ū 6= f . On the other hand, things are not too
bad as can be seen from the next example.

Theorem 2.6 Let f(x) = αχBR(x), where BR is a disk of radius R centered at the origin
and α > 0. Then its Rudin-Osher decomposition is f = ū+ v̄, where

ū = (α− 1

λR
)χBR(x), v̄ =

1

λR
χBR(x), (2.62)

if λR ≥ 1/α, while
ū = 0, v̄ = f = αχBR(x),

if λR < 1/α.

There are two remarkable observations here; first, if R is sufficiently large then the location
of the edges is recovered perfectly – this is excellent news. Second, no matter how large α is,
the “noise+texture” component v̄ does not depend on α if λR ≥ 1/α.

Proof. First, we compute ‖χBR‖∗. Note that

πR2 = |BR| =
ˆ
χBR(x)dx =

ˆ
|χBR(x)|2dx ≤ ‖χBR‖∗

ˆ
|DχBR |

= ‖χBR‖∗|∂BR| = 2πR‖χBR‖∗,

hence

‖χBR‖∗ ≥
R

2
.

On the other hand, consider the vector-valued function

g =

(
χBR(x)− R2

|x|2
χBcR(x)

)
x

2
.

Then, clearly, ∇ · g = 1 when |x| ≤ R, and for |x| > 1 we have

∇ · g = −1

2
∇ ·
(
R2

|x|2
x

)
= −R

2

2
∇ · ∇(log |x|) = 0.

We conclude that ∇ · g = χBR(x). It follows that

‖χBR‖∗ ≤ ‖g‖∞ =
R

2
.
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Therefore, we have ‖χBR‖∗ = R/2.
Now, Theorem 2.4 implies that when αλR/2 ≤ 1/2 we have ū = 0 and v̄ = αχBR(x). On

the other hand, when αR ≥ 1/λ we may use Theorem 2.5. It says that the minimizer (ū, v̄)
is uniquely identified by ū+ v̄ = χBR , ‖v̄‖∗ = 1/(2λ) and

ˆ
ū(x)v̄(x) = ‖v̄‖∗

ˆ
|Dū|.

Guessing ū(x) = γχBR(x) and v̄(x) = βχBR(x) we get the following equations for α and β:

γ + β = α, β
R

2
=

1

2λ
, γβπR2 =

βR

2
γ2πR,

which gives β = 1/(λR), γ = α− β, as in (2.62), completing the proof.
Let us remark on what happens if the image f is non-negative. Then ū has to be non-

negative as well. Indeed, if ū is negative somewhere we may consider a trial pair (|ū|, f − |ū|)
that will satisfy: ˆ

|D|ū|| ≤
ˆ
|Dū|

simply because ū ∈ BV, and

ˆ
(f − |ū|)2dx ≤

ˆ
(f − ū)2dx,

simply because |f − |ū|| ≤ |f − ū| since f ≥ 0. Therefore, ū ≥ 0 if f ≥ 0 everywhere.
A striking consequence of Theorem 2.4 is the following proposition that says that not all

images can be obtained as a result of Rudin-Osher denoising.

Proposition 2.7 Not all functions u in the Schwartz class S(R2) can be minimizers of the
Rudin-Osher functional for some f .

Sketch of the proof. This is because of the duality formulation that we have discussed: if
u is a minimizer then v is given by

v(x) = − 1

2λ
∇ ·
(
∇u
|∇u|

)
.

Take u(x) = φ(|x|) with a smooth decreasing function φ(r), then the above means that

v(x) = − 1

2λ
∇ ·
(
x

|x|

)
=

1

2λ|x|
,

which is not in L2!
The opposite news are given by the next proposition.

Proposition 2.8 If Ω is a smooth bounded domain then u(x) = χΩ(x) is a minimizer of the
Rudin-Osher functional for some f .
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Proof. According to Theorem 2.5 it suffices to find v(x) such thatˆ
u(x)v(x)dx = ‖v‖∗

ˆ
|Du|, (2.63)

and then set λ = 1/(2‖v‖∗), and f = u + v. Let us construct a vector-valued function g so
that ‖g‖∞ = 1 and ˆ

u(x)(∇ · g(x))dx =

ˆ
|Du| = |∂Ω|. (2.64)

Green’s formula means that the latter condition is equivalent toˆ
∂Ω

(g · n)dl = |∂Ω|. (2.65)

This condition holds if g satisfies g = n on ∂Ω. Therefore, we take g = n on ∂Ω, extend it
smoothly inside Ω so that ‖g‖∞ = 1 and set v = ∇·g and f = u+v. Then we have ‖v‖∗ ≤ 1.
In addition, (2.64) means that ˆ

u(x)v(x)dx =

ˆ
|Du|. (2.66)

It follows that ‖v‖∗ ≥ 1, hence ‖v‖∗ = 1, and (2.63) holds. Therefore, f = u + v is the
Rudin-Osher decomposition of f .

Proposition 2.8 can not be generalized too much.

Proposition 2.9 The product g(x)χΩ(x) where g(x) is a smooth function and Ω is a smooth
domain is not in general the u component in the Rudin-Osher decomposition of any f .

We refer to Meyer’s notes for the proof. Here is a general criterion.

Theorem 2.10 A pair (u, v) ∈ BV × L2 is the Rudin-Osher minimizer for some f if there
exists a vector-valued function g such that

|Du| = g ·Du, ‖g‖∞ = 1, v = −∇ · g. (2.67)

Sketch of the proof. Let us explain why this is morally equivalent to the conditions in
Theorem 2.5, omitting some of the technicalities related to the regularity issues (see Meyer’s
notes for details). As in the proof of Proposition 2.8 we need to verify that our assumptions
on u and v are equivalent to ˆ

u(x)v(x)dx = ‖v‖∗
ˆ
|∇u|, (2.68)

and then set λ = 1/(2‖v‖∗), and f = u+ v. Our assumptions on u, v and g implyˆ
u(x)v(x)dx = −

ˆ
u(x)(∇ · g)dx =

ˆ
(Du · g) =

ˆ
|Du|. (2.69)

It follows that ‖v‖∗ ≥ 1 but the fact that ‖g‖∞ = 1 means that ‖v‖∗ ≤ 1, hence ‖v‖∗ = 1,
whence (2.69) is equivalent to (2.68), and we are done.

The next corollary of Theorem 2.6 means that the Rudin-Osher functional has trouble
reconstructing Lipschitz (as opposed to smooth) domains.
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Corollary 2.11 The indicator function of the unit square D = [0, 1] × [0, 1] is not the u
component of the minimizer of the Rudin-Osher functional for any f .

Proof. If (u, v) is a minimizing pair for some f there should exist a vector-valued function g
such that ‖g‖∞ = 1, v = −∇ · g ∈ L2, and g = n a.e. on Γ = ∂D. Consider the domain

Dε = {x ∈ D : 0 ≤ x1 + x2 ≤ ε},

and let Γε = ∂Dε (a small triangle). Then we have

ˆ
Γε

(g · n)dl =

ˆ
Dε

(∇ · g)dx.

The integral in the left side is at least 2ε−
√

2ε, but the integral in the right side is o(ε) since
v = −∇ · g is an L2-function. This is a contradiction.

Theorem 2.4 says that if the image f has too small G-norm then the Rudin-Osher funcional
wipes it out. Essentially, in that case the Rudin-Osher functional treats the image as pure
noise. Here is a useful criterion of when this happens.

Proposition 2.12 Let fn be a sequence of functions such that:
(i) all fn are supported in a compact set K;
(ii) there exists q > 2 and C > 0 so that ‖fn‖q ≤ C;
(iii) fn → 0 in the sense of distributions.
Then ‖fn‖∗ → 0 as n→ +∞.

This happens, for instance, for an image of the form fn(x) = p(nx)χΩ where Ω is a bounded
domain with a smooth boundary and p(x) is a periodic mean-zero function p. Such images
are treated as noise by the Rudin-Osher functional when n is sufficiently large.

3 Image denoising via wavelet shrinkage

In this section we will consider another denoising algorithm, wavelet shrinkage that, in some
sense, gives an optimal denoising procedure.

3.1 Wavelets and multiresolution analysis

The Haar wavelets

Let us first recall some very basic facts of the wavelet analysis. The first and simplest example
are the Haar wavelets. The basic Haar function is

ψ(x) =

 1 if 0 ≤ x < 1/2,
−1 if 1/2 ≤ x < 1,
0 otherwise.

(3.1)

It has mean zero ˆ 1

0

ψ(x)dx = 0,
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and is normalized so that ˆ 1

0

ψ2(x)dx = 1.

The rescaled and shifted Haar functions are

ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

Lemma 3.1 The Haar functions form an orthonormal set in L2(R).

Sketch of the proof. This can be verified by a direct computation – the basic ingredients
are that (1) each Haar wavelet has mean zero, (2) the Haar wavelet ψjk1 and ψjk2 on the same
scale 2−j have disjoint support, and (3) the Haar wavelet ψjk is constant on the support of
ψj′k if j < j′.

The Haar coefficients of a function f ∈ L2(R) are defined as the inner products

cjk =

ˆ
f(x)ψjk(x)dx, (3.2)

and the Haar series of f is ∑
j,k∈Z

cjkψjk(x). (3.3)

Orthonormality of the family {ψjk} ensures that∑
j,k

|cjk|2 ≤ ‖f‖2
L2 < +∞,

and the series (3.3) converges in L2(R). In order to show that it actually converges to the
function f itself we need to prove that the Haar functions form a basis for L2(R).

Lemma 3.2 The Haar wavelets form the basis of L2(R).

Sketch of the proof. We consider the dyadic projections Pn defined as follows. Given
f ∈ L2(R), and n, k ∈ Z, consider the intervals Ink = ((k − 1)/2n, k/2n], then

Pnf(x) =

 
Ink

fdx = 2n
ˆ
Ink

fdx, for x ∈ Ink.

The function Pnf is constant on each of the dyadic intervals Ink. In particular, each Haar
function ψjk satisfies Pnψjk(x) = 0 for j ≥ n, while Pnψjk(x) = ψjk(x) for j < n. The main
observation is that for any f ∈ L2(R) we have

Pn+1f − Pnf =
∑
k∈Z

cnkψnk(x), (3.4)

with the Haar coefficients cnk given by (3.2).
As a consequence of (3.4) we deduce that

Pn+1f(x)− P−mf(x) =
n∑

j=−m

∑
k∈Z

cjkψjk(x), (3.5)
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for all m,n ∈ Z with n > m. The last step is to show that for any f ∈ L2(R) we have

lim
m→+∞

P−mf(x) = 0, lim
n→+∞

Pnf(x) = f(x), (3.6)

both in the L2-sense. The operators Pnf are uniformly bounded because for all n, k ∈ Z we
have ˆ

Ink

|(Pnf)(x)|2dx = 2−n22n

∣∣∣∣ˆ
Ink

f(y)dy

∣∣∣∣2 ≤ ˆ
Ink

|f(y)|2dy.

Summing over k ∈ Z for a fixed n we getˆ
R
|Pnf(x)|2 ≤

ˆ
R
|f(x)|2,

thus ‖Pnf‖L2 ≤ ‖f‖L2 . Uniform boundedness of Pn implies that it is sufficient to establish
both limits in (3.6) for functions f ∈ Cc(R), and that is not difficult.

The general MRA framework

A generalization of the above Haar construction is the framework of the multi-resolution
analysis (MRA) that is at the heart of the modern theory of wavelets.

Definition 3.3 An orthonormal MRA of L2(R) is a chain of closed subspaces

. . . ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ . . . ,

which satisfies the following properties:

(1)
+∞⋂
j=−∞

Vj = {0},

(2) the union
∞⋃

j=−∞

Vj is dense in L2(R),

(3) a function f(x) belongs to Vj if and only if f(2x) belongs to Vj+1,

(4) there is a function φ ∈ V0 so that {φ(x− k), k ∈ Z} is an orthonormal basis for V0.

The function φ(x) is called the scaling function.

The basic intuition behind this construction is that the space Vj contains functions that
oscillate, roughly, on the scale 2−j. In the case of the Haar wavelets, this space was made of
functions that are piecewise constant on intervals of the form [k/2j, (k + 1)/2j).

We will now establish some basic facts that follow from the definition of MRA. An imme-
diate consequence is that the functions

φjk(x) = 2j/2φ(2jx− k), k ∈ Z,

form an orthonormal basis of the space Vj. In particular, φ(x) has a representation (since
φ ∈ V0 ⊂ V1, and φ(2x− k) form a basis for V1):

φ(x) = 2
∑
k∈Z

hkφ(2x− k) =
∑
k∈Z

(
√

2hk)φ1,k, (3.7)
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with the coefficients hk given by

hk =
1√
2
〈φ, φ1,k〉, k ∈ Z. (3.8)

As we will soon see, these coefficients have to satisfy a number of interesting relations.
Another simple observation is that if φ ∈ L1(R) ∩ L2(R) then

ˆ
R
φ(x)dx 6= 0, (3.9)

which means, in a sense, that the scaling φ is not oscillatory. To see that, assume for simplicity
that φ is compactly supported. Then, if φ(x) has integral zero, we have

ˆ
R
φj,k(x)dx = 0,

for all j, k ∈ Z. Consider any function u ∈ L2(R) that is compactly supported and with
ˆ

R
u(x)dx = 1.

Let Pj be the orthogonal projection on the space Vj, and uj = Puj. Let us define the
coefficients

gjk =

ˆ
u(x)φj,k(x)dx.

