Ralph L. Cohen

Bundles, Homotopy, and
Manifolds

An introduction to graduate level algebraic and differential topology






Contents

Introduction

1 Topological Manifolds and Poincaré Duality

1.0.1 Orientations . . . . . ... ... ... ...
1.0.2  Poincaré Duality . . . . ... ... ... ... .....

2 Fiber Bundles

2.1

2.2

Definitions and examples . . . . . . ... ... ... .....
2.1.1 Vector Bundles . . . . ... ... ... .........
2.1.2 Principal Bundles . . . ... ... ... ... ... ..
2.1.3 Clutching Functions and Structure Groups . . . . ..
Pull Backs and Bundle Algebra . . ... ... ... .....
221 PullBacks .. ... ... ... oo

3 General Background on Differentiable Manifolds

3.1
3.2

3.3

History . . . . . . . . .
Examples and Basic Notions . . . . .. ... .. .. .....
3.2.1 Examples . . . ... ..o
3.2.2 The tangent bundle . . . . . ... ... ... ... ..
3.2.3 The implicit and inverse function theorems, embeddings

and immersions . . . . ... L Lo
3.2.4 Manifolds with boundary . . ... ... ... .....
3.2.5 Regular Values and transversality . . . . . ... .. ..
Bundles and Manifolds . . . . ... ... ... ..., ...
3.3.1 The tangent bundle of Projective Space . . . . . . ..
332 K-theory. . ... .. ..o
3.3.3 Differential Forms . . . ... ... ... ... .. ...
3.34 Lie Groups . . . . . . .
3.3.5 Connections and Curvature . . . . ... ... ... ..
3.3.6 The Levi - Civita Connection . . . . . . ... ... ..

4 Classification of Bundles

4.1
4.2
4.3
4.4

The homotopy invariance of fiber bundles . . . . ... .. ..
Universal bundles and classifying spaces . . . . .. ... ...
Classifying gauge groups . . . . . . . .« . o oL
Existence of universal bundles: the Milnor join construction and
the simplicial classifying space . . . . .. ... ... .....

xi

—_

13
13
15
18
25
30
30

35
36
37
37
38

40
42
45
48
48
50
55
59
60
67

71
71
7
87

90

vii



viii

Contents
4.4.1 The join construction . . . ... ... ... ... ... 90
4.4.2 Simplicial spaces and classifying spaces . . .. .. .. 93
4.5 Some Applications . . . .. ... Lo 101
4.5.1 Line bundles over projective spaces . . . . . . . .. .. 101
4.5.2  Structures on bundles and homotopy liftings . . . . . 102
4.5.3 Embedded bundles and K -theory . ... ... .... 105
4.5.4 Representations and flat connections . . . . . . . . .. 107
Characteristic Classes 109
5.1 Preliminaries . . . . . . ... ... .. 109
5.2 Chern Classes and Stiefel - Whitney Classes . . . .. .. .. 113
5.2.1 The Thom Isomorphism Theorem . .. ... .. ... 116
5.2.2 The Gysin sequence . . . . . . . . .. ... .. .... 122
5.2.3 Proof of theorem 5.5 . . ... ... ... ... .... 123
5.3 The product formula and the splitting principle . . . . . .. 126
5.4 Applications . . . . ... L 131
5.4.1 Characteristic classes of manifolds . . . . . ... ... 131
5.4.2 Normal bundles and immersions . . . . .. ... ... 134
5.5 Pontrjagin Classes . . . . . . .. . ... ... ... ...... 136
5.5.1 Orientations and Complex Conjugates . . . . . .. .. 136
5.5.2 Pontrjagin classes . . .. ... ... 0oL 139
5.5.3 Oriented characteristic classes . . . . . . ... .. ... 141
5.6 Connections, Curvature, and Characteristic Classes . . . . . 143
Embeddings and Immersions in Euclidean Space 153
6.1 The existence of embeddings: The Whitney Embedding Theo-
TEIL . . v v v e e e e e e e e e e e e e 153
6.1.1 Obstructions to the existence of embeddings and im-
mersions, and the immersion conjecture . . . . . . .. 155
6.2 “Turning a sphere inside-out”. . . . . .. ... ... ... .. 162
Homotopy Theory of Fibrations 167
7.1 Homotopy Groups . . . . . . . .. ... ... ... ... 167
7.2 Fibrations . . . . .. ... 172
7.3 Obstruction Theory . . . .. .. .. ... ... ... ..... 179
7.4 Eilenberg - MacLane Spaces . . . ... ... ... ...... 184
7.4.1 Obstruction theory and the existence of Eilenberg -
MacLane spaces . . . . .. ... ... .. 185
7.4.2 The Hopf - Whitney theorem and the classification the-
orem for Eilenberg - MacLane spaces . . . . . ... .. 188
7.5 Spectral Sequences . . . ... ..o 197
7.5.1 The spectral sequence of a filtration . . .. ... ... 197
7.5.2 The Leray - Serre spectral sequence for a fibration . . 203
7.5.3 Applications I: The Hurewicz theorem . . . ... . .. 206

7.5.4 Applications II: H,(2S™) and H*(U(n)) . . . . . . .. 209



Contents ix

7.5.5 Applications IIT: H,(K(Q,n)) . . . . . ... ... ... 212
7.5.6  Applications IV: Spin and Spinc structures . . . . . . 214

8 Tubular Neighborhoods, more on Transversality, and Inter-
section Theory 221
8.1 The tubular neighborhood theorem . . . .. ... ... ... 221
8.2 The genericity of transversality . . . . . ... ... ... ... 223
8.3 Applications to intersection theory . . . . .. ... ... ... 228

9 Poincaré Duality, Intersection theory, and Linking numbers 231
9.1 Poincaré Duality, the “shriek map”, and the Thom isomorphism 231

9.2 The intersection product . . . . .. ... ..o 236
9.2.1 Intersection theory via Differential Forms . . . . . .. 239
9.3 Degrees, Euler numbers, and Linking numbers . . . . .. .. 240
9.3.1 The Degreeofamap . . . ... ... ... ... .... 240
9.3.2 The Euler class and self intersections . . . . . . . ... 241
9.3.3 Linking Numbers . . . . . . . . .. .. ... .. ... 245
10 Stable Homotopy 251
10.0.1 Sketch of proof of the Freudenthal suspension theorem 253
10.1 Spectra . . . . . . .. 256
10.1.1 Morphisms . . . . . . . ... ... 258
10.2 Generalized (co)homology and Brown’s Representability Theo-
38 0 260
10.2.1 Brown’s Representability Theorem . . . . .. ... .. 260
10.2.2 Generalized (co)homology theories . . . . ... . ... 267
10.2.3 Application: The finiteness of the positive dimensional
stable homotopy groups of spheres. . . . . . . .. ... 273
10.3 The Atiyah-Hirzebruch spectral sequence . . . . ... .. .. 274
10.3.1 The spectral sequence . . . .. ... ... ... .... 274
10.3.2 The spectral sequence of an exact couple and the con-
struction of the AHSS . . . . ... .. ... ... ... 275
10.3.3 Some K-theory calculations with the AHSS . . . . .. 277
10.4 Symmetric spectra, ring spectra and module spectra . . . . . 278
10.5 Generalized cup and cap products . . . . . ... ... .... 286
10.6 Thom spectra . . . . . .. ... .. ... . 289
10.7 The ring structure of H,.(BO;Z/2), H.(BU;Z), H.(MO;Z/2),
and H,(MU;Z) . ... ... . 297

10.8 Generalized orientations, the generalized Thom isomorphism,
and the generalized Poincaré and Alexander duality theorems 300

10.8.1 Orientations. . . . . . . .. ... . ... ... 301

10.8.2 Poincaré and Alexander duality, and the Thom isomor-
phism for generalized (co)homology . . ... .. ... 303

10.8.3 Spanier-Whitehead duality and Atiyah duality . . . . 309

10.9 Eilenberg-MacLane spectra and the Steenrod algebra . . .. 317



Contents

X
10.9.1 Cohomology operations . . . . ... ... ... .... 318
10.9.2 The axioms and some consequences . . . . . .. .. . 322
10.9.3 Basic algebraic properties . . . . .. .. ... ... 324
10.9.4 The Hopf Invariant . . . . . . .. ... ... .. .... 328
10.9.5 Definitions . . . . . . .. . ... ... .. 332
10.9.6 Free modulesover A, . ... ... ... .. .. .... 335
11 Cobordism theory 337
11.1 Studying cobordism via stable homotopy: the Pontrjagin-Thom
Theorem . . . . . . .. 338
11.2 Unoriented cobordism: Thom’s calculation . . . .. ... .. 346
11.3 Almost complex cobordism: Milnor’s calculation . . . .. .. 362
11.4 Framed, Oriented, and Spin cobordism . . . ... ... ... 362
11.5 Cobordism categories and the classifying space of diffeomor-
phisms of manifolds . . . . . ... ... ... 0L 362
12 Classical Morse Theory 363
12.1 The Hessian and the index of a critical point . . . . . . . .. 363
12.2 Morse Functions . . . . . .. ... ... L oL, 365
12.3 The Regular Interval Theorem . . . .. ... .. .. ... .. 369
12.4 Passing through a critical value . . .. ... ... ... ... 372
12.5 Homotopy equivalence to a CW complex and the Morse in-
equalities . . . . ... Lo Lo 378
13 Spaces of Gradient Flows 385
13.1 The gradient flow equation . . . . ... ... ... ... ... 385
13.2 Stable and unstable manifolds . . . ... ... ... ... .. 393
13.3 The Morse-Smale condition . . . . .. .. ... ... ... .. 402
13.4 The moduli space of gradient flows M(a,b), its compactifica-
tion, and the flow category of a Morse function . . . . .. .. 409
13.4.1 The moduli space M(a,b) . . . . . ... ... .. ... 409
13.4.2 The compactified moduli space of flows and the flow
category . .. ... 409
A Appendix: Manifolds with Corners 415
B Appendix: Classifying Spaces and Morse theory 417
C Appendix: Cohomology operations via Morse theory 419
D Appendix: Floer homotopy theory 421

Bibliography 423



Introduction

Differential Topology is the study of the topology of differentiable manifolds
and differentiable mappings between them. This subject is of central impor-
tance throughout much of mathematics, especially those areas with a geomet-
ric perspective, such as differential geometry, geometric analysis, and algebraic
geometry.

In these notes we will assume the reader is familiar with the basics of
algebraic topology, such as the fundamental group, homology, and cohomology.
The text by Hatcher [41] is an excellent reference for these topics. Perhaps
the most basic theorem concerning the algebraic topology of manifolds is the
Poincaré Duality theorem. Because not every student having completed a first
course in algebraic topology will have seen the Poincaré Duality theorem, we
begin these notes with a brief discussion of this topic in chapter 1, where
we basically summarize the approach to this important theorem contained in
Section 3.3 of [41].

The main content of these notes will be a variety of topics in Differential
and Algebraic topology. The main philosophy of the presentation here is to
show that there is no clear dividing line between these important areas of
topology. A modern study of Differential Topology relies on the techniques
of Algebraic Topology, and many important questions in Algebraic Topology
come from the study of differentiable manifolds.

The main goal of these notes is to introduce graduate students to topics
and methods of Differential and Algebraic topology, going from very basic
discussions to more specific topics of modern research. Our objective is that
the reader will obtain a literacy in these topics, so that the interested reader
can then pursue these topics in more depth. This is not a traditional textbook
that gives complete proofs of every theorem presented. Rather our goal is to
give the reader an introduction to a variety of important topics so that (s)he
obtains the familiarity necessary for deeper study and/or for applications to
related areas of mathematics. So we will often sketch a proof of a theorem,
when good references exist. We will therefore assume a certain mathematical
maturity of the reader, so that they can look up the details, or better yet,
supply the details themselves, of some of the beautiful results in Algebraic
and Differential Topology discussed here.

The topics covered in these notes include the following;:

e The basics of differentiable manifolds (tangent spaces, vector fields, tensor
fields, differential forms)

xi



xii

Introduction

Fiber bundles in general, Lie groups, principal bundles, vector bundles,
and their classification via universal bundles. Automorphisms of principal
bundles (gauge transformations) and their classifying spaces

Characteristic classes of vector bundles and their calculation
Embeddings, immersions, tubular neighborhoods, and normal bundles

Basic homotopy theory including homotopy groups, Serre fibrations, ob-
struction theory, Eilenberg-MacLane spaces, and spectral sequences

Transversality, and Intersection theory using Poincaré duality
Stable homotopy theory

The Pontrjagin-Thom construction and cobordism theory (including the
topology of cobordism categories and their relation to diffeomorphisms of
manifolds)

Morse theory, including flow categories and their classifying spaces.

These notes emanated from a variety of graduate courses I've given over

the years at Stanford University. The author is grateful to the students in
these courses for their inspiration and for their feedback.



1

Topological Manifolds and Poincaré
Duality

The subject of much of this book is the topology of manifolds. Manifolds of di-
mension n are topological spaces that have a well defined local topology (they
are locally homeomorphic to R™), but globally, two n-dimensional manifolds
may have very different topologies.

Nonetheless we will find that the homological structure of manifolds is
quite striking. In particular they satisfy an important, unifying property, called
“Poincaré Duality”. The discussion and proof of this property is the subject
of this chapter. As the reader will see, this property will be used throughout
the book, and is used in a basic way in many areas of topology and geometry.

Definition 1.1. An n-dimensional (topological) manifold is a Hausdor(f space
M™ that is locally homeomorphic to R™. That is, each point x € M"™ has a
neighborhood U, which is homeomorphic to R™, or equivalently, to the open
ball B = {v € R™ : |v| < 1}. A specific homeomorphism ¢ : U, — R™ is
called a chart around z. An open cover of M"™ consisting of charts is called an
atlas.

1.0.1 Orientations

We observe that the local-Euclidean property of manifolds has a manifestation
homologically. Namely, suppose M™ is a connected, n-dimensional manifold,
and let x € M™. Then the relative homology:

H,(M", M —z)= H,(UU—=x) by excision
~ H,(R",R" —{0}) Dby the local-Euclidean property

~ g (R n_{o})g{z ifq=0,n

0 otherwise

In particular, observe that the dimension n, is determined homologically.

Definition 1.2. Let M™ be an n-dimensional manifold. A local orientation
of M™ at x is a choice of generator of H,(M"™, M"™ — {z}) =2 Z
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FIGURE 1.1
These surfaces are all 2-dimensional manifolds, as they are all locally homeo-
morphic to R?. However their global topologies are quite different.
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Notice that there are two choices of local orientations at any point = €
M™, and a choice of orientation is equivalent to choosing an isomorphism

&, : Hy(M™, M"™ — {2}) = Z.

Definition 1.3. A manifold M™ is orientable, if there is a continuous choice of
local orientations at each point x € M™. A specific choice of such a continuous
choice of local orientations is called a (global) orientation of M™.

Of course this definition is not yet complete, because we have not yet
defined what is meant by a “continuous choice of local orientations”. To make
this precise, we use the theory of covering spaces.

For x € M™, let Or,(M™) be the set of local orientations of M™ at z. That
is, it is the set of generators of H,,(M™, M™ — x). As observed above, this is a
set with two elements, as there are two possible choices of generators for the
infinite cyclic group. Said another, but equivalent way, Or,(M™) is the set of
isomorphisms, o : H, (M™, M™ — x) = 7.

Let Or(M™) be the space of all local orientations on M™. That is, as a set,

Or(M™) = ) Or.(M"). (1.1)

rxeEM™

Proposition 1.1. There is a natural topology on Or(M™) with respect to
which the map p : Or(M™) — M" defined by p(v) = z if and only if v €
Or,(M™), is a two-fold covering space.

Before we prove this proposition, we note that we can, as a result, de-
fine what we mean by a “continuous choice of local orientations”. That
is, such a continuous choice would simply be a continuous cross section
o: M" — Or(M™) of this covering space. This means that o is a continuous
map with the property that p(o(z)) = = for all x € M™. Notice that such
a continuous section z — o(x) € Ory(M™) is precisely a continuous choice
of local orientation as x varies over all points of x € M™. The continuity is
reflected by the topology of Or(M™) stated in Proposition 1.1.

We now prove Proposition 1.1.

Proof. Let U = {(Uy, ¢u,) : @ € A} be an open cover of M™ by charts. That
is, M = U,cp Ua, and each ¢, : U, — R" is a homeomorphism. Notice that
for each pair «, § € A, there is a continuous map

Va5 : Ua NUg = Homeo(pu, (Ua NUg); ¢u,y(Ua NUR)

where the target is the group of homeomorphisms between these two open
subspaces of R™. This group of homeomorphisms is endowed with the compact-
open topology. Each such homeomorphism determines an isomorphism

Hp (90 (UaNUp); ¢a(UaNUp) —{¢a()}) = H, (¢5(UaNUg); d5(UaNUg)—{¢p(2)}).
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By excision, this in turn determines a self-isomorphism
H,(R",R" — {0}) = H,(R",R" — {0}).

Notice that since Hy, (R",R™ — {0}) = Z, The group of such self isomorphisms
consists of the identity and minus the identity. That is, this isomorphism group
is Z/2.

Thus 1, s determines a continuous locally constant (i.e constant on each
path component) map

\I/a’g Uy N U5 — Z/2 = {:I:l}.
We then define

Or(M") = [] Ua x Gen(H,(R",R" — {0}))/ ~ (1.2)
aEN

where Gen(H,(R",R™ — {0}) is the two-point set of generators of this ho-
mology group, and the equivalence relation ~ is defined by the following: If
x € Uy NUg and 7y € Gen(H,(R",R™ — {0})), then

(@,7) ~ (2, Wa,p(2)(7))

where (z,v) € Uy x Gen(H,(R",R" — {0})) and (x, ¥, 5(x)(v)) € Us x
Gen(H,(R™,R™ — {0})).
Or(M™), as defined by (1.2) then is given the quotient topology.
O

Exercise. Finish the proof of Proposition 1.1. Specifically show that as sets,
the two definitions of Or(M™) given in (1.1) and (1.2) are the same, and that
the map

p:Or(M™) — M"
(z,7) =

is a two-fold covering map.

Notice that if M™ is orientable, which is to say, the orientation double
cover admits a section, o : M™ — Or(M™), then it has another orientation,
called the opposite orientaion, and written —o, whose value on a point x € M™
is the unique point in Or,(M™) that is not equal to o(z).

Corollary 1.2. A manifold M™ admits an orientation if and only if the
orientation double covering p : Or(M™) — M™ is trivial. That is, it admits
an isomorphism of covering spaces, to the trivial double covering space, T :
M x Z/2 — M defined by projecting onto the first coordinate.
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Proof. Suppose M™ is orientable. Then the orientation double cover p :
Or(M™) — M™ admits a continuous section ¢ : M"™ — Or(M™). We can
then define a trivialization © of the covering space

M" x 72 —2— Or(M™)

d! |7

Mr s M"

by O(z,1) = o(z), and O(z, —1) = —o(x).

Conversely, assume that Or(M™) is trivial. That is, Or(M™) is isomorphic
to M X Z/2 as covering spaces. Since 7w : M™ x Z/2 — M™ clearly admits two
distinct sections, then so does p : Or(M™) — M™. O

It will be quite helpful to have the following homological implications of
orientability.

Theorem 1.3. Let M™ be an n-manifold and A C M™ a compact subspace.
Then

1. If a : M™ — Or(M™) is a section of the orientation double cover (i.e
an orientation of M™), then there exists a unique homology class as €
H,(M,M — A) whose image in H,(M,M — x) is a(z) for every x € A.

2. Hi(M,M — A) =0 fori>n.

Observation. A compact manifold is often called “closed”. Notice that if
M™ is a closed oriented manifold, we can let A = M™ and then the above
theorem implies that exists a unique “orientation class” or “fundamental class”
[M"] = apr € H, (M) = Z with the property that the restriction of [M"] to
H, (M"™, M™ — z) is the value of the orientation a(z).

Proof. We sketch the proof here. We refer the reader to Hatcher [41] Lemma
3.27.

The idea of the proof follows a theme that is often followed in studying
homological properties of manifolds. Namely, one proves the theorem first for
R™, which will imply a local version of the theorem for every manifold, and
then use “patching arguments” such as the Mayer-Vietoris sequence, to prove
the theorem for general manifolds.

We break down the proof of this theorem into four steps.

Step 1. We first observe that if the theorem is true for A and B (both
compact), as well as AN B, then the theorem is true for AU B.
Consider the following Mayer-Vietoris sequence:
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0— H,(M,M — (AUB)) 2 H,(M,M — A) & H, (M, M — B)
2 Hy(M,M — (AN B)) — - --

Here we are using the facts that (M — A)U(M — B) =M — (AN B) and
(M-—A)N(M-B)=M—-(AUB).

Notice that the zero on the left side is the assumption that H,, 41 (M, M —
(AnB))=0.

Notice that U(aa @ ap) = 0, since by assumption, a4 and ap re-
strict to the same class in H,(M,M — (AN B)). Using the fact that & is
a monomorphism, one can conclude that there is a unique class asup €
H,(M™ M™ — (AU B)) that restricts to ay in H,(M", M™ — A) and to
ap in H,(M™, M™ — B). This completes Step 1.

Step 2. Assume the theorem is true for M™ = R"™. We then prove the theorem
for general n-manifolds M™.

Notice that a compact set A C M™ can be written as a finite union A =
Ay U---U Ag, where each A; is a subspace of a chart A; C U;. We apply the
result of Step 1 to (A3 U---U Ag_1) and Ag. Notice that the intersection of
these two spaces is (A1 N Ag) U --- U (Ag—1 N Ag). This is a union of k — 1
compact subspaces, each of which is contained in a chart. By induction, we
could conclude the validity of the result in this step, if we knew it to be true
for k =1, i.e compact subsets A that are contained in a chart, A C U. But in

this case,
H,(M", M" - A) = H,(U,U - A)

by excision, which is isomorphic to H,(R"™,R™ — C), where C is a compact
subspace of R™. But by the assumptions of this step, we know the theorem to
be true in this case.

We are therefore reduced to proving the theorem for M™ = R"™.

Step 3. Assume M™ = R", and prove the theorem for the case A = A;U---U
Ay, where each A; is convex. The same argument as was used to prove Step 2
reduces this to the case when A is itself convex. In this case

HR",R" — A) =~ H,(R",R" — 1)

since A is contractible with a canonical contraction to any = € A. In particular
R" — A~R"—z.

We leave the general case of an arbitrary compact subspace A C R™ to the

reader. This argument is carried out in detail in Hatcher’s book [41].
O

We observe that if R is any commutative ring with unit, we could have
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done the entire discussion above using homology with R-coefficients. That is,
we may define a covering space

p:Or(M™ R) — M"
with the property that
p 1 (x) = Ory(M™; R) = Gen(H,(M", M™ — z; R)).

By Gen(H,(M™, M™ — x; R) we mean the following. By choosing a chart U
around z, one has an isomorphism H,,(M™, M™ —x; R) &2 H,(U,U — x; R) &
H,(R™",R" — z;R) = R. A generator of R is an element v € R such that
Ru=R. Gen(H,(M™, M™—z; R) is the preimage of the group of generators
of R under this isomorphism. We observe that this group of “generators” is
well defined. That is, it is independent of the choice of chart, even though the
chart is what defines the isormorphism of

Gen(H,(M"™, M™ — z; R)

with Gen(R).

Definition 1.4. If R is a commutative ring with unit, then an R-orientation
of an n-dimensional manifold M™ is a section of the “R-orientation covering
space” p: Or(M™; R) — M™.

Observations.

1. By sending 1 € Z to 1 € R, there is always a canonical ring homomorphism
Z — R. This induces a map of covering spaces Or(M"™) — Or(M™; R).
Thus if M™ is (Z) orientable, it is orientable with respect to any commu-
tative ring with unit R. In fact a choice of (Z) orientation of M™ induces
an R-orientation.

2. Let R = Z/2. Then since Gen(Z/2) = {1} is the trivial, one-element group,
then the covering space p : Or(M™;Z/2) — M" is a homeomorphism.
Thus it has a unique section. So every manifold is Z/2-orientable, and has
a unique Z/2-orientation.

3. Finally observe that Theorem 1.3 can be generalized to a statement about
R-orientations for any commutative ring R. In particular when R = Z/2
one has the following consequence.

Corollary 1.4. Let M™ be a connected, closed n-dimensional manifold. Then

Ho(M™Z)2) = 7,)2.
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1.0.2 Poincaré Duality

Poincaré duality states that for a closed, orientable n-dimensional manifold
M™, the k*"-cohomology group and the (n — k)*"* homology group are isomor-
phic. The isomorphism is given by the “cap product” with the fundamental,
or orientation class [M"] € H,(M). Before we state the Poincaré Duality
theorem more carefully, and in more generality, we recall the cap product op-
eration. We refer the reader to any introductory text in algebraic topology for
details.

Let X be any topological space, and R aa commutative ring with unit.
The cap product operation is an operation of the form
N:CrL(X;R) x CYX;R) — Cr_¢(X;R) for k> ¢

Let [vo, - --v;] represent the k- simplex spanned by vectors vg,---v; € RV,
where N is large. Let o € Cy(X; R), and ¢ € C*(X; R). Then one defines

cNG=000),, ) Tl o (1.3)
One will then find that the boundary of this cap product chain is given by
AoNe)=(-1)doNe¢—ondp) (1.4)

where 0 : C.(X;R) — C,_1(X;R) is the boundary operator and J :
CP(X;R) — CPTY(X;R) is the coboundary operator. Notice that this for-
mula quickly implies that the cap product of a cycle with a cocycle is a cycle,
and hence induces an operation

N: Hy(X;R) x HY(X;R) — Hy_¢(X;R). (1.5)

And indeed it gives operations on relative (co)homology:

N:Hy(X,A;R) x HY(X;R) — Hy_4(X, A; R) (1.6)
Hy(XA;R) x HY (X, A; R) — Hy_¢(X; R)

The reader can check that the cap product satisfies the following rather
odd naturality property:

fil@)ng = flan f*(¢)). (1.7)

This property becomes more reasonable (and easier to remember) when

one realizes that it simply says that if f : X — Y, then the following diagram
commutes:

Hi(X)xHY(X) —— Hp_(X)

T I

Hk(Y) XHE(Y) T) Hk_g(Y)
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Exercise. Show that the cap product is adjoint to the cup product in
cohomology. That is, prove that for ¢ € HYX;R), 0 € Hp(X;R), and
¥ € H**(X; R), then

(YUg;0) = (Y, 0N ). (1.8)
Here <, > represents the evaluation pairing of cohomology on homology.

The following is the basic statement of Poincaré Duality:

Theorem 1.5. (Poincaré Duality) If M™ is a closed, R-oriented n-
dimensional manifold with fundamental class [M"] € H,(M™; R), then the

map
D=[M"|n_:H*(M":R) - H,_(M"; R)

is an isomorphism for all k.