As all φj,k lie in the space Vj, we have Pjφj,k = φj,k, and since the operator Pj is self-adjoint,
we have

gjk =

ˆ
u(x)φj,k(x)dx =

ˆ
u(x)Pjφj,kdx =

ˆ
(Pju)φj,kdx =

ˆ
ujφj,kdx.

Since both u and φ are compactly supported, it follows that for any j fixed, only finitely many
of the coefficients gjk are non-zero. Hence, uj satisfies

ˆ
R
uj(x)dx =

∑
j

ˆ
gjkφjk(x)dx = 0,

as the above sum has only finitely many terms, and interchanging summation and integration
is not an issue. We also know that uj converge strongly to u in L2(R) as j → +∞. As all uj
are uniformly compactly supported for j ≥ 1, we deduce that uj converges strongly to u in
L1(R) which implies automatically that

ˆ
R
u(x)dx = lim

j→+∞

ˆ
R
uj(x)dx = 0,

which is a contradiction. Hence, (3.9) holds.
Next, identity (3.7) implies that the Fourier transform of φ satisfies

φ̂(ω) = H
(ω

2

)
φ̂
(ω

2

)
, (3.10)
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with a periodic function

H(ω) =
∑
k∈Z

eik·ωhk, (3.11)

whose Fourier coefficients hk are given by (3.8) (and are, therefore, determined by the scaling
function φ). Iterating relation (3.10) gives

φ̂(ω) = φ̂(0)
∞∏
j=1

H
( ω

2j

)
, (3.12)

so that the scaling function is completely determined by the coefficients hk. If, in addition to
the L2-normalization of φ we have ˆ

R
φ(x)dx = 1,

then φ̂(0) = 1 and (3.12) becomes

φ̂(ω) =
∞∏
j=1

H
( ω

2j

)
. (3.13)

Let us now formulate the orthonormality condition on the basis in terms of the func-
tion H(ω). Consider the 2π-periodic function

A(ω) =
∑
n∈Z

|φ̂(ω + 2nπ)|2,

then the two-scale relation (3.10) implies that

A(2ω) =
∑
n

|φ̂(2ω + 2nπ)|2 =
∑
n

|H(ω + nπ)|2|φ̂(ω + nπ)|2.

Using the fact that H(ω) is 2π-periodic we may re-write this as

A(2ω) =
∑
m∈Z

|H(ω)|2|φ̂(ω + 2mπ)|2 +
∑
m∈Z

|H(ω + π)|2|φ̂(ω + (2m+ 1)π)|2.

Therefore, the function A(ω) satisfies an identity

A(2ω) = |H(ω)|2A(ω) + |H(ω + π)|2A(ω + π). (3.14)

On the other hand, orthonormality of φ(x− k) implies that for any k ∈ Z we have (∗ denotes
the complex conjugation)

δ0,k =

ˆ
R
φ(x)φ∗(x+ k)dx =

1

(2π)2

ˆ
eiωx−iω

′(x+k)φ̂(ω)φ̂∗(ω′)dxdωdω′ (3.15)

=
1

2π

ˆ
R
|φ̂(ω)|2e−iωkdω.

41



The integral in the right side is nothing but

ˆ 2π

0

A(ω)e−iωkdω,

hence (3.15) simply says that the Fourier coefficients of A(ω) are δ0,k. This means that

A(ω) =
∑
n∈N

|φ̂(ω + 2πn)|2 ≡ 1, (3.16)

and (3.14) implies the following condition on H(ω):

|H(ω)|2 + |H(ω + π)|2 = 1. (3.17)

We emphasize that relation (3.17) was obtained simply from the definition of an MRA, and
is, therefore, an algebraic restriction on the scaling function φ(x). It is useful to summarize
the above computation as follows.

Proposition 3.4 Let φ(x) ∈ L2(R), then the functions φ(x−k), k ∈ Z form an orthonormal
set if and only if

A(ω) =
∑
k∈Z

|φ̂(ω + 2πn)|2 ≡ 1. (3.18)

So far we have only dealt with the scaling function. Let us now turn to wavelets. Consider
the spaces Vj and Vj+1, and write

Vj+1 = Vj ⊕Wj,

where Wj is the orthogonal complement of Vj in Vj+1. The usual interpretation is that Wj

is the space of details that are lost when passing from the “fine” space Vj+1 to the “coarse”
space Vj. It is easy to see that Wj inherits the scaling property of Vj: if a function u(x) is in
Wj then the function u(2x) is in Wj+1.

As a consequence of completeness of Vj, any function u(x) can be decomposed as

u(x) =
∑
j∈Z

uj(x),

with each uj ∈ Wj. One can think of uj as the details of u on the scale 2−j.
Let us now pass from the scaling function φ(x) (the “father wavelet”) to the “mother

wavelet” ψ(x). This is done as follows. Given a function η ∈ W0, as it lies in V1 = V0 ⊕W0,
we can decompose η(x) as

η(x) = 2
∑
k

gkφ(2x− k), gk =
1

2

ˆ
η(x)φ(2x− k)dx, (3.19)

and in the Fourier domain:

η̂(ω) = 2
∑
k∈Z

ˆ
e−iωxgkφ̂(ω′)eiω

′(2x−k)dxdω
′

2π
=
∑
k∈Z

gk

ˆ
e−iωx/2φ̂(ω′)eiω

′(x−k)dxdω
′

2π

= φ̂
(ω

2

)∑
k

gke
−iωk/2 = φ̂

(ω
2

)
G
(ω

2

)
, (3.20)
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with a 2π-periodic function

G(ω) =
∑
k∈Z

gke
−ikω. (3.21)

Moreover, as η ∈ W0, and φ(x− k) ∈ V0 for all k ∈ Z, we have the orthogonality condition
ˆ

R
η(x)φ∗(x− k)dx = 0, for all k ∈ Z,

or, on the Fourier side: ˆ
R
η̂(ω)φ̂∗(ω)e−ikωdω = 0 for all k ∈ Z.

This can be re-written as∑
n∈Z

ˆ 2π

0

η̂(ω + 2πn)φ̂∗(ω + 2πn)e−ikωdω = 0 for all k ∈ Z,

meaning that ∑
n∈Z

η̂(ω + 2πn)φ̂∗(ω + 2πn) = 0 for a.e. ω ∈ [0, 2π]. (3.22)

Using relation (3.20) in (3.22), and replacing ω by 2ω gives

0 =
∑
n∈Z

G(ω + πn)φ̂(ω + πn)φ̂∗(2ω + 2πn). (3.23)

Now, we can use relation (3.10) to replace the last φ̂∗ above:

0 =
∑
n∈Z

G(ω + πn)H∗(ω + πn)|φ̂(ω + πn)|2, (3.24)

with H(ω) defined by (3.11). Splitting the above sum into even and odd n and using 2π-
periodicity of the functions G(ω) and H(ω), we obtain:

0 = G(ω)H∗(ω)
∑
n∈Z

|φ̂(ω + 2πn)|2 +G(ω + π)H∗(ω + π)
∑
n∈Z

|φ̂(ω + π + 2nπ)|2. (3.25)

Now, identity (3.16) implies that

G(ω)H∗(ω) +G(ω + π)H∗(ω + π) = 0. (3.26)

Let us recapitulate: starting with any function η ∈ W0 we have defined the coefficients gk
via the decomposition (3.19) and formed the function G(ω) (3.21) whose Fourier coefficients
are gk. Identity (3.26) holds for any function G(ω) obtained in this way.

Define now
λ(ω) = eiωG(ω)/H∗(ω + π),

then (3.26) becomes λ(ω) = λ(ω + π). That is, the function λ(ω) is π-periodic, and the
function C(ω) = λ(ω/2) is 2π-periodic. If we also set

G0(ω) = e−iωH∗(ω + π),
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then
G(ω) = e−iωλ(ω)H∗(ω + π) = G0(ω)C(2ω),

and, finally, we get, going back to (3.20):

η̂(ω) = φ̂
(ω

2

)
G
(ω

2

)
= C(ω)G0

(ω
2

)
φ̂
(ω

2

)
= C(ω)ψ̂ (ω) , (3.27)

with
ψ̂(ω) = G0

(ω
2

)
φ̂
(ω

2

)
. (3.28)

We have finally arrived to our destination: the function

ψ(x) =

ˆ
ψ̂(ω)eiωx

dω

2π
=

ˆ
G0

(ω
2

)
φ̂
(ω

2

)
eiωx

dω

2π
=

ˆ
e−iω/2H∗

(ω
2

+ π
)
φ̂
(ω

2

)
eiωx

dω

2π
(3.29)

is called the “mother wavelet”. We have also discovered that any function η ∈ W0 has a
representation

η(x) =

ˆ
R
eiωxη̂(ω)

dω

2π
=

ˆ
R
eiωxC(ω)ψ̂(ω)

dω

2π
=
∑
k∈Z

ck

ˆ
R
eiωx−ikωψ̂(ω)

dω

2π

=
∑
k∈N

ckψ(x− k). (3.30)

Here ck are the Fourier coefficients of the periodic function C(ω):

C(ω) =
∑
k∈N

cke
−ikω.

Representation (3.30) is an important result: it shows that the translations ψ(x − k) of the
mother wavelet span the space W0.

Let us now verify that ψ(x−k) form an orthonormal basis for W0 – we only need to check
that they form an orthonormal set, as we have already shown that they span W0. If we set

B(ω) =
∑
k∈Z

|ψ̂(ω + 2πn)|2, (3.31)

then according to Proposition 3.4 it suffices to verify that

B(ω) ≡ 1. (3.32)

As in our computation for the scaling function when we showed that A(ω) ≡ 1, (3.32) is
equivalent to the orthonormality of ψ(x− n). Note that

B(2ω) =
∑
k∈Z

|ψ̂(2ω + 2πn)|2 =
∑
k∈Z

|G0(ω + πn)|2|φ̂(ω + πn)|2

= |G0(ω)|2A(ω) + |G0(ω + π)|2A(ω + π) = |G0(ω)|2 + |G0(ω + π)|2

= |H(ω + π)|2 + |H(ω)|2 = 1,
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because of (3.17). We conclude that ψ(x − k) form an orthonormal basis for W0. Using the
scaling we deduce that ψj,k(x) = 2j/2ψ(2jx− k), with j fixed, form an orthonormal basis for
Wj. It follows, finally, that ψj,k, with j, k ∈ Z form an orthonormal basis for L2(R).

Next, we show that the mother wavelet has mean-zero (and hence, has to be oscillatory,
unlike the scaling function φ(x)) ˆ

R
ψ(x)dx = 0. (3.33)

This is seen as follows. As the mother wavelet lives in the space V0, it can be decomposed as

ψ(x) = 2
∑
k

gkφ(2x− k).

Then the Fourier transform
G(ω) =

∑
k∈Z

gke
ikω

has to satisfy (3.26), as we have shown above, for any function in W0:

G(ω)H∗(ω) +G(ω + π)H∗(ω + π) = 0. (3.34)

If the scaling function is normalized so that
ˆ

R
φ(x)dx = 1,

then H(0) = 1, which implies H(π) = 0 because of (3.17):

|H(ω)|2 + |H(ω + π)|2 = 1.

This, in turn, implies that G(0) = 0, and thus (3.33) holds.
An alternative point of view is to start with a periodic function H(ω) that satisfies (3.17)

|H(ω)|2 + |H(ω + π)|2 = 1, (3.35)

and a periodic function G(ω) that satisfies

G(ω)H∗(ω) +G(ω + π)H∗(ω + π) = 0. (3.36)

Given the function H(ω), we construct the scaling function φ(x) via (3.13):

φ̂(ω) =
∞∏
j=1

H
( ω

2j

)
, (3.37)

and the mother wavelet via
ψ(x) = 2

∑
k∈Z

gkφ(2x− k), (3.38)

where
G(ω) =

∑
k∈Z

gke
ikω.
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The Meyer wavelets

Consider the scaling function φ defined by its Fourier transform

φ̂(ω) =

 1, |ω| ≤ 2π/3,
cos
[
π
2
ν( 3

2π
|ω| − 1)

]
, 2π/3 ≤ |ω| ≤ 4π/3,

0, otherwise.
(3.39)

The function ν(ω) satisfies

ν(s) =

{
0, if s ≤ 0,
1, if s ≥ 1,

(3.40)

with the additional property
ν(s) + ν(1− s) = 1. (3.41)

The function φ̂(ω) is continuous and has the form of a bump centered at ω = 0 with φ̂(0) = 1
and 0 ≤ φ̂(ω) ≤ 1. The property (3.41) of the function ν implies that∑

k∈Z

|φ̂(ω + 2πk)|2 = 1. (3.42)

To see this, notice first that the sum in (3.42) is 2π-periodic in ω so that we may assume
without loss of generality that ω ∈ [−π, π] and, second, that since the support of φ̂ is the
interval [−4π/3, 4π/3], given any ω ∈ R, only two terms in this sum do not vanish. If
ω ∈ [−2π/3, 2π/3] then actually only one term is non-zero: φ̂(ω) = 1 and φ̂(ω + 2πk) = 0 for
all k 6= 0. On the other hand, say for 2π/3 ≤ ω ≤ π we have −4π/3 ≤ ω−2π ≤ −π < −2π/3,
and ∑

k∈Z

|φ̂(ω + 2πk)|2 = |φ̂(ω)|2 + |φ̂(ω − 2π)|2

= cos2(
π

2
ν(

3

2π
|ω| − 1)) + cos2(

π

2
ν(

3

2π
|ω − 2π| − 1))

= cos2(
π

2
ν(

3

2π
ω − 1)) + cos2(

π

2
ν(

3

2π
(2π − ω)− 1))