Exercise. Show that the Poincaré Duality theorem implies that if F' is a
field and M™ is a closed F-oriented manifold with fundamental class [M™] €
H,(M™; F), then the pairing
HY(M™ F) x H" *(M"™,F) — F (1.9)
¢ x = (pU, [M"])
is nonsingular for every k =0, -+ ,n.
In order to prove the Poincaré Duality theorem for compact manifolds,
it actually is useful to generalize the theorem to the setting of noncompact

manifolds. In this setting, however, one must use the notion of “cohomology
with compact supports”.

Roughly, a cochain with compact supports is one which is zero on chains
living outside some compact set. More carefully,

Cix;6) = |J CXX-KQ).
K compact

(Strictly speaking, by the union sign we mean the colimit.) The ordinary
coboundary map defines a cochain complex

s CHXG) S oYX ) D (1.10)
The resulting cohomology is written as H}(X; G).

Exercise. Show that ~
HZ(R™;G) = H*(S";G)

and more generally that

H*(X;G) = H*(X Uoo;G)
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where X U oo is the one-point compactification of X. Here we must assume
that the point at infinity in the one-point compactification has a contractible
open neighborhood.

Notice that by Theorem 1.3, that if M™ is an R-orientable n-manifold
with orientation «, then for every compact subspace K C M™", there is a
well-defined orientation class ax € H,(M™; M™ — K; R) that restricts to the
R-orientation a(z) € H,(M"™, M™ — {z}; R). Consider the cap product

H¥(M™ M™ — K;R) x H,(M",M" — K;R) — H,_,(M"; R).
Capping with a g defines an operation
Nag : H*(M™, M™ — K; R) — H,_(M™; R).

Taking the colimit over K defines a duality operation from the cohomology
with compact supports:

Dy - HS(M™ R) — H,_,(M™; R).
The following is the generalized form of Poincaré that we will prove:

Theorem 1.6. Let M™ be an R-oriented manifold. Then the duality map
Dy - HSY(M™; R) — H,_,(M™; R).
is an isomorphism for all k.

The proof of Theorem 1.6 (and thereby Theorem 1.5) involves a “patch-
ing” argument, for which we will need a lemma involving the Mayer Vietoris
sequence.

Notice that if K and L are compact subspaces of M, we have the set
theoretic properties,

(M-K)UM—-L)y=M—(KNL) and
(M—-K)n(M—-L)=M— (KUL).

So in cohomology there is a Mayer-Vietoris sequence

o= HYM;M — (KN L)) — H*(M,M — K)& H*(M,M — L) (1.11)
—H*(M,M — (KUL)) - H*Y(M,M — (KNL))—---

Now suppose M™ = U U W, where both U and W are open subsets. By
taking a limit over compact subsets, Mayer-Vietoris sequence (1.11) yields the
following Mayer-Vietoris sequence of cohomologies with compact supports:

= HYUNW) - HYU)® HY (W) - HFY(M™) - B Y U NW) — -

We leave to the reader to check the following lemma.
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Lemma 1.7. Let M™ be an R- oriented n-manifold with M = U UW | where
both U and W are open subsets. Then there is a commutative diagram of
Mayer-Vietoris sequences:

HYUNW) —rn  HFU)® HY(W) —wn HYM") —— HMYUNW) ——

lDUmW J/DU@DW lDM" J/DUHV

Hy (UMW) —— Hy o (U) @ Hyp (W) ——— Hy_y(M™) —— Hy oy (UNW) ——

Here all (co)homologies are taken with R-coefficients.

We now prove Theorem 1.6.

Proof. This proof has several steps.
Step 1. If M" = U UW, and Dy, Dw and Dynw are isomorphisms, then so
is DM,

This follows from the above Lemma 1.7 and the five lemma.

Step 2. The theorem holds for M™ = R".

Proof. Think of R™ as the interior of the closed unit ball around the origin,
B;. Let r be a number strictly between 0 and 1. Notice that

H,(B1, By — B,) = H,(B,,0B,) = H,(By,0B,) = H,(5") = Z.

Since any compact set K C R™ = interior(By) is a subset of By for some R,
we see that H}(R™) = H*(B;,0B;), and the reader can readily check that
taking the cap product with the generator of H,,(B1,9B1) gives the evaluation
map

H™(By,0B) = Hom(H,(By,0B,),7) = Hom(Z,Z) = 7.

where the last isomorphism s given by evaluating on a generator of
H, (B1,0By), which is to say, its fundamental class.

Step 3. The theorem holds for M™ an arbitrary open subset of R™.

Proof. Write M™ as a countable union of convex open sets in R™.
M= Ju;.
J

Let V; = Uj<i U;. Notice that both V; and V; N U; are unions of 4 — 1 convex
open sets. So we may make an inductive assumption that the theorem holds
for manifolds that are the union of less than or equal to ¢ — 1 convex open
sets in R™. So Dy, and Dy,ny, are isomorphisms. Then Step 1 implies that
Dy, uy, is an isomorphism. But V; UU; = V4. This completes the inductive
step.
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Step 4. The theorem holds if M™ is a countable union of open sets U; each
homeomorphic to R”.

Proof. This follows by the same argument as in Step 3, with “open set in
R™” replacing “convex open set in R™. We leave the details to the reader.

We are now done for manifolds that can be expressed as a countable union
of charts. We now prove the general case.

Step 5. The general case.

Proof. Consider the collection of open sets U € M™ for which Dy is an
isomorphism. This collection is partially ordered by inclusion. Notice that the
union of every totally ordered subcollection is again in this collection, by the
argument in Step 3.

Zorn’s Lemma implies that there is a maximal open set U for which this
theorem holds. We claim that U = M™. If U £ M"™, let x € M™ — U, and let
V be a chart around z. Since V' is homeomorphic to R™, the theorem holds
for V by Step 2. It also holds for U NV by Step 3. Therefore by Step 1, the
theorem holds for U U V. This contradicts the maximality of U, so we must
conclude that U = M™. O



2
Fiber Bundles

In this chapter we define our basic object of study: locally trivial fibrations, or
“fiber bundles”. We discuss many examples, including covering spaces, vector
bundles, and principal bundles. We also describe various constructions on
bundles, including pull-backs, sums, and products.

Throughout all that follows, all spaces will be Hausdorff and paracompact.

2.1 Definitions and examples

Let B be connected space with a basepoint by € B, and p : E — B be a
continuous map.

Definition 2.1. The map p : E — B is alocally trivial fibration, or fiber
bundle, with fiber F if it satisfies the following properties:

L p~t(bo) = F
2. p: F — B is surjective

3. For every point z € B there is an open neighborhood U, C B and a
“fiber preserving homeomorphism” ¥y : p~1(U,) — U, x F, that is a
homeomorphism making the following diagram commute:

YU, —y U, x F

/| [pre

Ux - Ux

1R

Some examples:

e The projection map X x F' — X is the trivial fibration over X with fiber
F.

13
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e Let S' C C be the unit circle with basepoint 1 € S'. Consider the map
fn: S — St given by f,(2) = z". Then f, : S' — S is a locally trivial
fibration with fiber a set of n distinct points (the n'”* roots of unity in S').

e Let exp: R — S be given by
exp(t) = > € St
Then exp is a locally trivial fibration with fiber the integers Z.

e Recall that the n - dimensional real projective space RP™ is defined by
RP" = 5"/ ~

where z ~ —z, for x € S™ C R™t1,

Let p: S™ — RP™ be the projection map. This is a locally trivial fibration
with fiber the two point set.

e Here is the complex analogue of the last example. Let S?"*! be the unit
sphere in C™*!. Recall that the complex projective space CP" is defined
by

CP" = 52n+1/ ~
where © ~ uzx, where z € $?"*1 c C?, and v € S' C C. Then the
projection p : $?"T1 — CP" is a locally trivial fibration with fiber S*.

e Consider the Moebeus band M = [0,1] x [0,1]/ ~ where (¢,0) ~ (1 —
t,1). Let C be the “center circle” C' = {(1/2,s) € M} and consider the
projection

p:M—C
(t,s) — (1/2,5).

This map is a locally trivial fibration with fiber [0, 1].

Given a fiber bundle p : E — B with fiber F, the space B is called the
base space and the space E is called the total space. We will denote this data
by a triple (F, E, B).

Definition 2.2. A map (or “morphism”) of fiber bundles ® : (F1, By, B1) —
(Fy, Eq, Bs) is a pair of basepoint preserving continuous maps ¢ : F1 — Ea
and ¢ : By — By making the following diagram commute:

E1 L)EQ

a E

BlT)BQ
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Notice that such a map of fibrations determines a continuous map of the
ﬁbers, gf)o : Fl — FQ.

A map of fiber bundles ® : (Fy, E1, B1) — (Fs, Ea, Bs) is an isomorphism
if there is an inverse map of fibrations @1 : (Fy, Ey, By) — (F1, E1, By) so
that Po® ' =P Lo d =1.

Finally we say that a fibration (F, E, B) is trivial if it isomorphic to the
trivial fibration B x F — B.

Exercise. Verify that all of the above examples of fiber bundles are all
nontrivial except for the first one.

The notion of a locally trivial fibration is quite general and includes exam-
ples of many types. For example you may have already noticed that covering
spaces are examples of locally trivial fibrations. In fact one may simply define
a covering space to be a locally trivial fibration with discrete fiber. Two other
very important classes of examples of locally trivial fiber bundles are vector
bundles and principal bundles. We now describe these notions in some detail.

2.1.1 Vector Bundles

Definition 2.3. An n- dimensional vector bundle over a field k is a locally
trivial fibration p : E — B with fiber an n - dimensional k - vector space V
satisfying the additional requirement that the local trivializations

Vip N (U) = UxV

induce k - linear transformations on each fiber. That is, restricted to each
x € U, ¢ defines a k - linear transformation (and thus isomorphism,)

¢ipHa) —— {z} x V.

It is common to denote the data (V) E, B) defining an n - dimensional
vector bundle by a Greek letter, e.g (.

A “map” or “morphism” of vector bundles ® : { — £ is a map of fiber
bundles as defined above, with the added requirement that when restricted to
each fiber, ¢ is a k - linear transformation.

Examples

e Given an n - dimensional k vector space V, then B x V — B is the
corresponding trivial bundle over the base space B. Notice that since all n
- dimensional trivial bundles over B are isomorphic, we denote it (or more
precisely, its isomorphism class) by e,,.
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e Consider the “ Moebeus line bundle” p defined to the the one dimensional
real vector bundle (“line bundle”) over the circle given as follows. Let
E = [0,1] x R/ ~ where (0,t) ~ (1,—t). Let C' be the “middle” circle
C ={(s,0) € E}. Then p is the line bundle defined by the projection

p:E—C
(s,t) = (s,0).

e Define the real line bundle v; over the projective space RP™ as follows.
Let x € S™. Let [x] € RP™ = 5™/ ~ be the class represented by z. Then
[x] determines (and is determined by) the line through the origin in R*+!
going through z. It is well defined since both representatives of [x] (z and
—x) determine the same line. Thus RP™ can be thought of as the space of
lines through the origin in R"*!. Let E = {([z],v) : [x] € RP",v € [z]}.
Then v, is the line bundle defined by the projection

p: E— RP"
([z],v) = [x].

Exercise. Verify that the RP! is a homeomorphic to a circle, and the
line bundle v; over RP! is isomorphic to the Moebeus line bundle .

e By abuse of notation we let 7; also denote the complex line bundle over
CP" defined analogously to the real line bundle «; over RP™ above.

e Let Gri(R™) (respectively Gri(C™)) be the space whose points are k -
dimensional subvector spaces of R™ (respectively C™). These spaces are
called “Grassmannian” manifolds, and are topologized as follows. Let
Vi(R™) denote the space of injective linear transformations from R* to
R™. Let Vi (C™) denote the analogous space of injective linear transforma-
tions CF < C™. These spaces are called “Stiefel manifolds”, and can be
thought of as spaces of n x k matrices of rank k. These spaces are given
topologies as subspaces of the appropriate vector space of matrices. To
define Gri(R™) and Gri(C™), we put an equivalence relation on V;(R™)
and Vi (C") by saying that two transformations A and B are equivalent
if they have the same image in R™ (or C™). If viewed as matrices, then
A ~ B if and only if there is an element C € GL(k,R) (or GL(k,C)) so
that A = BC. Then the equivalence classes of these matrices are com-
pletely determined by their image in R™ (or C"), i.e the equivalence class
is determined completely by a k - dimensional subspace of R™ (or C").
Thus we define

Gri(R") = Vi(R")/ ~ and  Grg(C") = Vi(C")/ ~

with the corresponding quotient topologies.
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Consider the vector bundle ~; over Gri(R™) whose total space F is the
subspace of Grg(R™) x C™ defined by

E={Ww):WeGry(R")andw € W C R"}.
Then -4 is the vector bundle given by the natural projection

E— Grk(R”)
(W,w) = W

For reasons that will become more apparent later in these notes, the bun-
dles 7 are called the “universal” or “canonical” k - dimensional bundles
over the Grassmannians.

e Notice that the universal bundle 75 over the Grassmanians Gry(R™) and
Gri(C™) come equipped with embeddings (i.e injective vector bundle
maps) in the trivial bundles Gri(R"™) x R™ and Gri(C™) x C™ respec-
tively. We can define the orthogonal complement bundles %ﬁ to be the
n — k dimensional bundles whose total spaces are given by

Ef ={(W,v) € Grg(R") x R" : v L W}

and similarly over Gri(C™). Observe that the natural projection to the
Grassmannian defines n — k dimensional vector bundles (over R and C
respectively).

Exercises

1. Verify that ~y is a k -dimensional real vector bundle over Gry(R™).

2. Define the analogous bundle (which by abuse of notation we also call ;)
over Grp(C™). Verify that it is a k-dimensional complex vector bundle over
Grk ((Cn)

3. Verify that RP"~! = Gry(R") and that the line bundle 7; defined above is
the universal bundle. Do the analogous exercise with CP"~! and Gry(C").

An important notion associated to vector bundles (and in fact all fibra-
tions) is the notion of a (cross) section. We've already encountered this notion
when the fiber bundle is a covering space in our discussion of orientations in
Chapter 1.

Definition 2.4. Given a fiber bundle
p:E—B

a section s is a continuous map s : B — E such that pos = identity : B — B.
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Notice that every vector bundle has a section, namely the zero section

z:B— FE
x — 0,

where 0, is the origin in the vector space p~!(z). However most geometrically
interesting sections have few zero’s. Indeed as we will see later, an appropriate
count of the number of zero’s of a section of an n - dimensional bundle over an
n - dimensional manifold is an important topological invariant of that bundle
(called the “Euler number”). In particular an interesting geometric question is
to determine when a vector bundle has a nowhere zero section, and if it does,
how many linearly independent sections it has. (Sections {si,--, s} are
said to be linearly independant if the vectors {s1(z), -, sm(x)} are linearly
independent for every x € B.) These questions are classical in the case where
the vector bundle is the tangent bundle, as we will see later in our discussion
of differentiable manifolds. A section of the tangent bundle is called a vector
field.The question of how many linearly independent vector fields exist on
the sphere S™ was answered by J.F. Adams [3] in the early 1960’s using
sophisticated techniques of homotopy theory.

Exercises (from [74])

1. Let € S™, and [z] € RP™ be the corresponding element. Consider the
functions f; ; : RP" — R defined by f; ;j([]) = z;x;. Show that these func-

tions define a diffeomorphism between RP™ and the submanifold of R(n+1)?
consisting of all symmetric (n + 1) x (n + 1) matrices A of trace 1 satisfying
AA = A.

2. Use exercise 1 to show that RP™ is compact.

3. Prove that an n -dimensional vector bundle ¢ has n - linearly indepen-
dent sections if and only if  is trivial.

2.1.2 Principal Bundles

Principal bundles are basically parameterized families of topological groups,
and often Lie groups. (A Lie group is a topological group with a compatible
differentiable structure. Such structures will be discussed in Chapter 3.) In
order to define the notion of a principal bundle carefully we first review some
basic properties of group actions.

Recall that a right action of topological group G on a space X is a map

w: X xG—-X
(x,9) = g

satisfying the basic properties
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l.z-1=zxforallz € X

2. z(g192) = (zg1)g2 for all x € X and g1, g2 € G.

Notice that given such an action, every element g acts as a homeomor-
phism, since action by g~! is its inverse. Thus the group action yu defines a
map

u: G — Homeo(X)

where Homeo(X) denotes the group of homeomorphisms of X. The two condi-
tions listed above are equivalent to the requirement that p: G — Homeo(X)
be a group homomorphism.

Let X be a space with a right G - action. Given z € X, let G = {xg :
g € G} C X. This is called the orbit of x under the G - action. The isotropy
subgroup of x, Iso(z), is defined by Iso(z) = {g € G : zg = x} Notice that
the map

G —2G

defined by sending g to zg defines a homeomorphism from the coset space to
the orbit
G/Iso(z) —— 2G C X.

A group action on a space X is said to be transitive if the space X is the
orbit of a single point, X = xG. Notice that if X = (G for some zy € X, then
X = zG for any x € X. Notice furthermore that the transitivity condition is
equivalent to saying that for any two points x1,x2 € X, there is an element
g € G such that x1 = zog. Finally notice that if X has a transitive G - action,
then the above discussion about isotropy subgroups implies that there exists
a subgroup H < G and a homeomorphism

G/H —=— X.

Of course if X is smooth, G is a Lie group, and the action is smooth, then the
above map would be a diffeomorphism.

A group action is said to be (fixed point) free if the isotropy groups of
every point x are trivial,

Iso(xz) = {1}

for all x € X. Said another way, the action is free if and only if the only time
there is an equation of the form zg = z is if g = 1 € G. That is, if for g € G,
the fixed point set Fiz(g) C X is the set

Fiz(g) ={x € X : zg = z},
then the action is free if and only if Fiz(g) =0 forall g #£1 € G.

We are now able to define principal bundles.

Definition 2.5. Let G be a topological group. A principal G bundle is a fiber
bundle p : E — B with fiber F' = G satisfying the following properties.
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1. The total space E has a free, fiberwise right G action. That is, it has a
free group action making the following diagram commute:

ExG —“ 5 FE

e E

Bx{l1} = B
where € is the constant map.

2. The induced action on fibers
pip () x G —p ()
is free and transitive.

3. There exist local trivializations

¥ pY(U) — = L UxG

that are equivariant. That is, the following diagrams commute:

N U)xG 2L UxGxG

o

HJ, J{lx mult.

p~HU) % U x G.

Notice that in a principal G - bundle, the group G acts freely on the total
space E. It is natural to ask if a free group action suffices to induce a principal
G - bundle. That is, suppose E is a space with a free, right G action, and define
B to be the orbit space

B=FE/G=E/~

where y; ~ yo if and only if there exists a g € G with y; = ysg (i.e if and
only if their orbits are equal: y1G = y2G). Define p : E — B to be the
natural projection, E — E/G. Then the fibers are the orbits, p~*([y]) = yG.
So for p: E — B to be a principal bundle we must check the local triviality
condition.

An important example of this situation is the following (taken from the
notes on principal bundles by S. Mitchell [77]): Consider the additive group
of real numbers, R, and its subgroup of rational numbers, Q. As a subgroup
of R, Q acts freely on the right by translation:

RxQ—R.
(t,q) = t+q
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However the quotient map R — R/Q is clearly not a principal Q- bundle.
For if it had locally trivial neighborhoods, then since R/Q has the trivial topol-
ogy, it would have to be globally trivial. But clearly R is not homeomorphic
to R/Q x Q.

To avoid this type of example we simply define a subgroup H of G to be
admissible if the quotient G — G/H is a principal bundle, i.e it has locally
trivial neighborhoods. Clearly any subgroup of a discrete group is admissible.
It is also known that any closed subgroup of a Lie group is admissible [82].

Proposition 2.1. Suppose G — P — B is a principal G-bundle. Suppose
H < G is an admissible subgroup. Then

H—P— P/H

is a principal H-bundle.

Proof. . For any subgroup H we have that
P/H=PxgG/H

where the right side is the quotient of the diagonal action of G on P x G/H.
The fact that
P=Px¢G—PxgG/H=P/H

has local trivializations follows from that facts that P - P/G and G — G/H
have local trivializations. O

Examples.
e The projection map p : S2"*+! — CP” is a principal S' - bundle.

e Let Vi(R™) be the Stiefel manifold of rank k& n X k matrices described
above. Then the projection map

p: Vi(R") = Gri(R")

is a principal GL(k,R) - bundle. Similarly the projection map
p: Vi(C") = Grg(C™)

is a principal GL(k,C) - bundle.

e Let Vi(R™)? C R denote those n x k matrices whose k - columns are
orthonormal n - dimensional vectors. This is the Stiefel manifold of or-
thonormal k - frames in R™. Then the induced projection map

p: Vi(RMO = Grp(R™)
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is a principal O(k) - bundle. Similarly, if V;(C")Y is the space of or-
thonormal k - frames in C™ (with respect to the standard Hermitian inner
product), then the projection map

p: Vi(CY — Gre(C™)
is a principal U(n) - bundle.
e There is a homeomorphism
p:UM)/UM—1) ——— §2n-1
and the projection map U(n) — S?"~! is a principal U(n — 1) - bundle.

To see this, notice that U(n) acts transitively on the unit sphere in C™ (i.e
S§2n=1). Moreover the isotropy subgroup of the point e; = (1,0,---,0) €
S§2n=1 are those elements A € U(n) which have first column equal to
e1 = (1,0,---,0). Such matrices also have first row = (1,0,--- ,0). That

is, A is of the form
1 0
= )

where A’ is an element of U(n —1). Thus the isotropy subgroup Iso(e;)
U(n — 1) and the result follows.

Notice that a similar argument gives a diffeomorphism SO(n)/SO(n—1) =
Sn—t

(a2

e There is a homeomorphism

p:U(n)/U(n—k) —— V,(CMV.

The argument here is similar to the above, noticing that U(n) acts tran-
sitively on V3 (C")Y, and the isotopy subgroup of the n x k matrix

10 0 --- 0
o1 0 --- 0
oo 1 --- 0
““lo o 0 1
0 0 0 O
o0 -~ 0 O
consist of matrices in U(n) of them form
10 0 -~ 00 O -~ 0O
o1 o0 --- 0
0 0 1 0 : " :
0 0 o 10 O --- 00

o) @
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where B is an (n — k) x (n — k) dimensional unitary matrix.

e A similar argument shows that there are homeomorphisms

p: UM/ (Uk) x Un—k)) —— Gri(C")
and

p:0(n)/ (O(k) x O(n— k)) —— Gri(R")

Principal bundles define other fiber bundles in the presence of group ac-
tions. Namely, suppose p : ' — B be a principal G - bundle and F is
a space with a cellular right group action. Then the product space F x F
has the “diagonal” group action (e, f)g = (eg, fg). Consider the orbit space,
E x¢ F = (FE x F)/G. Then the induced projection map

p:ExqF — B

is a locally trivial fibration with fiber F'.
For example we have the following important class of fiber bundles.

Proposition 2.2. Let G be a compact topological group and K < H < G
closed subgroups. Then the projection map of coset spaces

p:G/K —- G/H

is a fiber bundle with fiber H/K .

Proof. Observe that G/K = G x iy H/K where H acts on H/K in the natural
way. Moreover the projection map p : G/K — G/H is the projection can be
viewed as the projection

G/K =G xy HK —» G/H

and so is the H/K - fiber bundle induced by the H - principal bundle G —
G/H via the action of H on the coset space H/K. O

Example

We know by the above examples, that U(2)/U(1) = S3, and that
U(2)/U1) x U(1) = Gri(C?) = CP! = S2. Therefore there is a principal
U(1) - fibration

p:U@2)/UQ1) = UQR)/UA) x U(1),

or equivalently, a principal U(1) = S* fibration

p: 83— 52
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This fibration is the well known “Hopf fibration”, and is of central importance
in both geometry and algebraic topology. In particular, as we will see later,
the map from S® to S? gives an nontrivial element in the homotopy group
73(S5?), which from the naive point of view is quite surprising. It says, that,
in a sense that can be made precise, there is a “three dimensional hole” in
S? that cannot be filled. Many people (eg. Whitehead, see [102]) refer to this
discovery as the beginning of modern homotopy theory.

The fact that the Hopf fibration is a locally trivial fibration also leads to an
interesting geometric observation. First, it is not difficult to see directly (and
we will prove this later) that one can take the upper and lower hemispheres of
52 to be a cover of S? over which the Hopf fibration is trivial. That is, there
are local trivializations,

Y41 DI x St — p (D)
and
Y_:D* x St = p~H(D?)

where Di and D2 are the upper and lower hemispheres of S?, respectively.
Putting these two local trivializations together yields the following classical
result:

Theorem 2.3. The sphere S3 is homeomorphic to the union of two solid tori
D? x S' whose intersection is their common torus boundary, S* x St.

As another example of fiber bundles induced by principal bundles, suppose
that
p:G— GL(n,R)

is a representation of a topological group G, and p : E — B is a principal G
bundle. Then let R™(p) denote the space R™ with the action of G given by the
representation p. Then the projection

ExgR"(p)— B

is a vector bundle.

Exercise.

Let p : Vi(R™) — Gri(R™) be the principal bundle described above. Let R™
have the standard GL(n,R) representation. Proved that the induced vector
bundle

p: Vi(R") Xgr(nr R”
is isomorphic to the universal bundle ~; described in the last section.

In the last section we discussed sections of vector bundles and in particular
vector fields. For principal bundles, the existence of a section (or lack thereof)
completely determines the triviality of the bundle.
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Theorem 2.4. A principal G - bundle p : E — B is trivial if and only if it
has a section.

Proof. If p : E — B is isomorphic to the trivial bundle B x G — B, then
clearly it has a section. So we therefore only need to prove the converse.
Suppose s : B — FE is a section of the principal bundle p : E — B. Define
the map
Yv:BxG—=FE

by ¥ (b, g) = s(b)g where multiplication on the right by ¢ is given by the right
G - action of G on E. It is straightforward to check that 1 is an isomorphism
of principal G - bundles, and hence a trivialization of E. O

2.1.3 Clutching Functions and Structure Groups
Let p : E — B be a fiber bundle with fiber F. Cover the basespace

B by a collection of open sets {U,} equipped with local trivializations
VYo Uy X F = p~1(U,)- Let us compare the local trivializations on the
intersection: U, N Ug:

-1
Us Uy x F —2 p (U NUs) 2 U, N Us x F.

For every z € U, NUg, ¢! o 1g determines a homeomorphism of the fiber
F. That is, this composition determines a map ¢q 5 : Uy NUs — Homeo(F).
These maps are called the clutching functions of the fiber bundle. When the
bundle is a real n - dimensional vector bundle then the clutching functions
are of the form

a5 : U NUg — GL(H,R).