= cos2(
π

2
ν(

3

2π
ω − 1)) + cos2(

π

2
ν(2− 3

2π
ω) = 1,

by (3.41) with s = ( 3
2π
ω − 1). Identity (3.42) in turn implies that the functions φ(x − k),

k ∈ Z, form an orthonormal set. We then define V0 as the closed subspace spanned by this
set, and Vj as the closed subspace spanned by φjk(x) = 2j/2φ(2jx−k). In order to verify that
Vj ⊆ Vj+1 it suffices to check that φ ∈ V1. As we have seen in our general analysis of MRA,
this is equivalent to the existence a 2π-periodic function H(ω) so that

φ̂(ω) = H(
ω

2
)φ̂(

ω

2
). (3.43)

Let us verify that this relation holds with H(ω) defined by

H(ω) =
∑
k∈Z

φ̂(2ω + 4πk). (3.44)
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This function is 2π-periodic and

H(ω/2)φ̂(ω/2) =
∑
k∈Z

φ̂(ω + 4πk)φ̂(ω/2) = φ̂(ω)φ̂(ω/2) (3.45)

because φ̂(ω) is supported on [−4π/3, 4π/3]. Moreover, if φ̂(ω) = 0 but φ̂(ω/2) 6= 0, that is,
when 4π/3 ≤ |ω| < 8π/3, then φ̂(ω + 4πk) = 0 for all k ∈ Z so that H(ω/2) = 0. On the
other hand, if ω is in the support of φ̂ then φ̂(ω/2) = 1, and (3.45) implies that

H(ω/2)φ̂(ω/2) = φ̂(ω). (3.46)

It is easy to check that the spaces Vj defined in this way satisfy the other requirements of an
MRA. The mother wavelet is given by

ψ̂(ω) = e−iω/2H∗(
ω

2
+ π)φ̂(

ω

2
) = e−iω/2[φ̂(ω + 2π) + φ̂(ω − 2π)]φ̂(ω/2). (3.47)

Tensor product wavelets

The simplest way to extend the MRA and wavelets to 2D is to treat L2(R2) as a tensor
product L2(R)⊗ L2(R).

Theorem 3.5 We have L2(R2) = L2(R) ⊗ L2(R), that is, for any f(x1, x2) ∈ L2(R2) and
any ε > 0 there exists a function gε(x1, x2) of the form

gε(x1, x2) =
N∑
k=1

ckgk(x1)ek(x2),

with gk, ek ∈ L2(R) and ck ∈ R so that

‖f − gε‖L2(R2) < ε.

Proof. It suffices to verify the claim of the theorem for smooth test functions φ ∈ C∞c (R2).
Without loss of generality we may assume that the function φ(x1, x2) is supported in the
open square Q = (−π, π)× (−π, π). As φ vanishes near the boundary of Q, we may extend φ
periodically to a function Φ(x1, x2) that is 1-periodic in both variables. The function Φ(x1, x2)
can be approximated in L2(Q) by finite sums of its Fourier series

ΦN(x1, x2) =
N∑

k,m=−N

cnme
inx1eimx2 ,

that is, for N sufficiently large we have

‖Φ− ΦN‖L2(Q) < ε.

Then setting gk(x1) = χ[−π,π](x1)eikx1 and ek(x2) = χ[−π,π](x2)eikx2 we obtain that

‖φ−
N∑

k,m=−N

cnmgn(x1)em(x2)‖L2(R2) < ε,
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which is the estimate we need.
Now, in order to construct an MRA of L2(R2) we start with an MRA of L2(R):

. . . ⊆ Vj−1 ⊆ Vj ⊆ Vj+1 ⊆ . . .

Consider the tensor products

V(j) = Vj ⊗ Vj = closure{span[f1(x1)f2(x2)] : f1, f2 ∈ Vj}.

Since Vj−1 ⊆ Vj, we have V(j−1) ⊆ V(j). The scaling relation transfers to V(j) also: if f(x) is
in V(j), f(2x) is in V(j+1). Then we define the two-dimensional scaling function as

ψ(0,0)(x1, x2) = φ(x1)φ(x2), (3.48)

and the three mother wavelets by

ψ(0,1)(x1, x2) = φ(x1)ψ(x2), ψ(1,0)(x1, x2) = ψ(x1)φ(x2), (3.49)

ψ(1,1)(x1, x2) = ψ(x1)ψ(x2).

In order to go to other scales, given any scale index j ∈ Z and any integer vector k = (k1, k2),
with k1,2 ∈ Z, we set

ψαj,k(x) = 2jψα(2jx− k), (3.50)

where α is one of the multi-indices (0, 0), (0, 1), (1, 0), (1, 1). Then the 1D MRA properties

imply immediately that at any fixed scale j the functions ψ
(0,0)
j,k , k ∈ Z2 form an orthonormal

basis for V(j).
Furthermore, as in 1D we may define W(j) as the orthogonal complement of V(j) in V(j+1).

The basis of this space is
{ψ(0,1)

j,k , ψ
(1,0)
j,k , ψ

(1,1)
j,k : k ∈ Z2}. (3.51)

Wavelet decomposition of smooth functions

Theorem 3.6 Suppose that the mother wavelet ψ(x) is in Cr(R), with some integer r > 0,
and, in addition, ˆ

R
(1 + |x|r)|ψ(x)|dx < +∞,

and |ψ(x)| ≤ C(1 + |x|)r with some C > 0. Then all moments of ψ up to order r vanish:
ˆ

R
xkψ(x)dx = 0, k = 0, 1, . . . , r. (3.52)

The proof of this theorem can be found in Daubechies book “Ten Lectures on Wavelets”
(Theorem 5.5.1). Here we just explain the idea why this is true. Let us assume for convenience
that ψ(x) is compactly supported. Choose j very large and positive and j′ very negative so
that ψjk look very concentrated and ψj′,k′ look very spread out. The support of ψjk is tiny
and ψj′k′ is smooth there. Therefore, we may replace ψj′k′ by its Taylor series expanded to as
high order as allowed by the smoothness of ψ. The orthogonality of ψjk and ψj′k shows that

ˆ
ψjk(x)Pm(x)dx = 0, (3.53)
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for some polynomial of order m, which in turn implies that

ˆ
ψ(x)Qm(x)dx = 0, (3.54)

with some polynomial Qm(x) of the same order. Varying the location, that is, changing k
and also j we get a sufficiently large collection of polynomials Qm(x) for which (3.54) holds,
to conclude that (3.52) holds.

Corollary 3.7 A mother wavelet that decays at an exponential rate |ψ(x)| ≤ Ce−α|x| with
some α > 0, can not be C∞.

Proof. If ψ(x) has an exponential decay then the Fourier transform

ψ̂(ω) =

ˆ
ψ(x)e−iωxdx

is analytic in a strip D = {|Imω| ≤ α/2}. On the other hand, if ψ is a C∞ mother wavelet
then all moments vanish: ˆ

R
xkψ(x)dx = 0, k = 0, 1, 2, . . .

This, in turn, implies that
dk

dωk
ψ̂|ω=0 = 0.

Together with the analyticity of ψ̂(ω) in the strip D that includes the point ω = 0, this implies
that ψ ≡ 0.

Corollary 3.8 A compactly supported mother wavelet can not be C∞.

Let us now investigate the wavelet coefficients of a smooth function. Let us assume that the
mother wavelet ψ(x) is Cr regular, and suppose that u(x) is a Cm-function with 0 ≤ m ≤ r+1.
Intuitively, if u(x) is smooth, it is nearly constant on the support of ψjk(x) for j large, which
makes the wavelet coefficients

cjk =

ˆ
R
u(x)ψjk(x)dx

small simply because ˆ
R
ψjk(x)dx = 0.

In order to make this statement quantitative, let us write cjk as

cjk =

ˆ
R
u(x)ψjk(x)dx = 2−j/2

ˆ
ψ(y)u(x0 + 2−jy)dy, (3.55)

with x0 = k/2j. Consider Taylor’s expansion around x0:

u(x0 + t) =
m−1∑
n=0

u(n)(x0)

n!
tn +

ˆ t

0

(t− s)m−1

(m− 1)!
u(m)(x0 + s)ds = Pm−1(t) +Rm−1(t).
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The residual Rm−1(t) can be bounded as

|Rm−1(t)| ≤ ‖u‖C
m

m!
|t|m.

Moreover, as Pm−1(t) is a polynomial in t, the corresponding integral in the definition (3.55)
of cjk is a sum of moments of ψ of order at most m − 1 ≤ r, hence the integral vanishes, so
that

cjk = 2−j/2
ˆ
ψ(y)Rm−1(2−jy)dy, (3.56)

and thus the Fourier coefficients of a Cm smooth function satisfy

|cjk| ≤ 2−j/2
ˆ
ψ(y)|Rm−1(2−jy)|dy ≤ 2−(m+1/2)j‖u‖Cm

m!
Mm, (3.57)

where

Mm =

ˆ
R
|y|mψ(y)dy

is the m-th absolute moment of ψ.

Wavelet coefficients of functions with jump discontinuities

In order to understand how the wavelet coefficients “react” to a jump, consider the Heaviside
function u(x) = H(x − xe), so that u(x) = 1 for x ≥ xe, and u(x) = 0 for x < xe. We
also assume that the mother wavelet is compactly supported in an interval [a, b], and denote
xjk = k/2j and hj = 1/2j. Then the wavelet coefficients are

cjk =

ˆ
R
ψjk(x)u(x)dx = 2j/2

ˆ
ψ(2jx− k)u(x)dx = 2−j/2

ˆ
ψ(x− k)u(

x

2j
)dx

= 2−j/2
ˆ b

a

ψ(x)u(
k

2j
+
x

2j
)dx =

√
hj

ˆ b

a

ψ(y)u(xjk + hjy)dy

=
√
hj

ˆ b

a

ψ(y)H(xjk − xe + hjy)dy.

Therefore, if
xjk − xe + hjy 6= 0 for all y ∈ [a, b],

then cjk = 0 since then H(xjk− xe + hjy) is constant on [a, b], and the integral of ψ vanishes.
Otherwise we have the estimate

|cjk| ≤
√
hj‖ψ‖L1 . (3.58)

Let us see for how many k (with j fixed) we have

xjk − xe + hjy = 0 for some y ∈ [a, b].

This condition is equivalent to

a ≤ xe − xjk
hj

≤ b,
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or
a− 2jxe ≤ −k ≤ b− 2jxe.

Therefore, the number of such k is at most N = [b− a] + 1, which does not depend on j.
If a function u(x) has a jump at a point xe and is smooth away from it, then at each

level j it generates at most N coefficients that decay as in (3.58) and the rest decay as in the
estimate (3.57) for the wavelet coefficients of a smooth function.

Besov spaces and wavelets

As we have seen in the Osher-Rudin functional theory, the space of BV functions is natural in
imaging. However, it does not fit perfectly in the wavelet theory, as it can be shown that the
space BV can not be characterized by the size of the wavelet coefficients (see Meyer’s notes).

On the other hand, wavelet decompositions are particularly suitable for Besov spaces
which are defined as follows. Take u(x) ∈ Lp(R) and for any h > 0 define the p-modulus of
continuity of u as

ωp(u, h) = sup
|a|≤h
‖u(x+ a)− u(x)‖Lp(R). (3.59)

A function u is in the Besov space Bα
p,q (with 0 < α ≤ 1) if

|‖u‖| =
(ˆ ∞

0

ωp(u, h)q

hαq
dh

h

)1/q

< +∞. (3.60)

When q = ∞, the integral over h above is replaced by the essential supremum over h, as
usual. The norm in this space is given by

‖u‖Bαq (Lp) = ‖u‖Lp + |‖u‖|, (3.61)

and the homogeneous Besov space Ḃα
p,q consists of all functions with a finite |‖u‖|.

When α > 1 then the definition of the Besov space Bα
p,q is similar except we decompose

α = n+ s with n ∈ N and s ∈ (0, 1] and set

|‖u‖| =
(ˆ ∞

0

ωp(u
(n), h)q

hsq
dh

h

)1/q

< +∞, (3.62)

and
‖u‖Bαq (Lp) = ‖u‖Wn,p + |‖u‖|. (3.63)

Here W n,,p is the Sobolev space of functions with n derivatievs in Lp.
Let us see what happens in the integral in the definition of |‖u‖| as h ↓ 0. Let us assume

that ωp(u, h) ∼ O(hβ), then for the integral to converge we need

βq − αq − 1 > −1,

that is, β > α. For this reason α is called the regularity index. The space Bα
∞,∞ consists of

functions for which

sup
h>0

ω∞(u, h)

hα
< +∞,
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in other words:

sup
x,y∈R

|u(x)− u(y)|
|x− y|α

< +∞.

This means that Bα
∞,∞ is simply the Hölder space C0,α.

The basic idea behind the above definition is that Besov spaces capture the local irregu-
larities of the function u(x) via the continuity modulus ωp(u, h), with the regularity index α
capturing the nature of an irregularity, and the indices p and q giving various ways of mea-
surement. The wavelet coefficients are also good at capturing the local behavior at particular
scales, and we will now connect these two measures of local oscillations.

We may also define the continuity modulus ωp(u, j) only for the discrete scales:

ωp(u, j) = sup
|a|≤2−j

‖u(x+ a)− u(x)‖Lp(R). (3.64)

Since the function ωp(u, h) is monotonically increasing in h, the Besov condition (3.60) may
be written as (note that when we set h = 2−j and discretize the integral as summation over j,
the term dh/h goes into the Jacobian: dh ∼ 2−j so dh/h ∼ 1):∑

j∈Z

ωp(u, j)
q2αqj < +∞. (3.65)

We also have ωp(u, j) ≤ 2‖u‖Lp so that∑
j<0

ωp(u, j)
q2αqj ≤ 2q

2αq − 1
‖u‖qLp . (3.66)

Therefore, the Besov norm is equivalent to

‖u‖Lp +

(∑
j≥0

2αqjωp(u, j)
q

)1/q

. (3.67)

This dyadic definition of the Besov spaces leads to a natural connection to wavelets.
Consider an MRA

. . . ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ . . . ,

and let Ej and Dj denote the orthogonal projections on the spaces Vj and Wj, respectively.
Given a function u(x) let uj = Dju, and decompose it as

uj(x) =
∑
k∈Z

djkψjk(x). (3.68)

One may show that the Besov norm is actually equivalent to

‖E0u‖Lp +

(∑
j≥0

2αqj‖uj‖qLp

)1/q

, (3.69)

one point being that in (3.67) the Lp-norm of the function u is dominated by the sum of the
Lp-norm of the “coarse grained” projection E0u and the second term in (3.67). However, the
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key observation here is that, morally, the continuity modulus ωp(u, j) is equivalent to some
information about the projections uj at the scale h = 2−j.

We will not give the full proof of equivalence here (see Chapter 9 of the book “A Math-
ematical Introduction to Wavelets” by P. Wojtaszczyk) but prove the following Jackson’s
inequality that ultimately leads to the equivalence. We assume that

|φ(x)| ≤ C

1 + |x|m
, (3.70)

and

|φ′(x)| ≤ C

1 + |x|m
, (3.71)

with some m > 3.

Proposition 3.9 There exists a constant C > 0 so that for any u with ωp(u, j) < +∞ we
have

‖u− Eju‖p ≤ Cωp(u, j). (3.72)

Proof. First, a simple scaling argument shows that it suffices to prove (3.72) only for j = 0,
and

E0u(x) =
∑
k∈Z

ˆ ∞
−∞

u(t)φ(t− k)φ(x− k)dt,

hence

u(x)− E0u(x) =

ˆ ∞
−∞

[u(x)− u(t)]Φ(t, x)dt,

with
Φ(t, x) =

∑
k∈Z

φ(t− k)φ(x− k).

We used here the fact thatˆ ∞
−∞

Φ(t, x)dt =
∑
k∈Z

ˆ ∞
−∞

φ(t− k)φ(x− k)dt =
∑
k∈Z

φ(x− k) ≡ 1.

A consequence of (3.70) is that

|Φ(t, x)| ≤ C
∑
k∈Z

1

1 + |t− k|m
· 1

1 + |x− k|m
≤ C

ˆ ∞
−∞

1

1 + |t− z|m
· 1

1 + |x− z|m
dz

= C

ˆ ∞
−∞

1

1 + |z|m
· 1

1 + |x− t− z|m
dz ≤ C

1 + |t− x|m−1
.

We get from this:

‖u− E0u‖pp =

ˆ ∞
−∞

∣∣∣∣ˆ ∞
−∞

[u(x)− u(t)]Φ(t, x)dt

∣∣∣∣p dx ≤ C

ˆ ∞
−∞

(ˆ ∞
−∞

|u(x)− u(t)|dt
1 + |t− x|m−1

)p
dx

≤ C

ˆ ∞
−∞

(ˆ ∞
−∞

|u(x)− u(x+ y)|dy
(1 + |y|)m−1

)p
dx.
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We now write m− 1 = a+ b with a, b ≥ 0 and ap > p+ 1, and bq > 1, where 1/p+ 1/q = 1,
and us the Hölder inequality in the inner integral:

‖u− E0u‖pp ≤ C

ˆ ∞
−∞

(ˆ ∞
−∞

|u(x)− u(x+ y)|pdy
(1 + |y|)ap

)(ˆ ∞
−∞

dy

(1 + |y|)bq

)p/q
dx

≤ C

ˆ ∞
−∞

1

(1 + |y|)ap

ˆ ∞
−∞
|u(x)− u(x+ y)|pdxdy = C

ˆ ∞
−∞

1

(1 + |y|)ap
ωp(f, |y|)pdy.

It is easy to see that ˆ 1

−1

1

(1 + |y|)ap
ωp(u, |y|)pdy ≤ Cωp(y, 1)p,

while for the other integral we haveˆ
|y|≥1

1

(1 + |y|)ap
ωp(u, |y|)pdy = 2

ˆ ∞
1

1

(1 + |y|)ap
ωp(u, |y|)pdy.

However, there is a simple inequality for the modulus of continuity:

ωp(u;mδ) ≤ mωp(u; δ),

which we can use in the integral to getˆ
|y|≥1

1

(1 + |y|)ap
ωp(u, |y|)pdy ≤ C

ˆ ∞
1

yp

(1 + |y|)ap
ωp(u, 1)pdy ≤ Cωp(y; 1)p,

and we are done!
It turns out that the Lp-norms ‖uj‖Lp can be characterized by the wavelet coefficients.

Theorem 3.10 Assume that the mother wavelet ψ(x) is continuous and |ψ(x)| ≤ C/(1 +
|x|1+δ), for some δ > 0. There exist two constants C1,2 that depend only on the mother
wavelet ψ so that for all j we have (in dimension n = 1)

C1‖uj‖Lp(R) ≤ 2j(1/2−1/p)

(∑
k∈Z

|djk|p
)1/p

≤ C2‖uj‖Lp(R). (3.73)

Proof. Since this theorem is crucial for understanding the connection between the Besov
spaces and the wavelets we will give a detailed proof. First, we claim that, as in the preceding
proof, it suffices to consider j = 0. Indeed, assume that (3.73) is proved for j = 0. For any j
we have

uj(x) =
∑
k∈Z

djk2
j/2ψ(2jx− k),

hence the function
vj(x) = 2−j/2uj(2

−jx) =
∑
k∈Z

djkψ(x− k)

lies in the space W0. Applying the claim for j = 0 to the function vj (whose W0 wavelet
coefficients are djk) gives

C1‖vj‖Lp ≤

(∑
k∈Z

|djk|p
)1/p

≤ C2‖vj‖Lp . (3.74)
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However,

‖vj‖pLp = 2−jp/2
ˆ
|uj(2−jx)|pdx = 2(1−p/2)j

ˆ
|uj(x)|pdp,

so that ‖vj‖Lp = 2j/p−j/2‖uj‖Lp , and (3.74) is nothing but:

C1‖uj‖Lp ≤ 2j/2−j/p

(∑
k∈Z

|djk|p
)1/p

≤ C2‖uj‖Lp , (3.75)

which is the claim of our theorem for a general j. Hence, we only need to prove the result for
j = 0. Consider the wavelet coefficients

d0,k =

ˆ
R
u(x)ψ(x− k)dx

and extend them in any way to a continuous function d(y) defined for all y ∈ R. Then we
can write

u0(x) =
∑
k∈Z

d0,kψ(x− k) =

ˆ
R
d(y)ψ(x− y)dµy, (3.76)

with
dµy =

∑
k∈Z

δ(y − k).

Hence, for any g ∈ Lq(R) with 1/p+ 1/q = 1 we have
ˆ

R
u0(x)g(x)dx =

ˆ
R×R

ψ(x− y)d(y)g(x)dxdµy, (3.77)

so that ∣∣∣∣ˆ
R
u0(x)g(x)dx

∣∣∣∣ ≤ ˆ
R×R
|ψ(x− y)||d(y)||g(x)|dxdµy (3.78)

≤
(ˆ

R×R
|d(y)|p|ψ(x− y)|dxdµy

)1/p(ˆ
R×R
|g(x)|q|ψ(x− y)|dxdµy

)1/q

.

Next, note that ˆ
R
|ψ(x− y)|dx = ‖ψ‖1,

and

r(x) =

ˆ
R
|ψ(x− y)|dµy =

∑
k∈Z

|ψ(x− k)|

is a bounded periodic continuous function since ψ(x) is continuous and |ψ(x)| ≤ C/(1+|x|1+δ).
It follows that∣∣∣∣ˆ

R
u0(x)g(x)dx

∣∣∣∣ ≤ C

(ˆ
R×R
|d(y)|pdµy

)1/p(ˆ
R×R
|g(x)|qdx

)1/q

= C

(∑
k∈Z

|dk|p
)1/p

‖g‖Lq .

(3.79)
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Therefore, recalling the duality between Lp and Lq with 1/p+ 1/q = 1, we conclude that

‖u0‖Lp ≤ C

(∑
k∈Z

|dk|p
)1/p

. (3.80)

The reverse inequality is proved essentially identically, starting with

d0,k =

ˆ
R
u0(x)ψ(x− k)dx,

and proceeding as above but this time ending up with(∑
k∈Z

|dk|p
)1/p

≤ C‖u0‖Lp . (3.81)

3.2 Wavelet shrinkage denoising

The connection between the Besov spaces that explicitly measure the local irregularity of a
function and the wavelet coefficients gives a precise connection between the regularity of the
function and the size of the wavelet coefficients – functions with small wavelet coefficients
for large j are regular. Therefore, suppressing high wavelet coefficients for large j leads to a
regularization. The result of Donoho and Johnstone is that such regularization is, in some
sense, an optimal way to denoise an image.

Shrinkage of scalars

Before we look at the wavelet shrinkage let us understand some basics of the shrinkage (also
known as soft thresholding) for scalars. Given a threshold λ > 0 we define

Sλ(t) =

 t− λ for t > λ,
0, for −λ ≤ t ≤ λ,
t+ λ, for t < −λ.

(3.82)

Soft thresholding can be viewed from the statistical and variational point of views. Let
us first discuss the statistical approach. Assume that the measured signal a0, which for now
we take to be a scalar, consists of a true signal a and noise n = σw:

a0 = a+ σw. (3.83)

Here σ > 0 measures the amplitude of the noise, and we assume that −1 ≤ w ≤ 1 so that
the true signal lies in the interval (a0 − σ, a0 + σ). An estimator is a (deterministic) map S
from a0 to an estimate â = S(a0). We say that the estimator â = S(a) satisfies the uniform
shrinkage condition if

|S(a0)| ≤ |a0 − σw| for all a0 and w ∈ [−1, 1]. (3.84)

Obviously, the shrinkage operator Sλ(a) satisfies this condition for all λ ≥ σ. The next
theorem shows that it is “the best” among all estimators that satisfy the uniform shrinkage
condition.
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Theorem 3.11 Among all estimators â = S(a) that satisfy the uniform shrinkage condition
the shrinkage operator Sσ(a) with the threshold σ achieves the minimal shrinkage performance:

|S(a0)| ≤ |Sσ(a0)| for all a0 ∈ R, (3.85)

and the minimal worst estimation error: for any a ∈ R we have

max
w∈[−1,1]

|S(a+ σw)− a| ≥ max
w∈[−1,1]

|Sσ(a+ σw)− a|. (3.86)

Proof. We may assume without loss of generality that a ≥ 0. Note that a0 can be written as

a0 = Sσ(a0) + (a0 − Sσ(a0)) = Sσ(a0) + σw0,

with w0 = (a0 − Sσ(a0))/σ. We have −1 ≤ w0 ≤ 1 since

|Sσ(a0)− a0| = min(|a0|, σ) ≤ σ.

Therefore, for any estimator S that satisfies the uniform shrinkage condition we have

|S(a0)| = |S(Sσ(a0) + σw0)| ≤ |Sσ(a0)|,

which is the minimal shrinkage condition (3.85).
It is easy to see that the worst estimation error for the soft thresholding operator Sσ(a)

occurs when the measurement is

aw0 (a) = a−min(a, σ) = (a− σ)+.

In that case we have
Sσ(aw0 ) = (a− 2σ)+,

and thus, for any a ≥ 0:

max
w∈[−1,1]

|Sσ(a+ σw)− a| = |Sσ(aw0 )− a| = min(a, 2σ).

On the other hand, for any estimator that satisfies the uniform shrinkage condition we have,
using (3.85):

max
w∈[−1,1]

|S(a+ σw)− a| ≥ a− |S(aw0 )| ≥ a− |Sσ(aw0 )| = |a− Sσ(aw0 )|

= max
w∈[−1,1]

|Sσ(a+ σw)− a|. (3.87)

This proves (3.86).
The variational approach to shrinkage reformulates the shrinkage operator in terms of a

minimization procedure. Given a measurement a0 consider the functional

ep(t; a0) =
λ

2
(a0 − t)2 + µ|t|p. (3.88)

When p = 1 this functional is philosophically related to the one that appears in the Osher-
Rudin algorithm. We define â = S(a0) to be the minimizer of ep(t; a0). In (3.88), λ is
the parameter responsible for keeping â close to a0 while µ is ultimately responsible for the
regularity of the minimizer when we consider non-scalar a.
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Theorem 3.12 The minimizer â = S(a0) of (3.88) exists and is unique. Moreover, a0 ·â ≥ 0.

Proof. Observe that if a0t < 0 then

ep(−t; a0) < ep(t; a0),

meaning that such t can not be a minimizer of ep(t; a0). We may thus assume that a0 > 0
and t ≥ 0 (the case a0 = 0 is trivial – then t = 0 is the unique minimizer). Then we have

ep(t; a0) =
λ

2
(a0 − t)2 + µtp,

so that
e′p(t; a0) = λ(t− a0) + µptp−1,

and
e′′p(t; a0) = λ+ µp(p− 1)tp−2 > 0. (3.89)

Strict convexity means that the minimizer over t ≥ 0 is unique, and its existence is obvious
since ep(t; a0)→ +∞ as t→ +∞.