Similarly, complex vector bundles have clutching functions that take values in
GL(n,C).
If p: E — Bis a G - principal - bundle, then the clutching functions take
values in G:
ba.p: U NUg — G.

In general for a bundle p : E — B with fiber F, the group in which the
clutching values take values is called the structure group of the bundle. If
no group is specified, then the structure group is the homeomorphism group
Homeo(F).

The clutching functions and the associated structure group completely
determine the isomorphism type of the bundle. Namely, given an open covering
of a space B, and a compatible family of clutching functions ¢ 5 : UoNUg —
G, and a space F' upon which the group acts, we can form the space

E:UUaxF/N
(e}
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where if © € U, N Ug, then (z, f) € U, x F is identified with (z, f¢q g(x)) €
Ug x F. I is the total space of a locally trivial fibration over B with fiber
F and structure group G. If the original data of clutching functions came
from locally trivializations of a bundle, then notice that the construction of
E above yields a description of the total space of the bundle. Thus we have
a description of the total space of a fiber bundle completely in terms of the
family of clutching functions.

Suppose ( is an n - dimensional vector bundle with projection map p :
E — B and local trivializations 1, : Uy X R® — p~1(U,). Then the clutching
functions take values in the general linear group

¢a,p: UsNUg — GL(n,R).

So the total space E has the form E = |J,_, Uy x R"/ ~ as above. We can then
form the corresponding principal GL(n,R) bundle with total space

Ear =|JUa x GL(n,R)

with the same clutching functions. That is, for z € U, NUg, (z,9) € Uy %
GL(n,R) is identified with (z,g - ¢a,p(x)) € Ug x GL(n,R). The principal
bundle

p: FEqr -+ B

is called the associated principal bundle to the vector bundle ¢, or sometimes
is referred to as the associated frame bundle.

Observe also that this process is reversable. Namely if p : P — X is
a principal GL(n,R) - bundle with clutching functions 6,5 : Vo, N Vg —
GL(n,R), then there is an associated vector bundle p : Pgn — X where

J@ZUmxw

where if z € V,, N Vg, then (z,v) € V, X R” is identified with (z,v -0, g(x)) €
Vg x R"™.

This correspondence between vector bundles and principal bundles proves
the following result:

Theorem 2.5. Let Vect®(X) and VectS(X) denote the set of isomorphism
classes of real and complex n - dimensional vector bundles ovr X respectively.
For a Lie group G let Pring(X) denote the set of isomorphism classes of
principal G - bundles. Then there are bijective correspondences

Vect®(X) ——— Pringpmz)(X)

VectS(X) —= Pringpn,c)(X).
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This correspondence and theorem 1.6 allows for the following method of
determining whether a vector bundle is trivial:

Corollary 2.6. A wvector bundle ( : p : E — B is trivial if and only if its
associated principal GL(n) - bundle p : Eqr, — B admits a section.

Clutching functions and structure groups are also useful in studying struc-
tures on principal bundles and their associated vector bundles.

Definition 2.6. Let p: P — B be a principal G - bundle, and let H < G be
a subgroup. P is said to have a reduction of its structure group to H if and
only if P is isomorphic to a bundle whose clutching functions take values in
H:

bap:UsNUsg = H <G.

Let P — X be a principal G - bundle. Then P has a reduction of its
structure group to H < G if and only if there is a principal H - bundle
P — X and an isomorphism of G bundles,

PxyG ——=— P

! l

X = X

Definition 2.7. Let H < GL(n,R). Then an H - structure on ann - dimen-
sional vector bundle ¢ is a reduction of the structure group of its associated
GL(n,R) - principal bundle to H.

Examples.

e A {1} < GL(n,R) - structure on a vector bundle ( or its associated princi-
pal bundle) is a trivialization or framing of the bundle. A framed manifold
is a manifold with a framing of its tangent bundle.

e Given a 2n - dimensional real vector bundle (, an almost complex struc-
ture on ¢ is a GL(n,C) < GL(2n,R) structure on its associated principal
bundle. An almost complex structure on a manifold is an almost complex
structure on its tangent bundle.

We now study two examples of vector bundle structures in some detail:
Euclidean structures, and orientations.

Example 1: O(n) - structures and Euclidean structures on vector
bundles.
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Recall that a Euclidean vector space is a real vector space V' together with a
positive definite quadratic function

w:V =R,

Specifically, the statement that p is quadratic means that it can written in
the form
p(v) = 3 aiw)ilv)
i

where each «; and §; : V' — R is linear. The statement that p is positive
definite means that
w(v) >0 forwv#0.

Positive definite quadratic functions arise from, and give rise to inner prod-
ucts (i.e symmetric bilinear pairings (v, w) — v - w) defined by

1
vew = o (u(v +w) = p(v) = p(w)).
Notice that if we write |v| = /v - v then |v|? = u(v). So in particular there is
a metric on V.

This notion generalizes to vector bundles in the following way.

Definition 2.8. A Fuclidean vector bundle is a real vector bundle { : p: B —
B together with a map
wE—R

which when restricted to each fiber is a positive definite quadratic function.
That is, p induces a Fuclidean structure on each fiber.

Exercise.

Show that an O(n) - structure on a vector bundle ¢ gives rise to a Euclidean
structure on ¢. Conversely, a Euclidean structure on ¢ gives rise to an O(n) -
structure.

Hint. Make the constructions directly in terms of the clutching functions.

Definition 2.9. A smooth Euclidean structure on the tangent bundle p :
TM — R s called a Riemannian structure on M.

Exercises.

1. Existence theorem for Euclidean metrics. Using a partition of unity, show
that any vector bundle over a paracompact space can be given a Euclidean
metric.
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2. Isometry theorem. Let p and p’ be two different Euclidean metrics on the
same vector bundle ¢ : p: E — B. Prove that there exists a homeomorphism
f: E — E which carries each fiber isomorphically onto itself, so that the
composition po f: E — R is equal to p/. (Hint. Use the fact that every
positive definite matrix A can be xpressd uniquely as the square of a positive
definite matrix v/A. The power series expansion

1 1
tH+X)=Vt(I+ —-X — —X? 4+ —...
(1 +X) = VHI + 5, X = 5 X2 =),
is valid providing that the characteristic roots of tI + X = A lie between 0
and 2t. This shows that the function A — v/A is smooth.)

Example 2: SL(n,R) - structures and orientations.

Recall that an orientation of a real m - dimensional vector space V
is an equivalence class of basis for V, where two bases {vi,---,v,} and
{wy, -+ ,wy} are equivalent (i.e determine the same orientation) if and only
if the change of basis matrix A = (a; ;), where w; = Zj a; ;v; has positive
determinant, det(A) > 0. Let Or(V) be the set of orientations of V. Notice
that Or(V) is a two point set.

For a vector bundle ¢ : p: F — B, an orientation is a continuous choice of
orientations of each fiber. Said more precisely, we may define the “orientation
double cover” Or(¢) to be the two - fold covering space

Or(¢) = EgL Xarn,r) Or(R™)

where Fgp, is the associated principal bundle, and where GL(n,R) acts on
Or(R™) by matrix multiplication on a basis representing the orientation.

Definition 2.10. ( is orientable if the orientation double cover Or(¢) admits
a section. A choice of section is an orientation of (.

This definition is reasonable, in that a continuous section of Or(¢) is a
continuous choice of orientations of the fibers of (.

Recall that SL(n,R) < GL(n,R) and SO(n) < O(n) are the sub-
groups consisting of matrices with positive determinants. The following is
now straightforward.

Theorem 2.7. An n - dimensional vector bundle { has an orientation if and
only if it has a SL(n,R) - structure. Similarly a Euclidean vector bundle is
orientable if and only if it has a SO(n) - structure. Choices of these structures
are equivalent to choices of orientations.

Exercise. Show that a manifiold M is orientable if and only if its its tangent
bundle 7M is orientable.
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2.2 Pull Backs and Bundle Algebra

In this section we describe the notion of the pull back of a bundle along a
continuous map. We then use it to describe constructions on bundles such as
direct sums, tensor products, symmetric and exterior products, and homo-
morphisms.

2.2.1 Pull Backs

Let p: F — B be a fiber bundle with fiber F'. Let A C B be a subspace. The
restriction of E to A, written E|, is simply given by

ElA = p_l(A)~

The restriction of the projection p : E|, — A is clearly still a locally trivial
fibration with fiber F'.

This notion generalizes from inclusions of subsets A C B to general maps
f: X — B in the form of the pull back bundle over X, f*(E). This bundle is
defined by

f(E) ={(z,u) € X X E: f(x) = p(u)}.

Proposition 2.8. The map

py: fH(E) = X
(z,u) >z

is a locally trivial fibration with fiber F. Furthermore if . : A — B is an
inclusion of a subspace, then the pull-back (*(E) is equal to the restriction
Ej

A

Proof. Let {U,} be a collection of open sets in B and 1, : Uy x F — p~1(U,,)
local trivializations of the bundle p : E — B. Then {f~}(U,)} is an open
cover of X, and the maps

bal(f) [T Ua) x F = pp (F7H(UW)

defined by (x,y) = (z,%a(f(z),y)) are clearly local trivializations.
This proves the first statement in the proposition. The second statement
is obvious. O

We now use the pull back construction to define certain algebraic construc-
tions on bundles.
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Let p1 : E1 — By and ps : o — By be fiber bundles with fibers F; and
F5 respectively. Then the cartesian product

p1Xp22E1><E2*>Bl><BQ

is clearly a fiber bundle with fiber F} x F5. In the case when By = By = B,
we can consider the pull back (or restriction) of this cartesian product bundle
via the diagonal map

A:B—BxDB

x — (z,x).

Then the pull-back A*(E; x Ey) — B is a fiber bundle with fiber F; x Fy,
is defined to be the internal product, or Whitney sum of the fiber bundles F;
and Fs. It is written
E]_ D E2 = A*(El X Eg)

Notice that if Fy and Es are G; and G» principal bundles respectively,
then Fy; @ FEs is a principal G; X G2 - bundle. Similarly, if F; and Es are
n and m dimensional vector bundles respectively, then E; ® Fs is an n +
m - dimensional vector bundle. E1 @& F5 is called the Whitney sum of the
vector bundles. Notice that the clutching functions of F; & Es naturally lie
in GL(n,R) x GL(m,R) which is thought of as a subgroup of GL(n + m,R)
consisting of (n +m) x (n 4+ m) - dimensional matrices of the form

A 0
0 B
where A € GL(n,R) and B € GL(m,R).

We now describe other algebraic constructions on vector bundles. The first
is a generalization of the fact that a given a subspace of a vector space, the
ambient vector space splits as a direct sum of the subspace and the quotient
space.

Let n : E" — B be a k - dimensional vector bundle and ¢ : E¢ — B an n
- dimensional bundle. Let ¢+ : n < ( be a linear embedding of vector bundles.
So on each fiber ¢ is a linear embedding of a k - dimensional vector space into
an n - dimensional vector space. Define (/7 to be the vector bundle whose
fiber at = is ES/E1.

Exercise.

Verify that (/7 is an n — k - dimensional vector bundle over B.

Theorem 2.9. There is a splitting of vector bundles

C=nad/n.
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Proof. Give ¢ a Euclidean structure. Define n* C ¢ to be the subbundle whose
fiber at x is the orthogonal complement

E;iL:{veEgzv-w:OforallweEg}

Then clearly there is an isomorphism of bundles

nent =
Moreover the composition
mtC = ¢/
is also an isomorphism. The theorem follows. O

Corollary 2.10. Let ¢ be a Fuclidean n - dimensional vector bundle. Then
¢ has a O(k) x O(n — k) - structure if and only if ¢ admits a k - dimensional
subbundle n C C.

We now describe the dual of a vector bundle. So let ¢ : ES — B be an
n - dimensional bundle. Its dual, ¢* : E" — B is the bundle whose fiber at
x € B is the dual vector space ES” = Hom(E¢,R). If

{(150175 U N Ug — GL(R,R)}
are clutching functions for ¢, then
{#n5:UaNUs — GL(n,R)}

form the clutching functions for ¢*, where ¢, ;(z) is the adjoint (transpose)
of ¢a,p(x). The dual of a complex bundle is defined similarly.

Exercise.

Prove that ¢ and ¢* are isomorphic vector bundles. Hint. Give ¢ a Euclidean
structure.

Now let 17 : E" — B be a k - dimensional, and as above, ¢ : ES — B an
n - dimensional bundle. We define the tensor product bundle n ® ¢ to be the
bundle whose fiber at x € B is the tensor product of vector spaces, E @ ES.
The clutching fucntions can be thought of as compositions of the form

b0 5% 05,
1% Uo MU "% GL(k,R) x GL(n,R) —2— GL(kn,R)

where the tensor product of two linear transformations A : V3 — V5 and
B : W1 — W5 is the induced linear transformation AQB : ViQW; — Vo@Ws.
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With these two constructions we are now able to define the “homomor-
phism bundle”, Hom(n, (). This will be the bundle whose fiber at € B is
the k - m - dimensional vector space of linear transformations

Hom(E}, E5) = (EI)* ® ES.
So as bundles we can define

Hom(n,() =n"®¢.

Observation. A bundle homomorphsim 6 : 7 — ( assigns to every x € B
a linear transformation of the fibers, 6, : E” — ES. Thus a bundle homomor-
phism can be thought of as a section of the bundle Hom(n, (). That is, there
is a bijection between the space of sections, I'(Hom(n,()) and the space of
bundle homomorphisms, {6 : n — ¢}.