Expression (3.89) shows that the quadratic term in the definition of ep(t; a0) is very im-
portant – it guarantees the strict convexity of ep(t; a0) even for p = 1. The case p = 1 is,
actually particularly interesting. Then either the minimizer â = 0 or it satisfies

e′p(â; a0) = 0, (3.90)

If a0 > 0 then Theorem 3.12 implies that â ≥ 0, and any non-negative solution of (3.90) (if it
exists) satisfies

λ(t− a0) + µ = 0, t ≥ 0, (3.91)

that is,

t = a0 −
µ

λ
.

We conclude that if a0 < σ = µ/λ then the minimizer is â = 0 while

t = a0 − σ, if a0 ≥ σ. (3.92)

The analysis for a0 < 0 is identical. Therefore, we obtain the following result: the minimizer
of

e1(t; a0) =
λ

2
(a0 − t)2 + µ|t| (3.93)

is given by the shrinkage operator â = Sσ(a0) with σ = µ/λ.
When p = 2, the minimizer satisfies

λ(t− a0) + 2µt = 0, (3.94)

that is, the minimizer is a fixed multiple of a0:

â =
λ

λ+ 2µ
a0. (3.95)
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For 1 < p < 2 and a0 ≥ 0, the minimizer is either â = 0 or it obeys

λ(t− a0) + µptp−1 = 0, (3.96)

which can not be solved explicitly. On the other hand, an “almost optimizer” is given by the
hard truncation: set

σ =

(
2µ

λ

)1/(2−p)

,

and

ã =

{
0, if |a0| ≤ σ,
a0, if |a0| > σ.

(3.97)

Then ã is “almost optimal” in the following sense: let us assume again that a0 ≥ 0, then for
0 ≤ t ≤ a0/2 we have

ep(t; a0) ≥ λ

2
(a0 −

a0

2
)2 =

λ

8
a2

0 =
1

4
ep(0; a0),

and for any t ≥ a0/2:

ep(t; a0) ≥ µ
(a0

2

)p
=

1

2p
ep(a0; a0),

meaning that, as 1 < p < 2:

ep(t; a0) ≥ 1

4
min(ep(0; a0), ep(a0; a0)). (3.98)

On the other hand, for ã we have the following: if 0 ≤ a0 ≤ σ then

ep(ã; a0) = ep(0; a0) =
λ

2
a2

0 ≤ µ(a0)p = ep(a0; a0), (3.99)

while if a0 > σ we have
ep(ã; a0) = µ(a0)p ≤ ep(0; a0). (3.100)

Therefore, (3.98) says that for all t ∈ R we have, whether |a0| ≥ σ or not:

ep(t; a0) ≥ 1

4
ep(ã; a0), (3.101)

thus ã given by hard thresholding (3.97) is, indeed, an “almost minimizer” of ep(t; a0).

Denoising by wavelet shrinking

The wavelet denoising scheme of Donoho and Johnstone is formulated simply as follows:

û∗ = W−1SλW (u0). (3.102)

That is, each of the wavelet coefficients djk of the measured signal

u0(x) =
∑
j,k∈Z

djkψjk(x),
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is soft-thresholded by the operator Sλ:

d̃jk = Sλ(djk),

and then the “cleaned-up” signal is reconstructed from the resulting wavelet coefficients:

û∗(x) =
∑
j,k

d̃jkψjk(x). (3.103)

Note that the mapping u0 → û∗ is non-linear because the shrinkage operator is not linear.
Let us assume that the signal is given by

u0(x) = u(x) + n(x), (3.104)

where u(x) is the true signal that we need to recover, and n(x) is noise with variance σ2. We
will consider for simplicity the one-dimensional case and assume that the signal u ∈ L2(R) is
compactly supported on an interval [A,B].

We will also assume that both the scaling function and the mother wavelet are Cr-smooth
and compactly supported on an interval [a, b]. It will be convenient to define the domain Ij,
for each level j ≥ 0, of the indices for which the level j wavelets do not vanish on [A,B]:

Ij =
{

(j, k) : k ∈ Z,
ˆ B

A

|ψjk(x)|dx > 0
}
.

Similarly, we set

I−1 =
{

(−1, k) : k ∈ Z,
ˆ B

A

|φ(x− k)|dx > 0
}
.

Each of Ij, j ≥ −1 is a finite set since both the scaling function φ and the mother wavelet ψ
are compactly supported. We will also use the notation

I(J) = IJ−1 ∪ IJ−2 ∪ . . . ∪ I0 ∪ I−1.

We will use the wavelet decomposition in the form slightly different from what we were
using so far, writing

u(x) =
∑

j≥−1,k∈Z

djk(u)ψj,k, (3.105)

with the convention that ψ−1,k = φ(x− k) and

d−1,k(u) =

ˆ
u(x)φ(x− k)dx.

At each scale J ≥ 0 we define a subspace FJ of L2(R) as the set of all functions u ∈ L2(R)
whose wavelet coefficients djk vanish unless (j, k) ∈ Ij, and −1 ≤ j < J . The subspaces FJ
form an increasing sequence and their union is F (A,B), the set of all functions u ∈ L2(R)
whose wavelet coefficients djk vanish unless (j, k) ∈ Ij, for some j ≥ −1. Clearly, F (A,B)
contains the set F̃ of all functions u ∈ L2(R) supported inside the interval [A,B].
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The spaces FJ(A,B) and F (A,B) satisfy the following solid and orthosymmetric condition
introduced by Donoho: if djk are the wavelet coefficients of a function

u(x) =
∑

j≥−1,k∈Z

djk(u)ψj,k

that lies in FJ or F , and the sequence sjk satisfies |sjk| ≤ 1 for all j ≥ −1, k ∈ Z, then the
function

u(x) =
∑

j≥−1,k∈Z

sjkdjk(u)ψj,k

also lies, respectively, in FJ or F . This property makes the spaces FJ and F much more
amenable to analysis than the space F̃ , and this is what we will use. The following theorem
counts the number of indices in I(J).

Theorem 3.13 Assume that the functions φ and ψ have the same support [a, b] and l = b−a.
Define also L = B − A, M = #I(J) and N = 2J , then

NL+ (l − 1)(logN + 1) ≤M < NL+ (l + 1)(logN + 1). (3.106)

Proof. It follows from the definition of Ij that (j, k) ∈ Ij for j ≥ 0 if and only if the sets
a < 2jx − k < b and A < x < B have a non-empty intersection, that is, the intervals (a, b)
and (2jA− k, 2jB − k) overlap. It is straightforward to compute then that

2jL+ l − 1 ≤ #Ij < 2jL+ l + 1, j ≥ 0.

On the other hand, I−1 obeys the same estimate as I0 since the support of φ is the same as
that of ψ, hence

L+ (l − 1) +
J−1∑
j=0

(2jL+ l − 1) ≤M < L+ (l − 1) +
J−1∑
j=0

(2jL+ l + 1),

that is,
2JL+ (l − 1)(J + 1) ≤M < 2JL+ (l + 1)(J + 1),

which is exactly what we need.
We will need the following estimate for the growth of a sequence of Gaussian independent

identically distributed random variables.

Theorem 3.14 Let zk be a sequence of i.i.id Gaussian random variables with mean zero and
variance σ2, then

pM = Prob

(
max

1≤k≤M
|zk| ≤ σ

√
2 logM

)
→ 1, as M → +∞. (3.107)

Let us now go back to the problem of denoising functions from FJ . Taking the wavelet
transform of (3.104) we get

d0
jk = djk + zjk, j ≥ −1, k ∈ Z. (3.108)
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Here, d0
jk are the wavelet coefficients of the recorded signal u0(x), djk are those of the original

signal u(x) and zjk are the wavelet coefficients of the noise n(x). The problem is to recover
djk from the noisy measurement d0

jk.
In order to address this problem we need to adopt a model for the noise n(x). We will

assume that this is a Gaussian white noise with variance σ2. This means that n(x) is a
random distribution so that for each deterministic test function φ ∈ C∞c the value 〈n, φ〉 is
a Gaussian random variable of mean zero and with variance σ2‖φ‖2

L2 . More generally, for
any pair of deterministic test functions φ, ψ ∈ C∞c the random variables 〈n, φ〉 are jointly
Gaussian random variables with mean zero and covariance

E[〈n, φ〉〈n, ψ〉] = σ2

ˆ
ψ(x)φ(x)dx.

Formally, this fact may be expressed as follows: E(n(x)) = 0 and

E(n(x)n(y)) = δ(x− y).

The wavelet coefficients for the Gaussian white noise are well defined if the wavelets ψjk(x)
are rapidly decaying or compactly supported:

zjk = 〈n, ψjk〉,

and are mean zero Gaussian random variables with the covariance

E[zjkzj′k′ ] = E[〈n, ψjk〉〈n, ψj′k′〉] = σ2〈ψjk, ψj′k′〉 = σ2δjj′δkk′ . (3.109)

Therefore, the wavelet coefficients zjk are independent identically distributed Gaussian ran-
dom variables with mean zero and variance σ2.

Theorem 3.14 indicates that a reasonable cut-off in the soft thresholding of wavelet coeffi-
cients is λ = σ

√
2 logM (recall that M is the number of elements in I(J)). Note that according

to Theorem 3.13 we have
logM ≈ logN + logL,

so that the threshold is
λ ≈ σ

√
2(logN + logL). (3.110)

In particular, if the support of the function u(x) is not too large: L� N , then λ ≈ σ
√

2 logN .
On the other hand, if N ∼ L then we need to take into account both terms in expression
(3.110).

We will define the shrinkage as follows. First, for any index (j, k) 6∈ I(J) we set

d̂∗jk = 0. (3.111)

For the wavelet coefficients with (j, k) ∈ I(J) we set

d̂∗jk = Sλ(d
0
jk). (3.112)

Then the denoised image is the inverse wavelet transform of d̂∗jk:

û∗ = W−1(d̂∗jk, j ≥ 1, k ∈ Z). (3.113)
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Theorem 3.15 Given any u ∈ FJ(A,B), with probability at least pM given by (3.107) the
estimator û∗ defined by (3.113) has a smaller norm in the Besov space Bα

p,p(R) than the
original image u, that is,

Prob
(
‖û∗‖Bαp,p(R) ≤ ‖u‖Bαp,p(R)

)
≥ pM . (3.114)

Here the Besov norm is defined in terms of the wavelet coefficients:

‖u‖Bαp,p(R) =

(∑
k∈Z

|d−1,k|p
)1/p

+

( ∑
j≥0,k∈Z

2jp(α+1/2−1/p)|djk|p
)1/p

.

An immediate corollary of Theorems 3.14 and 3.15 is that

Prob
(
‖û∗‖Bαp,p(R) ≥ ‖u‖Bαp,p(R)

)
→ 0 as M → +∞. (3.115)

Proof. Let u ∈ Bα
p,p(R) ∩ FJ(A,B). First, we have d̂∗jk = 0 for all (j, k) 6∈ I(J). Second, if

|zjk| ≤ λ we have

|d̂∗jk| ≤ |djk|, (j, k) ∈ I(J).

On the other hand, we have |zjk| ≤ λ, with probability pM , so the conclusion of the theorem
follows.

Let us now discuss the optimality of wavelet shrinkage among all estimators which act
component-wise on the wavelet coefficients, that is djk(û) depend only on d0

jk, all j ≥ −1,

k ∈ Z. We will also assume that d̂jk = 0 for (j, k) 6∈ I(J). The mean squared estimation error
is

eJ(u; û) = E‖û− u‖2
L2 ,

and its worst estimation error is

eJ(û) = sup
u∈FJ (A,B)

eJ(u; û).

Finally, the best performance e∗J is the infimum of eJ(û) over all estimators û. The shrinkage
estimator û∗ is nearly optimal in the following sense (this is an important result of Donoho
and Johnstone):

eJ(u; û∗) ≤ (2 logM + 1)(σ2 + 2.22e∗J), for any u ∈ FJ(A,B), (3.116)

where M = #I(J) and σ2 is the noise variance.

The variational approach to wavelet shrinkage

Wavelet shrinkage can also be formulated as a variational problem, similar to scalar shrinkage.
Given an observation u0, consider the following cost functional:

E(u;u0) = ‖u‖pBαp,p +
λ

2

ˆ
R
(u0(x)− u(x))2dx. (3.117)
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Here, the Besov norm is defined in terms of the wavelet coefficients (we consider for simplicity
the one dimensional case):

‖u‖pBαp,p =
∑

j≥−1,k∈Z

2jp(α+1/2−1/p)|djk|p. (3.118)

The denoised image û is the
û = argmin E(u;u0).

Note that E(u;u0) has the form

E(u;u0) =
∑

j≥−1,k∈Z

2jp(α+1/2−1/p)|djk|p +
λ

2

∑
j≥−1,k∈Z

(djk − d0
jk)

2, (3.119)

and thus the minimization problem is completely decoupled in the wavelet domain. That is,
we have

d̂jk = argmin ejk(djk; d
0
jk), (3.120)

with

ejk(t; d
0
jk) = µj|t|p +

λ

2
(t− d0

jk)
2,

and µj = 2jp(α+1/2−1/p). This is the scalar shrinkage problem we have analyzed above and we
have the following.

Theorem 3.16 In one dimension the wavelet coefficients of the denoised image û for the cost
function E(u;u0) with p = 1 are given explicitly by the shrinkage operator

d̂jk = Sσj(d
0
jk) = sgn(d0

jk)(d
0
jk − σj)+, (3.121)

with σj = µj/λ.