3

General Background on Differentiable
Manifolds

In geometry one most often studies manifolds that have differentiable struc-
tures. They are precisely the types of spaces on which one can do calculus and
study differential equations. We begin this chapter by defining these “differ-
entiable manifolds”.

Definition 3.1. An n-dimensional topological manifold M™ is a C"-
differentiable manifold if it admits a C”-differentiable atlas. This is an atlas
A={U,,Yy,) such that every composition of the form

Wy, oVl Wy (Us NUp) = Ua NUs = Wy, (Ua NUp)

is a C"-diffeomorphism of open sets in R™. We say that each pair of charts
(Ua, Yy, ) and (Ug, Yy,) have a “C"-overlap”.

We note that a C"-differentiable manifold M™ with atlas A admits a unique
maximal C"-atlas A containing A. Namely A consists of all charts which have
C"-overlap with every chart of A.

Notice that with this definition, it makes sense to say that a continuous
map between C7-differentiable manifolds, f: M™ — N™ is C"- differentiable
at © € M"™ if there are charts (U, ®) around z € M™ and (V,¥) around
f(z) € N with f(U) C V such that the map

Tofod ':0(U)— V()

is a differentiable map between open sets ®(U) C R™ and ¥(V) C R™. We
say that f is C"-differentiable if it is C"-differentiable at every point x € M™.

For the most part, in these notes we will be studying the topology of
“smooth”, meaning C'*°- differentiable manifolds.

In our definition, we assume that manifolds are always Hausdorff topo-
logical spaces. Recall that this means that any two points z, y € M can be
separated by disjoint open sets. That is, there are open sets Uy C M contain-
ing z and Uy C M containing y with U; N Us = (). Throughout these notes we
will also assume our manifolds are paracompact. Recall that a space X is
paracompact if every open cover U of X has a locally finite refinement. That
is there is another cover V), all of whose open sets are all contained in U, and

35
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so that V is locally finite. That is, each € M lies in only finitely many of the
open sets in V. Recall that a Hausdorff space is paracompact if and only if it
admits a partition of unity subordinate to any open cover U = {U;,i € A}.
Such a partition of unity is a collection of maps p; : X — [0, 1] so that

e The support supp (p;) C U;, and

> capilzr) =1 forevery z € X.

3.1 History

Reference: Hirsch’s book [44].

Historically, the notion of a differentiable manifold grew from geometry
and function theory in the 19th century. Geometers studied curves and sur-
faces in R?, and were mainly interested in local structures, such as curvature,
introduced by Gauss in the early part of the 19th century. Function theorists
were interested in studying “level sets” of differentiable functions F' : R™ — R,
i.e the spaces F~1(c) C R" for ¢ € R. They observed that for “most” values of
c these level sets are “smooth” and nonsingular. This was part of the analytic
study of “Calculus of Variations”, which let to “Morse theory” in the 20th
century.

In the mid-19th century Riemann broke new ground with the study of
what are now called “Riemann surfaces”. These were historically the first
examples of “abstract manifolds”, which is to say not defined to be a subspace
of some Euclidean space. Riemann surfaces represent the global nature of
the analytic continuation process. Riemann also studied topological invariants
of these surfaces, such as the “connectivity” of a surface, which is defined
to be the maximal number of embedded closed curves on a surface whose
union does not disconnect the surface plus one. Riemann showed in the 1860’s
that for compact, orientable surfaces, this number classifies the surface up to
homeomorphism. In particular for a surface of genus g, Riemann’s connectivity
number is 2g + 1.

In the early 20th century, Poincaré studied 3-dimensional manifolds in
his famous treatise, “Analysis Situs”. In that work Poincaré introduced some
notions in Algebraic Topology such as the fundamental group. The famous
“Poincaré Conjecture” which was proved by Perelman nearly a hundred years
later in 2003, states that every simply connected compact 3-dimensional man-
ifold is homeomoprhic, and indeed diffeomorphic to the sphere S3.

Poincaré’s conjecture was a statement about the classification of mani-
folds. Such a classification has been a key problem in differential topology
for the past hundred years. Currently there is great interest and work on the
classification of symmetries (“diffeomorphisms”) of manifolds.
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Herman Weyl defined abstract differentiable manifolds in 1912. But it was
not until the work of H. Whitney (1936-1940) when basic geometric and topo-
logical properties of manifolds, such as existence of embeddings into Euclidean
space, were proved. At that time the modern notion of differentiable manifold
became firmly established as a fundamental object in mathematics.

|
3.2 Examples and Basic Notions

3.2.1 Examples

Consider the following standard examples of manifolds:

1. Consider the unit sphere S™ C R™*!. It has an atlas consisting of two
charts. Let € > 0 be small. Then define

Uy = {(3517"' 7In+1) D T4l > *6}
U2 = {('rlv"' 7$n+1) L Tp+l < 6}

There are natural projections of Uy and Us onto B1(0) with C'*°-overlaps,
thus defining a smooth structure on S™.

2. Let RP" = 8™/ ~ where « ~ —z. This is the (real) projective space. This
is a C'°°-n-dimensional manifold. To see a smooth atlas we use “projective
coordinates”. These are obtained by viewing RP™ as the quotient of the
nonzero elements of Euclidean space, R"*! by the group action of the
nonzero real numbers, R* given by scalar multiplication:

RP" = (R™"' — {0}) /R*.

We describe a point in RP™ as the equivalence class of a point in R**1—{0},
which we denote using square brackets: [zg, 21, ,2,] € RP". For 0 <
1 < n define

U, = {[.’IJ(),"' ,l‘n] € RP” : Z; 7& 0}

Notice that RP" = Uy U --- U U, and that the map

v, U, — R"
Lo Ti—1 Tit1 Tn
[‘TOW" 7xn]*>(7a"' F S R T 77)
T T T T

defines a homeomorphism of U; onto R™. Moreover its easily checked that
these homeomorphisms have C*-overlaps. Thus {(U;, ¥;),: i =0,--- ,n}
is a smooth (C* ) atlas for RP™.
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FIGURE 3.1
Charts for S™

Exercise

Describe atlases for complex projective space CP™ and quaternionic projec-
tive space HIP"™, constructed similarly to the atlas described for RP™ described
above, using the complex numbers and the quaternions respectively, instead
of real numbers. Show that CP™ is a differentiable 2n-dimensional manifold,
and HP" is a differentiable 4n-dimensional manifold.

3.2.2 The tangent bundle

An important concept in the study of differentiable manifolds is that of a
tangent bundle.

Definition 3.2. Let M™ be a differentiable (C') n-dimensional manifold with
an atlasU = {U, : « € A}. A tangent vector to M at x € M is an equivalence
class of triples (z, a,v) € M x A x R™ under the equivalence relation

(x,a,v) ~ (z,5,u)

if D(¢pdy')(¢u(x))(v) = u. The tangent space of M at z, denoted T, M is
defined to be the set of all tangent vectors at x.

Notice that the functions we are differentiating in this definition are defined
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on open subspaces of Euclidean space. More specifically, they are defined on
open sets of the form ¢ (U, NUg) C R™ and take values in ¢5(U, NUg) C R™.

We leave it to the reader to verify that T, M is an n-dimensional real vector
space. One can also verify that this definition does not depend on the choice
of atlas or charts. The tangent bundle is defined to be the union of all tangent
spaces

T™ = | T.M.
zeM

So far T'M is defined only set-theoretically. We have yet to discuss its topology.
We do so as follows:

Definition 3.3. Let U = {(Uq, ¢o) : @ € A} be an atlas for a differentiable
n-dimensional manifold M™. Define the tangent bundle

TM =[] Us xR/ ~
acA
where (x,v) € U, x R™ is identified with (z,u) € Ug x R" if x € U, N Upg
and D(¢sdy1)(¢a(z))(v) = u. TM is given the quotient topology under this
identification.

We can give the tangent bundle a more concrete definition in the setting
where M™ is a subset of R” for some L. (We will later prove that every mani-
fold can be appropriately viewed as a subset of Euclidean space of sufficiently
high dimension.)

Assume M™ C RE. Given x € M™ C R, we say that a vector v € R” is
tangent to M™ at x € M if there exists an € > 0 and differentiable curve

v:(—€€) = M" CRE

such that %(0) = .

We define the tangent space T, M™ to be the set of all vectors tangent to
X. Clearly this is an n-dimensional real vector space. Moreover we can now
topologize the tangent bundle as a subspace of R x R%:

TM" = U T,M" c RY x RF
rzeM
veT,M" — (z,v).

There is a natural continuous projection map

p:TM — M
veT,M— M. (3.1)

Exercise
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Prove that the two definitions of tangent bundle given above are equivalent,
when the manifold M™ is a submanifold of R*. By “equivalent” we mean that
each of the definitions define vector bundles TM — M which are isomorphic
(as vector bundles).

A differentiable section of the tangent bundle ¢ : M™ — TM™ is called
a vector field. At every point of the manifold, a section picks out a tangent
vector. The question of which manifolds admit a nowhere zero vector field, and
if so, how many linearly independent vector fields are possible, has long been
a fundamental question in differential topology. (A collection of vector fields
are linearly independent if they pick out linearly independent tangent vectors
at every point.) A manifold is called parallelizable if its tangent bundle is
trivial. Notice that a parallelizable manifold of dimension n admits n linearly
independent vector fields.

Exercises

1. Show that a manifold M™ is parallelizable if and only if it admits n
linearly independent vector fields.

2. Show that the unit sphere S™ admits a nowhere zero vector field if n is
odd.

3. If S™ admits a nowhere zero vector field show that the identity map of
S™ is homotopic to the antipodal map. For n even show that the antipodal
map of S™ is homotopic to the reflection

T(‘Tla T 7x7l+1) = (_x17$27' te ,an_i,_l);

and therefore has degree —1. Combining these facts, show that S™ is not
parallelizable for n even, n > 2.

3.2.3 The implicit and inverse function theorems, embed-
dings and immersions

We assume the reader is familiar with the following basic theorems from the
analysis of differentiable maps on Euclidean space. We observe that they are
local theorems, and so can be used to study differentiable manifolds and maps
between them.

Theorem 3.1. (The Implicit Function Theorem - the surjective version) Let
U C R™ be an open subspace and f : U — R™ a C"-map, where r > 1. For
p € U, assume f(p) = 0. Suppose the derivative at p,
Df, :R™ - R"
is surjective. Then there is a local diffeomorphism ¢ of R™ at 0 such that
®(0) =p and
fo¢($1,"‘ y Lyt " axm) = (‘rlv"’ 7=Tn)'

That is, f o ¢ is the projection onto the first n-coordinates.
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There is another version of the implicit function theorem when the deriva-
tive is injective.

Theorem 3.2. (The Implicit Function Theorem - the injective version) Let
U CR™ be an open set and f: U — R™ a C"-map, where r > 1. Let ¢ € R"
be such that 0 € f~1(q). Suppose that

Dfo:R™ — R”

is injective. Then there is a local diffeomorphism ¢ of R™ such that ¥(q) =0
and

1/10f(=’51,"' 7xm) - (xl"" ,me,O,O,"' ,O) eR".
That is ¢ o f is the inclusion of the first m-coordinate azes.

Finally, consider the following theorem, which is equivalent to the implicit
function theorems.

Theorem 3.3. (Inverse Function Theorem) Let U C R™ be an open set and
f:U—=R" be a C"-map wherer > 1. If p € U is such that Df, : R™ — R™ is
invertible, then f is a C"-local diffeomorphism at p. That is there is an open
set V.C U CR"™ such that f : V — f(V) is a diffeomorphism.

We end with the definition of immersion and embedding.

Definition 3.4. Suppose f : M™ — N™ is C", for r > 1, where M™ and
N™ are C" manifolds of dimensions m and n, respectively. We say that f is
immersive at © € M if the linear map

Dfi T M — Tf(w)N

is injective. f is an immersion if f is immersive at every point x € M. We
use the symbol f: M™ % N™ to mean that f is an immersion.

Definition 3.5. Suppose f: M™ — N™ is C", for r > 1, where M™ and
N" are C" manifolds of dimensions m and n, respectively. We say that f is
submersive at € M if the linear map

Dfa; T M — Tf(I)N

is surjective. f is an submersion if f is submersive at every point x € M.

Definition 3.6. A C"-map f: M — N is an embedding if it is an immer-
sion and f maps M homeomorphically onto its image. In this case we write
f:M— N.

Finally we have the following definition.
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Definition 3.7. Suppose N is a C"-manifold, r > 1. A subspace A C N is
a C"-submanifold if and only if A is the image of a C"-embedding of some
mamnifold into N.

Exercises. 1. Prove that the follzpwing are C'°°- submanifolds of the space of
n x n matrices, Mat, ,(R) = R™ . Compute their dimensions.

1. GL,(R)
2. SLa(R)
3. SO(n).

2. (a) Let x € S™, and [z] € RP™ be the corresponding element. Consider
the functions f; ; : RP™ — R defined by f; ;([z]) = x;x;. Show that these func-
tions define a diffeomorphism between RP™ and the submanifold of R(n+1)?
consisting of all symmetric (n 4+ 1) x (n + 1) matrices A of trace 1 satisfying
AA = A.

(b) Use the above to show that RP™ is compact.

The following is an immediate corollary of Implicit Function Theorem (the
injective version).

Proposition 3.4. If f : M — N is an immersion, then it is a local embedding.
That is, around every x € M there is an open neighborhood U of x so that the
restriction f: U — N is an embedding.