Note that if α = 1/2 then the thresholds σj = 1/λ are independent of j – this gives uniform
shrinkage.

As we did for shrinkage of scalars, when 1 < p < 2 we define the threshold

σj =

(
2µj
λ

)1/(2−p)

,

and consider the hard thresholding estimator

d̂jk = d0
jkH(|d0

jk| − σj),

where H(t) is the Heaviside function. Then the estimator

û = W−1(d̂jk, j ≥ −1, k ∈ Z)

is nearly optimal for the cost function Ep(u;u0) in the sense that

Ep(û;u0) ≤ 4 minE(u;u0).

Therefore, as for scalar shrinkage, wavelet shrinkage can be understood both from the statis-
tical and variational points of view.
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4 Image deblurring

We will consider three types of blur that have different physical origins and should be cor-
rected differently. First, there is optical blur that appears if the lens of an imaging device is
not properly focused on the subject – this is a common problem in everyday photography.
Sometimes it is unavoidable if there are many subjects in the image that are various distances
from the lens so that they can not simultaneously be in focus, especially if a small aperture
may not be used due to low light. Motion blur is also a common occurrence in photography
and has two main sources: the subject may move during the exposure as in the photograph
of a dancing child or of a rapidly moving car, especially if the movement is in the direction
parallel to the sensor plane. Another source of motion blur is the movement of the camera
itself, for instance, if the exposure is long and the camera is not on a tripod, or the tripod is of
poor quality. The third type of blur is the atmospheric blur that comes from light scattering
between the object and the lens due to small particles in the atmosphere. A common example
are photographs taken in the fog.

4.1 Mathematical models of blur

Motion blur

Let us assume that the object is moving at speed v ∈ R2 during the exposure that takes time
T . This means that the image at each point x will be an integral of the original image over
all points in the object over the interval that connects the point x and the point x− vT : the
recorded image u0 is related to the unblurred image u(x) by

u(x) =

ˆ T

0

u(x− vt)dt. (4.1)

This can be written as

u(x) =

ˆ
R2

k(x− y)u(y)dy, (4.2)

with the convolution kernel

k(x) =

ˆ T

0

δ(x− vt)dt. (4.3)

It is, of course, possible that the object is moving at a non-uniform speed. Another possibility
is that the intensity of the recording changes during the exposure. This means that the kernel
k(x, y) does not have the simple form above, but more generally we have

u(x) =

ˆ
R2

k(x, y)u(y)dy, (4.4)

where the kernel k(x, y) is supported on the set of y that reach the point x during the
recording, and the magnitude of k(x, y) corresponds to the level of recording at the time the
point y of the object passes the point x in the image domain.
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Models for the out of focus blur

Out of focus blur occurs when the lens is not properly focused on the subject. This means
that the recorded image u0(x) is the average of the original image u(x) over a disk B(x; r) of
radius r around the point x:

u0(x) =
1

πr2

ˆ
B(x,r)

u(y)dy. (4.5)

Here the radius r depends on how out of focus the image is – the in focus image corresponds
to r = 0 and the larger r the more out of focus the image is. This may also be written as a
convolution:

u0(x) =

ˆ
R
k(x− y)u(y)dy, (4.6)

with

k(x) =
1

πr2
χ|x|≤r(x). (4.7)

It is also possible that the defocusing varies smoothly with the radius, so the kernel k(x) may
have more general form that (4.7) such as the Gaussian kernel

k(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
. (4.8)

Models of the atmospheric blur

One reason for the atmospheric blur is multiple scattering of light by minuscule particles in the
air. A characteristic feature of this phenomenon is that light at various frequencies scatters
at different levels – usually the shorter the wave length the stronger the scattering. This is
one reason why the sun and the moon are so yellow when they are low above the horizon –
at such time the distance the light travels through the atmosphere is the longest, hence the
difference in scattering of blue and yellow light is the strongest. The recorded image is then
best related to the original image in the Fourier domain:

û0(ξ) = K(ξ)u(ξ), ξ ∈ R2. (4.9)

Here K(ξ) is the damping factor for wave vector ξ. Therefore, in the physical domain we have
a convolution:

u0(x) =

ˆ
R2

k(x− y)u(y)dy, (4.10)

where k(x) is the Fourier transform of the function K(ξ).

General blur models

In all three examples above, the recorded signal u0(x) is a convolution of the original image
u(x) with a kernel k(x):

u0(x) =

ˆ
R2

k(x− y)u(y)dy. (4.11)
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More generally, if the blur is not shift-invariant and various parts of the image are blurred in
a different way, we have

u0(x) =

ˆ
R2

k(x, y)u(y)dy. (4.12)

Abstractly, we can think of blur as a linear operator K : Lp(R2) → Lq(Rq), with some
1 ≤ p, q ≤ +∞. This operator should satisfy the condition

K[1] = 1, (4.13)

where 1 denotes a function that is identically equal to one. For translation-invariant operators
of the form (4.11) this is equivalent toˆ

R2

k(x)dx = 1, (4.14)

while for the operators of the form (4.12) this is equivalent toˆ
R2

k(x, y)dy = 1, for all x ∈ R2. (4.15)

The function k(x) (or k(x, y)) is known as the point spread function (PSF). Typically, blur
operators are smoothing meaning that K[u] is more regular than the function u. In terms of
the convolution kernels k(x − y) this means that the Fourier transform K(ξ) = k̂(ξ) decays
rapidly in ξ, while for general kernels k(x, y) this translates into good smoothness properties
of k(x, y) in x.

Basic difficulties of deblurring

Deblurring problems are ill-posed, as can be seen from several perspectives. Inverting an
operator of the form

u0(x) = K[u](x) =

ˆ
R2

k(x− y)u(y)dy

is formally deceptively easy: all we need to do is write

û(ξ) =
û0(ξ)

K(ξ)
, (4.16)

where K(ξ) is the Fourier transform for k(x). However, typically k(x) is a smooth function
meaning that K(ξ) decays rapidly in ξ. Therefore, the naive division in (4.16) magnifies the
measurement errors for large ξ dramatically which is not what we want or need.

Another way to look at the ill-posedness of deblurring is to realize that since the blur
operator is usually regularizing, it is often a compact operator from Lp(R2) to Lq(R2). Invert-
ing compact operators is typically ill-posed. Qualitatively this is because they are very close
to finite-rank operators which can not be invertible since they map an infinite-dimensional
space onto a finite-dimensional space. Therefore, compact operators are well approximated by
non-invertible operators, which should obviously cause computational problems in inversion.

Therefore, it is essential to regularize the deblurring problem to make it well-posed – this
is usually done by considering variational problems with additional regularizing terms. This
is what we will study next.
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4.2 Deblurring BV images with a known PSF

The variational formulation

We will now consider the blur models that are given by a convolution and additive noise:

u0(x) = k ? u+ n(x) =

ˆ
R2

k(x− y)u(y)dy + n(x), (4.17)

with a known PSF k(x). Here u0(x) is our measurement, u(x) is the original image we need
to recover and n(x) is an additive noise. We will look for the function u(x) ∈ BV (R2) as a
minimizer of the energy functional

E(u;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

(k ? u− u0)2dx, (4.18)

with Ω = R2. This model reduces to the Osher-Rudin model that we have already studied
when there is no blur: k(x) = δ(x). The parameters α and λ are responsible for how much
weight we put on the regularity of u and how much on the faithfulness to the measurement.
In principle, only the ratio r = α/λ matters for the minimization problem – r � 1 means
that smoothness is very important while r � 1 means that smoothness is less important than
the requirement that u0 ≈ k ? u.

As in practice imaging is done in bounded domains, it is instructive to pass from Ω = R2

to a bounded domain Ω. The blur operator is then given by

K[u](x) =

ˆ
Ω

k(x, y)u(y)dy. (4.19)

There are several ways to pass to the kernel k(x, y) from the shift-invariant kernel k(x − y)
(shift-invariant kernels may only work for R2). The simplest way is to define

k(x, y) =
k(x− y)´

Ω
k(x− z)dz

, for x, y ∈ Ω. (4.20)

Then the blur operator satisfies K[1] = 1.
Another approach consists of extending the function u(y) in some way to the whole space

and then applying the convolution with the PSF k(x). One way is to set

ũ(y) =

ˆ
Ω

g(y, z)u(z)dz, y ∈ R2,

with some kernel g(y, z), y ∈ R2, z ∈ Ω and set

K[u] =

ˆ
R2

k(x− y)ũ(y)dy =

ˆ
R2×Ω

k(x− y)g(y, z)u(z)dzdy. (4.21)

In order to satisfy the condition K[1] = 1, the function g(y, z) should obeyˆ
R2×Ω

k(x− y)g(y, z)dzdy = 1 for all x ∈ Ω. (4.22)

Any such approach eventually leads to the variational problem of minimizing the energy

E(u;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

(K[u]− u0)2dx. (4.23)
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Existence and uniqueness of the minimizer

In order to study existence and uniqueness of the minimizer of the energy functional (4.23)
we will assume that the blur operator K : L1(Ω) → L2(Ω) is linear, bounded and injective,
and satisfies the condition K[1] = 1.

Theorem 4.1 Assume the above conditions on the blur operator K and that u0 ∈ L2. Then
the minimizer of the energy functional (4.23) in BV(Ω) exists and is unique.

Proof. The total variation is first-order homogeneous in u, while the functional

Ẽ(u;u0) =

ˆ
Ω

(K[u]− u0)2dx

is convex. Since K[u] is injective, it is strictly convex. Indeed, we have, for any u, v ∈ BV(Ω)
and λ ∈ (0, 1):

Ẽ(λu+ (1− λ)v;u0) =

ˆ
Ω

(λK[u] + (1− λ)K[v]− u0)2dx

=

ˆ
Ω

(λ(K[u]− u0) + (1− λ)(K[v]− u0))2dx

≤ λ

ˆ
Ω

(K[u]− u0)2dx+ (1− λ)

ˆ
Ω

(K[v]− u0)2dx = λẼ(u;u0) + (1− λ)Ẽ(v;u0)

with equality possible only if K[u] = K[v] which is impossible unless u = v since K is injective.
Therefore, the functional E(u;u0) is strictly convex, and the minimizer, if it exists, is unique.

In order to prove existence of a minimizer, let un be a minimizing sequence for E(u;u0) –
such sequence exists since E(u;u0) is bounded from below (it is positive). Then E(un;u0) is
uniformly bounded from above, and hence so is the total variation

TV(un) =

ˆ
Ω

|Dun|.

We have the Poincaré inequality
ˆ

Ω

|un − 〈un〉|dx ≤ Cp(Ω)

ˆ
Ω

|Dun|,

where

〈u〉 =
1

|Ω|

ˆ
Ω

udx.

Hence, the sequence gn = un−〈un〉 is uniformly bounded in L1(Ω). Therefore, as the operator
K is bounded from L1(Ω)→ L2(Ω), and since K[1] = 1, the sequence

K[gn] = K[un]− 〈un〉

is bounded in L2(Ω). But since K[un] is bounded in L2(Ω) (because E(un;u0) is bounded from
above), the sequence 〈un〉 must be bounded as well. The Poincaré inequality then implies
that un is bounded in L1(Ω) whence in BV (Ω) (we already know that TV(un) is uniformly
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bounded). Therefore, there exists a subsequence unk that converges to a function u∗ in L1(Ω)
and such that ˆ

Ω

|Du∗| ≤ lim inf
k→∞

ˆ
Ω

|Dunk |.

Moreover, as K is continuous from L1(Ω)→ L2(Ω), we know that

ˆ
Ω

(K[u∗]− u0)2dx = lim
k→∞

ˆ
Ω

(K[unk ]− u0)2dx.

Therefore, we have
E(u∗;u0) ≤ lim inf

k→+∞
E(un;u0),

and, as un is a minimizing sequence, u∗ is a minimizer, and we are done.
Let us now show that the minimizer satisfies the constraint

〈K[u∗]〉 = 〈u0〉. (4.24)

Let us define, for c ∈ R:
e(c) = E(u∗ − c;u0).

Then, as K[1] = 1 and TV (u∗ − c) = TV (u∗), the minimizer c∗ of e(c) should minimize

ẽ(c) =

ˆ
Ω

(K[u∗]− c− u0)2dx.

Hence, it satisfies

2c∗|Ω| − 2

ˆ
Ω

(K[u∗]− u0)dx = 0. (4.25)

On the other hand, since u∗ is the minimizer of E(u;u0) we must have c∗ = 0, and (4.24)
follows from (4.25).

4.3 Variational deblurring with unknown PSF

We will consider two cases when the point spread function is unknown: first, when it is not
known but belongs to a certain set parametrized by θ ∈ Rd, and, second, when we do not
know the PSF at all, which is a completely blind deblurring.

Parametric blind deblurring

Let us first assume that the unknown PSF belongs to a parametric family

K = {Kθ : θ ∈ I ⊆ Rd}.