Exercise Let 7 : X — X be a covering space. Let ® be a smooth structure on
X. Prove that there is a smooth structure ® on X so that 7 : (X, ®) — (X, ®)
is an immersion.

3.2.4 Manifolds with boundary

In many areas of mathematics one often confronts manifolds that have a
boundary. A closed disk in R™ is a basic example. In this section we describe
how the concepts developed above for smooth manifolds, can be generalized
to “smooth manifolds with boundary”.

Definition 3.8. The “upper half space” H' C R™ is the subspace
H" = {(z1,--- ,xn) € R" such that z, > 0}.

The boundary points of H™ are those (x1,- - , ) with x, = 0.

An n-dimensional topological manifold with boundary is then one that has
charts homeomorphic to open sets in H" rather than R™. That is, we have the
following definition, which is completely analogous to Definition 1.1 above.
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Definition 3.9. An n-dimensional topological manifold manifold with bound-
ary is a Hausdorff space M™ with the property that for every x € M, there is
an open neighborhood U containing x and a homeomorphism,

Yu:U =SV CH"

where V' is an open subspace of R™. The boundary of M™, written OM™ con-
sists of those points p € M™ for which there is an open neighborhood p € U
and a chart Yy : U =V c H" where Yu(p) is a boundary point of H".
Observe that the condition of p € M™ being a boundary point is independent
of the particular chart used.

We leave it for the reader to check that if M™ is a topological n-manifold
with boundary, then the boundary OM™ is a topological (n — 1)-dimensional
manifold (without boundary).

HZ

FIGURE 3.2
A 2-dimensional manifold with boundary

We need to be careful about the definition of submanifolds in the setting
of manifolds with boundary. First, for k¥ < n, consider a standard inclusion
H* < R™ mapping (z1,--- ,2x) to (z1, - ,T%,0,---0). A subspace V C R"
is a C"-dimensional submanifold if each = € V belongs to the domain of a
chart ¢ : U — R™ of R™ such that VN U = ¢~ (H*).

A general definition of a submanifold (with boundary) can be taken to be
the following;:

Definition 3.10. Let M be a C"-manifold, with or without boundary. A subset
N C M is a C"-submanifold if each x € N there is an open set subset U of
M containing z, a C” embedding g : U — R"™, such that

NNU =g~ (@"),
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A particularly important type of embedding of one manifold into another
is when one restricts to the boundary of the submanifold, the image of the
embedding lies in the boundary of the ambient manifold. This is called a neat
embedding,

Definition 3.11. An embedding e : N — M of C"-manifolds is neat if ON =
NNOM and N is covered by charts (¢,U) of M such that NNU = ¢~ (H¥).

FIGURE 3.3
N7 is neat, Ny and N3 are not.
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3.2.5 Regular Values and transversality

We begin this section with the notion of regular points and values as well as
critical points and values.

Definition 3.12. Suppose f : M — N is a C" map between C" manifolds,
where v > 1. A point x € M is called a regular point if fis submersive at x.
If w € M is not a regular point it is called a critical point. f(u) € N is then
called a critical value. If y € N is not a critical value it is called a regular
value. In particular every point y € N that is not in the image of f is a regular
value. If y € N is a regular value, its inverse image f~1(y) C M is called a
regular level set.

The following is one of the most fundamental theorems in differential topol-
ogy:

Theorem 3.5. (The Regular Value Theorem) Suppose f : M™ — N* is a
C"-map between C™ manifolds of dimension n and k respectively. Here r > 1.
If y € M is a regular value, then the regular level set f~1() C M™ is a C"-
submanifold of dimension n — k.

Proof. Since being a manifold is a local property, it suffices to prove this
theorem in the case when M"™ C R" is an open set, and N = R™. The theorem
now follows from the surjective version of the Implicit Function Theorem. [

The Regular Value Theorem for manifolds with boundary has the following
formulation.

Theorem 3.6. Let M ba a C" manifold with boundary, and N a C™ manifold
(with or without boundary). Here we are assuming r > 1. Let f : M — N be
a C" map. If y € N —ON s a reqular value for both f and f|,,,, then )
is a neat C" submanifold of M.
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FIGURE 3.4

f is the height function from the torus to the real line. It has 4 critical values.
The level sets of the critical values are shown in red, and regular sets of regular
values, which are all one-dimensional submanifolds, are shown in blue.
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We now want to discuss an important generalization of the concepts in-
volved in the Regular Value Theorem. This is the concept of transversality.
The following is probably the most conceptual setting for transversality.

Let N™ be an n-dimensional manifold, and let A C N and B C N be
submanifolds of dimensional p and ¢ respectively.

B -S4 N

E

We say that A and B have a transverse intersection in N if for every
r € AN B, the tangent spaces of the submanifolds A and B at x, together
span the entire tangent space of the ambient manifold N. That is,

T,A+T,B =T,N (3.2)

When A and B have transverse intersection we write A M B. We will see
that such transversal intersections are, in an appropriate sense, generic. We
begin, though, with the following theorem.

Theorem 3.7. Let A and B be submanifolds of the n-dimensional manifold
N, where Dim A = p and Dim B = q. Suppose furthermore that A th B. The
AN DB C N is a submanifold of dimension p+ q—n.

We will actually prove the following generalization of Theorem 3.7.

Let AP be a p-dimensional manifold and N™ an n-dimensional manifold
with a ¢-dimensional submanifold B¢ C N". Let f : A — N be a smooth
map. We say that f is transverse to B, and write f h B if whenever b € B is
such that f~1(b) is nonempty, then for any = € f~1(b)

Df.(T,A) + T,B = TyN. (3.3)

Notice that if f : A — N is an embedding, then f B if and only if the
submanifold given by the image of f has transverse intersection with B. Notice
furthermore that if B = y € N is a point, viewed as a zero dimensional
submanifold, then f M B if and only if yis a regular value of f. This is the
sense in which the notion of transversality is a generalization of the notion of
regular value.

The following is a strengthening of both transversality Theorem 3.7 and
of the Regular Value Theorem 3.5:

Theorem 3.8. Let f: AP — N™ and B? C N™ be as above. Then if f M B,
then the inverse image f~Y(B) C A is a submanifold of codimension n —
q, which is the same as the codimension of B in N. That is, f~'(B) has
dimension p + q — n.
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Notice that this theorem is precisely the statement of the Regular Value
Theorem when B a point.

Proof. Tt suffices to prove this theorem locally. By the Implicit Function The-
orem, we can locally replace B? C N™ by U x {0} C U x V, where U C R?
and V C R"77 are open sets. Notice that

AP > UXxV
is transverse to U x {0} if and only if the composition

g:Ar Ly xy ey
has 0 € V C R"? as a regular value. Sincef~*(U x {0}) = ¢g~*(0), the
theorem follows from the Regular Value Theorem (Theorem 3.5). O

A generalization of this theorem to the setting of manifolds with boundary
is the following. The above proof applies to this situation with only minor
modifications.

Theorem 3.9. Suppose B¢ C N™ is a C" submanifold with boundary. Suppose
that either BY is neat or B1 C N™ — ON™, or B¢ CON"™. If f : AP — N"™ is
a C" map between manifolds with boundary with both f and f|,,, transverse
to BY, the f~1(B?) is a C" submanifold and Of ~*(BY) = f~1(0BY). The
dimension of f~1(B?) is p+q —n.

3.3 Bundles and Manifolds
3.3.1 The tangent bundle of Projective Space

We now use these constructions to identify the tangent bundle of projective
spaces, TRP™ and TCP". We study the real case first.

Recall the canonical line bundle, 71 : E7* — RP™. If [x] € RP" is viewed as
a line in R™*!, then the fiber E[Wml] is the one dimensional space of vectors in the

line [x]. Thus 7 has a natural embedding into the trivial n + 1 - dimensional
bundle € : RP" x R"*! — RP" via

EM = {([xLu) cRP* x R*L .y € [3;‘]} s RP" x R™+1.

Let 7i- be the n - dimensional orthogonal complement bundle of this embed-
ding.
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Theorem 3.10. There is an isomorphism of the tangent bundle with the
homomorphism bundle
TRP" = Hom(v1,7})

Proof. Let p : S™ — RP™ be the natural projection. For = € S™, recall that
the tangent space of S™ can be described as

T,8" = {(z,v) € S" x R"" .z . v =0}.
Notice that (z,v) € T,S™ and (—x,—v) € T_,S™ have the same image in
T RP™ under the derivative Dp : T'S™ — TRP". Since p is a local diffeomor-

phism, Dp(z) : T,S™ — Tj;jRP™ is an isomorphism for every z € S™. Thus
T1;)RP™ can be identified with the space of pairs

ﬂI]RPn = {(I7U)7 (7555 7”) tT,vE Rn+17 |I‘ = 17 T-v= 0}
If z € S, let L, = [z] denote the line through +z in R"*!. Then a pair

(z,v), (—z, —v) € Tj;)RP" is uniquely determined by a linear transformation

0:L,— L+
L(tx) = to.
4
Thus T}, RP" is canonically isomorphic to Hom(E)*, E}" ), and so
TRP™ 2 Hom(v1,7i),

as claimed. O

The following description of the TRP™ & ¢; will be quite helpful to us in
future calculations of characteristic classes.

Theorem 3.11. The Whiney sum of the tangent bundle and a trivial line
bundle, TRP™ & €1 is isomorphic to the Whitney sum of n 4+ 1 copies of the
canonical line bundle v,

TRP" @ €1 = @pi171-

Proof. Consider the line bundle Hom(7y1,v1) over RP™. This line bundle is
trivial since it has a canonical nowhere zero section

L(x):I:E[Zj] %E[ll]
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We therefore have

TRP" @ €; = TRP" & Hom(y1,71)
=~ Hom(v1,7¢) ® Hom(vy1,71)
o Hom(m,’yf‘ @)
=~ Hom(v1,€nt1)
X On17]
EOni1m

as claimed. O

The following are complex analogues of the above theorems and are proved
in the same way.

Theorem 3.12.
TCP" 2~¢ Homc(%ﬁf)

and
TCP" ® €1 = ®pi177,

where Z¢ and Home denote isomorphisms and homomorphisms of complex
bundles, respectively.

Note. 7* is not isomorphic as complex vector bundles to ;. It is iso-
morphic to y; with the conjugate complex structure. We will discuss this
phenomenon more later.

3.3.2 K - theory

Let Vect*(X) = @n>0Vect™(X) where, as above, Vect”(X) denotes the set
of isomorphism classes of n - dimensional complex bundles over X. Vect}(X)
denotes the analogous set of real vector bundles. In both these cases Vect®(X)
denotes, by convention, the one point set, representing the unique zero dimen-
sional vector bundle.

Now the Whitney sum operation induces pairings

Vect™(X) x Vect™(X) —2— Vect" ™ (X)

which in turn give Vect*(X) the structure of an abelian monoid. Notice that
it is indeed abelian because given vector bundles 1 and ( we have an obvious
isomorphism

neCECD.

The “zero” in this monoid structure is the unique element of Vect?(X).
Given an abelian monoid, A, there is a construction due to Grothendieck
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of its group completion K(A). Formally, K(A) is the smallest abelian group
equipped with a homomorphism of monoids, ¢ : A — K(A). It is smallest in
the sense if G is any abelian group and ¢ : A — G is any homomorphism of
monoids, then there is a unique extension of ¢ to a map of abelian groups
¢ : K(A) — G making the diagram commute:

A —— K(A)
‘| |
G

G =

S

This formal property, called the universal property, characterizes K(A),
and can be taken to be the definition. However there is a much more explicit
description. Basically the group completion K(A) is obtained by formally
adjoining inverses to the elements of A. That is, an element of K(A) can be
thought of as a formal difference oo — 3, where o, 8 € A. Strictly speaking we
have the following definition.

Definition 3.13. Let F/(A) be the free abelian group generated by the elements
of A, and let R(A) denote the subgroup of F(A) generated by elements of the
form a®b— (a+b) where a, b € A. Here “®” is the group operation in the
free abelian group and “+” is the addition in the monoid structure of A. We
then define the Grothendieck group completion K(A) to be the quotient group

K(A)=F(A)/R(A).

Notice that an element of K (A) is of the form
9 = Zniai — ijbj
i J

where the n;’s and m;’s are positive integers, and each a; and b; € A. That
is, by the relations in R(A), we may write

=a—p

where a = ). n;a; € A, and § = Zj m;b; € A.

Notice also that the composition ¢ : A C F(A) —» F(A)/R(A) = K(A) isa
homomorphism of monoids, and clearly has the universal property described
above. We can now make the following definition.

Definition 3.14. Given a space X, its complex and real (or orthogonal) K
- theories are defined to be the Grothendieck group completions of the abelian
monoids of isomorphism classes of vector bundles:

K(X)=K(Vect" (X))
KO(X) = K(Vecty(X)
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An element a = ( —n € K(X) is often referred to as a “virtual vector
bundle” over X.

Notice that the discusion of the tangent bundles of projective spaces above

(section 2.2) can be interpreted in K -theoretic language as follows:

Proposition 3.13. As elements of K(CP"), we have the equation
[TCP"] = (n+ )] - [1]

where [m] € K(X) refers to the class represented by the trivial bundle of
dimension m. Similarly, in the orthogonal K - theory KO(RP™) we have the
equation

[TRP"] = (n+1)[m] - [1].