A typical example would be the Gaussian family

g(x; θ) =
1

2πθ
exp

(
−x

2
1 + x2

2

2θ

)
,

with θ ∈ I = (0,+∞).
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Then, in order to incorporate the parametric dependence into the variational problem
we introduce a cost function φ(θ) associated to the kernel Kθ. The deblurring minimization
problem is to minimize, over u ∈ BV(Ω) and θ ∈ I, the functional

E(u, θ;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

(Kθ[u]− u0)2dx+ φ(θ). (4.26)

We will assume that the function φ(θ) is uniformly bounded from below: φ(θ) ≥ −M > −∞
for all θ ∈ I. We will also assume that, for each θ ∈ I fixed, the operator Kθ is a blur
operator: it is injective, bounded from L1(Ω) to L2(Ω), and Kθ[1] = 1. Then for each θ ∈ I
we can find the unique minimizer ûθ of the functional

Ẽ(u; θ, u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

(Kθ[u]− u0)2dx, (4.27)

with θ fixed. The problem of minimizing E(u, θ;u0) is thus reduced to minimizing, over θ ∈ I,
the function

e(θ; ûθ, u0) = Ẽ(ûθ; θ, u0). (4.28)

This leads to an approach to minimizing E(u, θ;u0) known as alternating minimization. It is
defined as follows. Given an initial guess θ(0) we set

u(0) = argmin Ẽ(u; θ(0), u0), (4.29)

and then update θ to
θ(1) = argmin e1(θ;u(0), u0) (4.30)

with

e1(θ; v, u0) =
λ

2

ˆ
Ω

(Kθ[v]− u0)2dx+ φ(θ). (4.31)

Then we proceed iteratively:

u(n) = argmin Ẽ(u; θ(n), u0), (4.32)

and
θ(n+1) = argmin e1(θ;u(n), u0) (4.33)

A simple observation is that energy is decreasing in n:

E(u(n+1), θ(n+1);u0) ≤ E(u(n), θ(n);u0). (4.34)

This is because

E(u(n+1), θ(n+1);u0) ≤ Ẽ(u(n); θ(n+1), u0) + φ(θ(n+1)) = α

ˆ
Ω

|Du(n)|+ e1(θ(n+1);u(n), u0)

≤ α

ˆ
Ω

|Du(n)|+ e1(θ(n);u(n), u0) = E(u(n), θ(n);u0).

We used the definition of u(n+1) in the first inequality above, and the definition of θ(n+1) in
the second inequality, as minimizers of respective functionals.

We have then the following conditional convergence theorem.
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Theorem 4.2 Assume that the map θ → Kθ is continuous from I ⊂ Rn to the space B(L1, L2)
of bounded linear operators from L1 to L2. Suppose also that the function φ(θ) is lower semi-
continuous. If u(n) → u∗ in L1(Ω) and θ(n) → θ∗ ∈ I then the pair (u∗, θ∗) satisfies

u∗ = argmin Ẽ(u; θ∗, u0) (4.35)

θ∗ = argmin e1(θ;u∗, u0). (4.36)

Proof. Let us first show that

Kθ(n) [u(n)]→ Kθ∗ [u∗] in L2(Ω). (4.37)

To see that, we write

‖Kθ[u]−Kθ∗ [u∗]‖2 ≤ ‖Kθ[u]−Kθ∗ [u]‖2 + ‖Kθ∗ [u]−Kθ∗ [u∗]‖2

≤ ‖Kθ −Kθ∗‖L1→L2‖u‖1 + ‖Kθ∗‖L1→L2‖u− u∗‖1.

Therefore, if u(n) → u∗ in L1 so that ‖u− u∗‖1 → 0, and θ(n) → θ∗ so that

‖Kθ(n) −Kθ∗‖L1→L2 → 0,

we have (4.37).
By construction, we have

Ẽ(u(n); θ(n), u0) ≤ Ẽ(u; θ(n), u0),

for all u ∈ BV(Ω), or, equivalently:

α

ˆ
Ω

|Du(n)|+ λ

2
‖Kθ(n) [u(n)]− u0‖2

2 ≤ α

ˆ
Ω

|Du|+ λ

2
‖Kθ(n) [u]− u0‖2

2.

Passing to the limit n→ +∞ gives, using (4.37):

α

ˆ
Ω

|Du∗|+
λ

2
‖Kθ∗ [u∗]− u0‖2

2 ≤ α

ˆ
Ω

|Du|+ λ

2
‖Kθ∗ [u]− u0‖2

2, for all u ∈ BV(Ω).

This proves (4.35). The proof of (4.36) is basically identical.

Non-parametric blind deblurring

Let us now assume that we do not know anything about the blur operator K except that it
satisfies the condition K[1] = 1 and some extra assumptions to be specified later. We will
consider only the case when the domain Ω is R2, and the blur is given by a convolution

K[u](x) =

ˆ
R2

k(x− y)u(y)dy,

with an unknown function k(x). Given a measurement u0(x), the goal is to recover the original
image u(x), and, as a by-product, the kernel k(x).
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As usual, we will do this via energy minimization. The energy functional will be of the
form

E(u, k;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
R2

(k ? u− u0)2dx+ E(k), (4.38)

and the key aspect is to devise a good energy E(k).
Many blurs such as the motion blur and the out-of-focus blur involve PSF’s k(x) of compact

support and with sharp boundaries. For such kernels, the BV norm is an appropriate energy,
taking

E[k] = β

ˆ
R2

|Dk|.

Then the total energy is

E(u, k;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
R2

(k ? u− u0)2dx+ β

ˆ
R2

|Dk|. (4.39)

We stress that the fact that we use the BV energy both for u(x) and k(x) is somewhat of
coincidence – that is, the BV energy is suitable for u(x) and k(x) different reasons. For
instance, if we were expecting k(x) to be a smooth Gaussian-like kernel we would not use the
BV-norm as the energy of k(x).

Extra care should be taken when working in the whole space as many compactness theo-
rems are false. For example, a uniform bound ‖un‖BV (R2) ≤ C does not imply that un has a
subsequence converging in L1(R2) (unlike in a bounded domain). A simple counterexample
is provided by a sequence un(x) = φ(x1 − n, x2) with a smooth compactly supported func-
tion φ(x). This sequence is obviously uniformly bounded in BV (R2) but it can not converge
strongly in L1 since it converges weakly to zero but its L1-norm does not tend to zero as
n→ +∞.

As a technical tool, we will need the following form of the Poincaré inequality.

Theorem 4.3 (Poincaré inequality for BV (R2).) There exists a constant C so that for all
u ∈ BV (R2) with

‖u‖BV (R2) = ‖u‖L1(R2) +

ˆ
R2

|Du| < +∞

we have

‖u‖L2(R2) ≤ C

ˆ
R2

|Du|. (4.40)

Proof. The standard Sobolev embedding implies that for any ball BR we have

‖u− 〈u〉‖Lq(BR) ≤ CR‖Du‖Lp(BR),

for each 1 ≤ p < n and all 1 ≤ q ≤ p∗ = np/(n− p). Here we denote by

〈u〉 =
1

|BR|

ˆ
BR

u(x)dx.

In two dimensions we have n = 2 so for p = 1 the critical p∗ = 2. That is, there exists a
constant Cp(R) so that for any disk BR and any u ∈ BV (BR) we have

‖u− 〈u〉‖L2(BR) ≤ Cp(R)

ˆ
BR

|Du|. (4.41)
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A simple scaling argument shows that the constant Cp does not depend on R: the heuristic
reason is that both the left and the right sides in (4.41) have the dimension of [R], hence their
ratio does not depend on R (this is easy to make rigorous by looking at a rescaled function
uR(x) = u(Rx) defined in the unit ball B1). It follows that

‖u‖L2(BR) ≤ C

ˆ
BR

|Du|+ |〈u〉||BR|1/2 ≤ C

[ˆ
BR

|Du|+ ‖u‖L1

|BR|1/2

]
Letting R→ +∞ we get (4.40) provided that u ∈ L1(R2).

We will impose the following conditions on the blind BV deblurring: the recorded image
u0 ∈ L2(R2), the original image u ∈ BV(R2), and the unknown PSF k(x) is in BV (R2) and
satisfies ˆ

R2

k(x)dx = 1.

As u ∈ BV(R2), the Poincaré inequality (4.40) implies that u ∈ L2(R), hence

‖k ? u‖L2 ≤ ‖k‖L1‖u‖L2 , (4.42)

as follows from Young’s inequality:

‖f ? g‖Lr ≤ ‖f‖p‖g‖q,

with
1

r
+ 1 =

1

p
+

1

q
,

that we used with r = 2, p = 1 and q = 2. This may also be seen directly:

‖k ? u‖2
L2 =

ˆ
k(y)u(x− y)k(z)u(x− z)dxdydz

=

ˆ
k(y)k(z)

(ˆ
u(x− z)u(x− y)dx

)
dydz

≤
ˆ
k(y)k(z)

(ˆ
|u(x− y)|2dx

)1/2(ˆ
|u(x− z)|2dx

)1/2

dydz = ‖k‖2
L1‖u‖2

L2 ,

and (4.42) follows. The bound (4.42) means that under the above assumptions the functional
E(u, k;u0) is well-defined.

The non-uniqueness of the minimizer

It is interesting that minimizer of the energy E(u, k;u0) need not be unique. An obvious source
of the non-uniqueness comes from translation invariance: if (u∗, k∗) is a minimizer then the
translates ua(x) = u(x− a), ka(x) = k(x− a) give a minimizer as well, for any a ∈ R2, since
the energy of (u, k) is the same as that of (ua, ka).

Another reason for non-uniqueness is more special but also more amusing.
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Theorem 4.4 Suppose that (u∗, k∗) ∈ BV(R2)× BV(R2) is a minimizer of the energy

E(u, k;u0) = α

ˆ
Ω

|Du|+ λ

2

ˆ
R2

(k ? u− u0)2dx+ β

ˆ
R2

|Dk|, (4.43)

under the above assumptions on u0 and k. Assume that

m =

ˆ
R2

u∗(x)dx =
β

α
.

Then (u1, k1) = (mk∗, k∗/m) must be a minimizer of E(u, k;u0) as well.

Proof. The kernel k1 = u∗/m satisfies the normalization
ˆ

R2

k1(x)dx = 1.

It is also immediate to see that E(u1, k1;u0) = E(u, k;u0).
An even more dramatic non-uniqueness occurs for the minimization problem for a slightly

different energy, with the BV-norm replaced by the Sobolev H1-norm:

E2(u, k;u0) =
α

2

ˆ
R,2
|∇u|2dx+

β

2

ˆ
R2

|∇k|2dx+
λ

2

ˆ
R2

(k ? u− u0)2dx. (4.44)

This functional is minimized over u ∈ H1(R2) and k ∈ H1(R2) ∩ L1(R2) with the condition
ˆ

R2

k(x)dx = 1. (4.45)

Let us define the Fourier transform as

f̂(k) =

ˆ
R2

e−2πik·xf(x)dx.

Then the normalization (4.45) is simply k̂(0) = 1. Let us now choose a smooth real-valued
odd function η(ξ): η(ξ) = −η(−ξ), and set

û1(ξ) = u∗(ξ)e
iη(ξ), k̂1(ξ) = u∗(ξ)e

−iη(ξ).

Then the inverse Fourier transforms

u1(x) =

ˆ
R2

e2πiξ·xû1(ξ)dξ, k1(x) =

ˆ
R2

e2πiξ·xk̂1(ξ)dξ

satisfy û1(−ξ) = û∗1(ξ), k̂1(−ξ) = k̂∗1(ξ) so that u1(x) and k1(x) are real, but more importantly
we have

k̂1(ξ)û1(ξ) = k̂(ξ)û(ξ),

meaning that k ? u(x) = k1 ? u1(x) for all x ∈ R2. Recall also that
ˆ
|∇u(x)|2dx = (4π)2

ˆ
|ξ|2|û(ξ)|2dξ,
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with a similar expression k(x), meaning that

ˆ
|∇u(x)|2dx =

ˆ
|∇u1(x)|2dx,

ˆ
|∇k(x)|2dx =

ˆ
|∇k1(x)|2dx.

Therefore, we have
E2(u, k;u0) = E2(u1, k1;u0),

no matter which function η(ξ) of this kind we take – this is another huge source of non-
uniqueness.

Therefore, in order to get uniqueness of a minimizer we need to impose extra conditions
on k(x) to remove the above symmetries.

Existence of minimizers

In order to study the existence of minimizers of the energy

E(u, k;u0) = α

ˆ
R2

|Du|+ β

ˆ
R2

|Dk|+ λ

2

ˆ
R2

(k ? u− u0)2dx, (4.46)

we will use a slightly different space than BV(R2), namely

BV2(R2) =

{
u ∈ L2(R2) :

ˆ
R2

|Du| < +∞
}
.

The Poincaré inequality (4.40) implies that BV(R2) ⊆ BV2(R2), so that BV2(R2) is, indeed,
a bigger space.

As we have previously mentioned, we will require additional conditions to construct a
minimizer, so we will assume the following: (i) the recording u0 ∈ L2(R2) ∩ L∞(R2), (ii) the
original image u ∈ BV2(R2) and ‖u‖L∞ ≤ ‖u0‖L∞ , and, finally, (iii) the PSF k ∈ BV(R2),
k(x) ≥ 0, and ˆ

R2

k(x)dx = 1.

Condition (ii) is quite natural: a “sufficiently rough” noise should increase the L∞-norm, so
it is reasonable to expect that ‖u‖L∞ ≤ ‖u0‖L∞ .

In order to have additional compactness, we impose the following condition: (iv) there
exists a nonnegative function F ∈ L1(R2) and some R > 0 so that

0 ≤ k(x) ≤ F (x), for all x ∈ R2 with |x| ≥ R. (4.47)

Here F (x) and R are prescribed and are known a priori, that is, condition (4.47) is a constraint
on the possible values of k(x). For instance, we may require that k(x) is compactly supported
inside a ball BR, and to enforce that we would take F (x) ≡ 0 for |x| ≥ R. Let A be the set
of all (k, u) ∈ BV (R2)×BV2(R2) that satisfy the constraints (i)-(iv) above.

Theorem 4.5 There exist minimizers (u, k) ∈ BV2(R2)× BV(R2) for the energy functional
(4.46) over the set A.
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We will need the following stronger version of the Poincaré inequality in Theorem 4.3, dropping
the assumption that u ∈ L1(R2).

Lemma 4.6 (Gagliardo-Nirenberg inequality) For any u ∈ BV2(R2) we have

‖u‖L2(R2) ≤ C

ˆ
R2

|Du|. (4.48)

This is a particular case of the more general inequality: given u ∈ Lp∗(Rn) with

p∗ =
np

n− p
,

we have
‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn). (4.49)

The proof can be found in the book “Partial Differential Equations” by L.C. Evans, for
instance.

We now prove Theorem 4.5. Let R > 0 be as in (4.47) and set

kR(x) =
1

πR2
χ(|x| < R).

Then the kernel kR(x) has mass one:

ˆ
R
kR(x)dx = 1,

it automatically satisfies the constraint (4.47) and

ˆ
R2

|Dk| = 2πR

πR2
=

2

R
< +∞.

Therefore, E(u ≡ 0, kR;u0) < +∞ and thus

min
(k,u)∈A

E(u, k;u0) < +∞,

and a minimizing sequence (un, kn) ∈ A exists. Our goal is to show that this sequence has to
converge to a minimizer (u∗, k∗) of E(u, k) over A.

The Gagliardo-Nirenberg inequality (4.48) implies that un is a bounded sequence in
L2(R2), hence for any bounded domain Ω the sequence un is bounded in L1(Ω). Thus, as
TV (un) ≤ (1/α)E(un, kn;u0), the sequence un is uniformly bounded in BV(Ω). Therefore,
un has a convergent subsequence in L1(Ω) (recall that Ω is a bounded domain). Then the
standard diagonal argument implies that we can extract a subsequence un that converges in
L1(BR) to a function u∗ for any ball BR with R > 0 (to see that we first achieve this for
integer radii R ∈ N which implies the claim for any R > 0). It is easy to see that the limit u∗
does not depend on R. Extracting another subsequence we may ensure that

un(x)→ u(x) almost everywhere in R2.
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It follows that ˆ
R2

|Du∗| ≤ lim inf
n→+∞

ˆ
R2

|Dun|. (4.50)

Similarly, we have the same result for the sequence kn: after extracting a subsequence, it
converges to a limit k∗ in L1(BR) for any ball BR, and almost everywhere pointwise, so that

ˆ
R2

|Dk∗| ≤ lim inf
n→+∞

ˆ
R2

|Dkn|. (4.51)

We will now show that (u∗, k∗) is a minimizer of E(u, k) over the set A.
Let us show that, after extracting a subsequence, the convolution also converges point-

wise:
kn ? un(x)→ k∗ ? u∗(x), for any x ∈ R2. (4.52)

To this end, for any fixed x ∈ R2 we denote by kx(y) = k(x− y), and write

(k ? u)(x) = 〈kx(y), u(y)〉 = 〈kx(y), u(y)〉Br + 〈kx(y), u(y)〉Bcr ,

with r = R + |x|, where R is as in condition (4.47). The sequence kxn converges to kx∗ in
L1(Br), and, as we are minimizing the functional E(u, k) over the functions u such that
|u(x)| ≤ ‖u0‖L∞ for all x ∈ R2, we know that |un(y)| ≤ ‖u0‖L∞ . Therefore, we have

|〈kxn, un〉Br − 〈kx∗ , un〉Br | ≤ ‖u0‖L∞‖kxn − kx∗‖L1(Br) → 0 as n→ +∞.

Moreover, we have, by the Lebesgue dominated convergence theorem,

〈kx∗ , un〉Br → 〈kx∗ , u∗〉Br ,

as un converges pointwise to u∗, the sequence un is bounded in L∞, and kx∗ ∈ L1(Br). Hence,
we have, from the last two limits:

〈kxn, un〉Br → 〈kx∗ , u∗〉Br . (4.53)

On the other hand, for the integral over Bc
r we may use property (4.47) and our choice of

r = R + |x|. There, we have

|y − x| ≥ |y| − |x| > r − |x| = R,

hence

|kxn(y)| = |kn(x− y)| ≤ F (x− y) = F x(y), for any y ∈ Bc
r, and all n ≥ 1. (4.54)

Therefore, once again, as un is a sequence uniformly bounded in L∞(R2), and because of
(4.54), we can use the Lebesgue dominated convergence theorem, to show that

〈kxn, un〉Bcr → 〈k
x
∗ , u∗〉Bcr . (4.55)

Together, (4.53) and (4.55) imply (4.52).
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In order to finish the proof that (u∗, k∗) is a minimizer, we note that (4.52) implies (by
Fatou’s lemma) thatˆ

R2

(k∗ ? u∗ − u0)2dx ≤ lim inf
n→+∞

ˆ
R2

(kn ? un − u0)2dx. (4.56)

As we have already shown that the TV-norms of u∗ and k∗ satisfy (4.50) and (4.51), we
conclude that (u∗, k∗) is a minimizer of E(u, k) over A.

It remains only to verify that u∗ and k∗ satisfy the conditions we have imposed on u and k:
by construction, we have ‖u∗‖L∞ ≤ ‖u‖L∞ , as u∗ is a point-wise limit of un which all satisfy
this condition. The Gagliardo-Nirenberg inequality and Fatou’s lemma imply that

‖u∗‖L2 ≤ lim inf
n→∞

‖un‖L2 ≤ lim inf
n→∞

ˆ
R2

|Dun| < +∞,

hence u∗ ∈ BV2(R2). Similarly, we have TV (k∗) < +∞, k∗ ≥ 0, and k∗ ∈ L1(R2) by the
Lebesgue dominated convergence theorem, whence k ∈ BV (R2). Finally, the conditionˆ

R2

k∗(x)dx = 1,

holds since it is satisfied by each kn, and by convergence of kn to k∗ in L1
loc together with the

upper bound (4.47).

5 Image inpainting

Image inpainting is a jargon for interpolation in the imaging context. There are, obviously,
many difficult issues in this problem compared to some of the more mundane problems of
function interpolation – one has to deal with “healing” very complex images.

5.1 Harmonic inpainting and its extensions

The simplest inpainting problem is to interpolate a smooth function u(x) into a bounded
domain D. The problem is to construct an approximation uD to the restriction u0

D of a
smooth function u0(x) defined in a bigger domain Ω to the sub-domain D ⊆ Ω. An inpainting
scheme is said to be linear if

‖uD − u0
D‖L∞(D) = O(d2), (5.1)

and, more generally it is of k-th order if

‖uD − u0
D‖L∞(D) = O(dk+1). (5.2)

Here d is the diameter of D.
A simple way to design a linear scheme for smooth functions is via the harmonic extension.

Let f = u0|Γ be the restriction of u0 to the boundary Γ = ∂D. Then the harmonic extension
of f inside D is the solution of the boundary value problem

∆uh = 0 in D, (5.3)

uh = f on Γ = ∂D.
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The anharmonic component ua = u0 − uh satisfies the Poisson equation

∆ua = ∆u0 in D, (5.4)

ua = 0 on Γ = ∂D.

While we do not know the forcing term ∆u0 in (5.4), we can still estimate (5.3) – we have
the following approximation theorem.

Theorem 5.1 Let d be the diameter of D, then we have

‖ua‖L∞(D) ≤
d2

4
‖∆u0‖L∞(D). (5.5)

Proof. Let M = ‖∆u0‖L∞ , then the maximum principle implies that |ua(x)| ≤Mv(x), with
the function v(x) that solves

−∆v = 1 in D, (5.6)

v = 0 on Γ = ∂D.

It follows from the maximum principle that v(x) > 0 in D. Next, in order to bound v(x) we
take any point z ∈ D and let w(x) be the solution of the boundary value problem

−∆w = 1 in B(z; d), (5.7)

w = 0 on Γ1 = ∂B(z, d).

The maximum principle implies that the function w(x) is positive inside B(z; d). Since d
is the diameter of D, the ball B(z, d) contains the set D, and, as w(x) > 0 = v(x) on the
boundary ∂D, we have v(x) < w(x) in D (this is another consequence of the maximum
principle). However, the function w(x) is explicit:

w(x) =
d2 − |x− z|2

4
.

We conclude that w(x) ≤ d2/4 for all x ∈ B(z; d), hence v(x) ≤ d2/4 for all x ∈ D, thus

|ua(x)| ≤M
d2

4
, for all x ∈ D,

and we are done.
This theorem shows that harmonic extension gives a linear inpaiting. This can be further

improved by, in a sense, iterating the harmonic extension. Let us write

u = uh + ua,

then, by construction, ua satisfies the Poisson equation (5.4):

∆ua = ∆u0 in D, (5.8)

ua = 0 on Γ = ∂D,
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with an unknown right hand side ∆u0. Let us consider a harmonic inpaiting wh of ∆u0:

∆wh = 0 in D, (5.9)

wh = ∆u0 on Γ = ∂D.

This problem can be solved for wh and the solution satisfies the estimate

‖wh −∆u0‖L∞(D) ≤
d2

4
‖∆2u0‖L∞(D), (5.10)

as in Theorem 5.1. We may then replace the unknown force ∆u0 in (5.8) by the known force
wh and obtain the following problem

∆ũa = wh in D, (5.11)

ũa = 0 on Γ = ∂D.

The solution of this problem satisfies

‖ũa − ua‖L∞(D) ≤
d2

4
‖wh −∆u0‖L∞(D) ≤

d4

16
‖∆2u0‖L∞(D). (5.12)

We conclude that uh + wh gives a cubic approximation of u0:

‖u0 − uh − wh‖L∞(D) ≤
d4

16
‖∆2u0‖L∞(D). (5.13)

This procedure can be continued giving approximations of higher and higher order but the
constants in the error estimates such as (5.13) will involve derivatives of u0 of higher and
higher order. Therefore, this iterative process will give “better and better” approximations
only for very smooth functions u0.

5.2 Inpainting via BV minimization

The TV inpainting model

The TV inpainting model is as follows: given an image u0 outside of a domain D we define
the inpainted image u as the minimizer of the functional

E(u) =

ˆ
Ω

|∇u|dx+
λ

2

ˆ
Ω\D

(u− u0)2dx. (5.14)

Here Ω is the overall domain, of which D is a ”small” subset.
A common approach is to regularize this functional by considering

Ea(u) =

ˆ
Ω

√
a2 + |∇u|2dx+

λ

2

ˆ
Ω\D

(u− u0)2dx, (5.15)

with a small a > 0. This model has the following interesting interpretation: let us take
λ = ∞, which means that we believe that u0 has no noise. This automatically implies that
u = u0 on Ω \D, and we need to minimize

Ẽa(u) =

ˆ
D

√
a2 + |∇u|2dx, (5.16)
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subject to the constraint u = u0 on Γ = ∂D. Consider the surface z(x) = u(x1, x2)/a, defined
over D, then its surface is

S(z) =

ˆ
D

√
1 + |∇z|2dx =

1

a

ˆ
D

√
a2 + |∇u|2dx. (5.17)

Therefore, the minimization problem for Ẽa(u) can be restated as follows: minimize the area
of the surface z = u(x, y) given its boundary data z(x1, x2) = u0(x1, x2)/a on ∂D. This
problem might not have a solution, so it may be relaxed to minimizing

S̃(z) =

ˆ
D

√
a2 + |∇u|2dx+

µ

2

ˆ
∂D

(z − u0)2dl. (5.18)

TV inpainting and an optical illusion

Here is a cute example from the Chan-Shen book of how the TV norm can create illusions.
Let us assume that the domain Ω is a symmetric “cross” of two rectangles Rv and Rh so that
Rv is wide and tall (but taller than wider), and Rh is wide in the horizontal directional but
short in the vertical. We will need to inpaint the intersection D = Rv ∩ Rh = L × l, with
L > l. Assume that the function u0 is slightly darker in Rh \D than in Rv \D:

u0(x) =
1

2
− ε in Rh \D,

and

u0(x) =
1

2
+ ε in Rh \D.

The question is what will be the inpainted function u(x) in D – we assume here that λ = +∞.
One can show that the minimizer is constant inside D: u(x) ≡ c in D. The energy of such
function is

E(c) = 2|c− 1/2− ε|L+ 2|c− 1/2 + ε|l = |2c− 1− 2ε|L+ |2c− 1 + 2ε|l.

This is a piece-wise linear function such that

E(1/2− ε) = 4εL,

and
E(1/2 + ε) = 4εl.

hence, the minimum is achieved at c = 1/2 + ε, meaning that the whole interior of D will be
lighter if L > l. That is, the inpainting picks the color of the wider rectangle.

Digital zooming as inpainting

Digital zooming is the problem of reconstructing a digital image u of size 2n × 2m from
a digital image u0 of size n × m. This problem is very similar to inpainting but is more
appropriate in the discrete version than continuous. Let Ω be the fine grid to which we need
to extend u0 as a zoom-in. The original image u0 is defined on a grid Ω0 which is a sub-grid
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of Ω. For each pixel α ∈ Ω we define Nα as the set of all neighbors of the pixel α in Ω. At
each pixel α we define

|∇u(α)| =
√∑

β∈Nα

(uβ − uα)2.

We also define

λe(α) =

{
λ, α ∈ Ω0,

0, otherwise.

The digital zoom-in problem is to minimize the discrete energy

E(u) =
∑
α∈Ω

|∇αu|+
∑
α∈Ω

λe(α)

2
(uα − u0

α)2,

over all digital images u defined on the fine grid Ω.
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