Notice that for a point, Vect*(pt) = Z*, the nonnegative integers, since
there is precisely one vector bundle over a point (i.e vector space) of each
dimension. Thus

K(pt) =2 KO(pt) = Z.
Notice furthermore that by taking tensor products there are pairings

Vect™(X) x Vect™(X) -2, Vect™(X).

The following is verified by a simple check of definitions.

Proposition 3.14. The tensor product pairing of vector bundles gives K(X)
and KO(X) the structure of commutative rings.

Now given a bundle ¢ over Y, and a map f : X — Y, we saw in the
previous section how to define the pull-back, f*(¢) over X. This defines a
homomorphism of abelian monoids

fr:Vect*(Y) — Vect*(X).

After group completing we have the following;:

Proposition 3.15. A continuous map f : X — Y induces ring homomor-
phisms,
fFKY)— K(X)

and
fFKOY) — KO(X).
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In particular, consider the inclusion of a basepoint zy < X. This induces
a map of rings, called the augmentation,

e: K(X) > K(xg) 2 Z.

This map is a split surjection of rings, because the constant map ¢ : X —
xo induces a right inverse of €, ¢* : Z = K(x¢) — K(X). Notice that the
augmentation can be viewed as the “dimension” map in that when restricted
to the monoid Vect*(X), then € : Vect™(X) — {m} C Z. That is, on an
element ( — n € K(X), (¢ —n) = dim(¢) — dim(n). We then define the
reduced K -theory as follows.

Definition 3.15. The reduced K - theory of X, denoted K(X) is defined to
be the kernel of the augmentation map

K(X) =ker{e: K(X) — Z}

and so consists of classes ¢ —n € K(X) such that dim(¢) = dim(n). The
reduced orthogonal K - theory, KO(X) is defined similarly.

The following is an immediate consequence of the above observations:

Proposition 3.16. There are natural splittings of rings

KX)2KX)oZ
KOX)=2KOX)&Z.

Clearly then the reduced K - theory is the interesting part of K - theory.
Notice that a bundle ¢ € Vect™(X) determines the element [(] — [n] € K(X),
where [n] is the K - theory class of the trivial n - dimensional bundle.

The definitions of K - theory are somewhat abstract. The following discus-
sion makes it clear precisely what K - theory measures in the case of compact
spaces.

Definition 3.16. Let ¢ and n be vector bundles over a space X. { and n are
said to be stably isomorphic if for some m and n, there is an isomorphism

(Pen=Enden

where, as above, €, denotes the trivial bundle of dimension k. We let SVect(X)
denote the set of stable isomorphism classes of vector bundles over X.

Notice that SVect(X) is also an abelian monoid under Whitney sum, and
that since any two trivial bundles are stably isomorphic, and that adding a
trivial bundle to a bundle does not change the stable isomorphic class, then
any trivial bundle represents the zero element of SVect(X).
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Theorem 3.17. Let X be a compact space, then SVect(X) is an abelian
group and is isomorphic to the reduced K -theory,

SVect(X) = K(X).

Proof. A main component of the proof is the following result, which we will
prove in the next chapter when we study the classification of vector bundles.

Theorem 3.18. Fvery vector bundle over a compact space can be embedded
in a trivial bundle. That is, if ( is a bundle over a compact space X , then for
sufficiently large N > 0, there is bundle embedding

C;)EN-

We use this result in the following way in order to prove the above theorem.
Let ¢ be a bundle over a compact space X. Then by this result we can find
an embedding ¢ < en. Let ¢+ be the orthogonal complement bundle to this
embedding. So that

(B¢t =en.

Since ey represents the zero element in SVect(X), then as an equation in
SVect(X) this becomes
[C]+[¢H]=0.

Thus every element in SVect(X) is invertible in the monoid structure, and
hence SVect(X) is an abelian group.

To prove that SVect(X) is isomorphic to K (X), notice that the natural
surjection of Vect*(X) onto SVect(X) is a morphism of abelian monoids,
and since SVect(X) is an abelian group, this surjection extends linearly to a
surjective homomorphism of abelian groups,

p: K(X)— SVect(X).

Since [e,] = [n] € K(X) maps to zero in SVect(X) under p, this map factors
through a surjective homomorphism from reduced K - theory, which by abuse
of notation we also call p,

p: K(X)— SVect(X).

To prove that p is a injective (and hence an isomorphism), we will construct
a left inverse to p. This is done by considering the composition

Vect*(X) —— K(X) — K(X)

which is given by mapping an n - dimensional bundle ¢ to [¢] — [n]. This map
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clearly sends two bundles which are stably isomorphic to the same class in
K (X), and hence factors through a homomorphism

j:8Vect(X) = K(X).

By checking its values on bundles, it becomes clear that the composition
jop: K(X) = SVect(X) — K(X) is the identity map. This proves the
theorem. 0

We end this section with the following observation. As we said above, in
the next chapter we will study the classification of bundles. In the process
we will show that homotopic maps induce isomorphic pull - back bundles,
and therefore homotopy equivalences induce bijections, via pulling back, on
the sets of isomorphism classes of bundles. This tells us that K -theory is
a “homotopy invariant” of topological spaces and continuous maps between
them. More precisely, the results of the next chapter will imply the following
important properties of K - theory.

Theorem 3.19. Let f: X =Y and g: X — Y be homotopic maps. then the
pull back homomorphisms are equal

fr=g i K(Y) = K(X)

and
ff=¢": KOY)— KO(X).

This can be expressed in categorical language as follows: (Notice the simi-
larity of role K - theory plays in the following theorem to cohomology theory.)

Theorem 3.20. The assignments X — K(X) and X — KO*(X) are
contravariant functors from the category of topological spaces and homotopy
classes of continuous maps to the category of rings and ring homomorphisms.

3.3.3 Differential Forms

In the next two sections we describe certain differentiable constructions on
bundles over smooth manifolds that are basic in geometric analysis. We begin
by recalling some “multilinear algebra”.
Let V be a vector space over a field k. Let T'(V') be the associated tensor
algebra
T(V) = @nZOV@m

where V0 = k. The algebra structure is comes from the natural pairings

Ven @ Vem =, yenim),
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Recall that the exterior algebra

where A C T(V) is the two sided ideal generated by {a®@b+b®a: a, be V}.

The algebra A(V') inherits the grading from the tensor algebra, A(V) =
@nZOAk (V), and the induced multiplication is called the “wedge product”,
u A v. Recall that if V is an n - dimensional vector space, A*(V) is an (}) -
dimensional vector space.

Assume now that V' is a real vector space. An element of the dual space,
(Ve)* = Hom (V%™ R) is a multilinear form V' x --- x V — R. An element
of the dual space (A*(V))* is an alternating form, i.e a multilinear function 6
so that

(Vo (1), s Vo(k)) = sgn(a)0(v1, - -+, vk)
where o € ¥, is any permutation.

Let A*(V) = (A¥(V))* be the space of alternating k - forms. Let U C R"
be an open set. Recall the following definition.

Definition 3.17. A differential k - form on the open set U C R™ is a smooth
function

w:U — AFR™).

By convention, 0 -forms are just smooth functions, f : U — R. Notice that
given such a smooth function, its differential, df assigns to a point z € U C R™
a linear map on tangent spaces, df (z) : R" = T,R™ — Ty,)R = R. That is,
df : U — (R™)*, and hence is a one form on U.

Let QF(U) denote the space of k - forms on the open set U. Recall that
any k -form w € Q¥(U) can be written in the form

w(z) = Z fr(x)dzy (3.4)
T

where the sum is taken over all sequences of length k of integers from 1 to n,
I={(i1, - ,ik), fr : U — Ris a smooth function, and where

dxy :da:il /\“-/\dl‘ik.

Here dx; denotes the differential of the function z; : U € R™ — R which is
the projection onto the i** - coordinate.

Recall also that there is an exterior derivative,
d: QFU) — QL)
defined by
/
d(fdey) =df ANdzp == dej A day
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A simple calculation shows that d?(w) = d(dw) = 0, using the symmetry
of second order partial derivatives.

These constructions can be extended to arbitrary manifolds in the following
way. Given an n - dimensional smooth manifold M, let A*(T(M)) be the (})
- dimensional vector bundle whose fiber at € M is the k - fold exterior
product, of the tangent space, A*(T,,M).

Exercise.

Define clutching functions of A*(T(M)) in terms of clutching functions of the
tangent bundle, T (M)

Definition 3.18. A differential k-form on M is a section of the dual bundle,
AMT(M))* = AT (M) = Hom(A*(T(M)), e1).
That is, the space of k -forms is given by the space of sections,
OF(M) = T(AM(T™(M))).

So a k -form w € QF(M) assigns to z € M an alternating k form on its tangent
space,
w(@): TyM x - x T, M — R.

and hence given a local chart with a local coordinate system, then locally w
can be written in the form (3.4).

Since differentiation is a local operation, we may extend the definition of
the exterior derivative of forms on open sets in R™ to all n - manifolds,

d: QF (M) — QML (M.

In particular, the zero forms are the space of functions, Q°(M) = C>°(M;R),
and for f € Q°(M), then df € Q' (M) = T(T(M)*) is the 1 -form defined by
the differential,

df(LE) Ty M — Tf(w)R =R.

Now as above, d?(w) = 0 for any form w. Thus we have a cochain complex,
called the deRham complex,

d d d

QM) — (M) Q1 (M) —2 s R () —s
(3.5)

Recall that a k - form w with dw = 0 is called a closed form. A k - form
w in the image of d, i.e w = dn for some n € QF¥~1(M) is called an exact
form. The quotient vector space of closed forms modulo exact forms defined
the “deRham cohomology” group:

Qk+1(M)
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Definition 3.19.

HEY o (M) = {closed k - forms}/{ezact k - forms}.

The famous de Rham theorem asserts that these cohomology groups are
isomorphic to singular cohomology with R - coefficients. To see the relation-
ship, let C (M) be the space of k - dimensional singular chains on M, (i.e the
free abelian group generated by smooth singular simplices o : A¥ — M), and
let

C*(M;R) = Hom(C(M),R)

be the space of real valued singular cochains. Notice that a k -form w gives
rise to a k - dimensional singular cochain in that it acts on a singular simplex

o: A¥ — M by
(w,a)z/w.

v QF(M) — C*(M;R)

This defines a homomorphism

for each k.

Exercise. Prove that 7 is a map of cochain complexes. That is,

V(dw) = 67(w)

where § : C¥(M;R) — Ck¥*1(M;R) is the singular coboundary operator.
Hint. Use Stokes’ theorem.

We refer the reader to [12] for a proof of the deRham Theorem:

Theorem 3.21. The map of cochain complezes,
v: QY (M) = C*(M;R)

is a chain homotopy equivalence. Therefore it induces an isomorphism in co-
homology

H;lkeRham(M) = H*(M,R)
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3.3.4 Lie Groups

Lie groups play a central role in bundle theory and in differential topology and
geometry. In this section we give a basic description of Lie groups, their actions
on manifolds (and other spaces), as well as their their principal bundles.

Definition 3.20. A Lie group is a topological group G which has the structure
of a differentiable manifold. Moreover the multiplication map

GxGE—G
and the inverse map

G—G
g9t
are required to be differentiable maps.

The following is an important basic property of the differential topology
of Lie groups.

Theorem 3.22. Let G be a Lie group. Then G is parallelizable. That is, its
tangent bundle TG is trivial.

Proof. Let 1 € G denote the identity element, and 771G the tangent space of
G at 1. If G is an n - dimensional manifold, 771G is an n- dimensional vector
space. We define a bundle isomorphism of the tangent bundle TG with the
trivial bundle G x T (G), which, on the total space level is given by a map

¢:Gx TG — TG

defined as follows. Let g € G. Then multiplication by ¢ on the right is a
diffeomorphism
xg:G— G
T —xg
Since xg is a diffeomorphism, its derivative is a linear isomorphism at every
point:
Dg(z) : T,G —— TpG.

We can now define
o:GxTG—TG

by
#(g,v) = Dg(1)(v) € T,G.

Clearly ¢ is a bundle isomorphism. O
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If G is a Lie group and M is a smooth manifold with a right G - action. We
say that the action is smooth if the homomorphism p defined above factors
through a homomorphism

w:G — Dif feo(M)

where Dif feo(M) is the group of diffeomorphisms of M.

The following result is originally due to A. Gleason [36], and its proof can
be found in Steenrod’s book [90]. It is quite helpful in studying free group
actions.

Theorem 3.23. Let E be a smooth manifold, having a free, smooth G - action,
where G is a compact Lie group. Then the action has slices. In particular, the
projection map

p:E— E/G

defines a principal G - bundle.

The following was one of the early theorems in fiber bundle theory, ap-
pearing originally in H. Samelson’s thesis. [82]

Corollary 3.24. Let G be a Lie group, and let H < G be a compact subgroup.
Then the projection onto the orbit space

p:G—G/H

is a principal H - bundle.

3.3.5 Connections and Curvature

In modern geometry, differential topology, and geometric analysis, one often
needs to study not only smooth functions on a manifold, but more generally,
spaces of smooth sections of a vector bundle I'(¢). (Notice that sections of
bundles are indeed a generalization of smooth functions in that the space of
sections of the n - dimensional trivial bundle over a manifold M, I'(e,) =
C*®(M;R™) = @,C>°(M;R).) Similarly, one needs to study differential forms
that take values in vector bundles. These are defined as follows.

Definition 3.21. Let ¢ be a smooth bundle over a manifold M. A differential
k - form with values in  is defined to be a smooth section of the bundle of

homomorphisms, Hom(A*(T(M)),¢) = AF(T(M)*) ® .
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We write the space of k -forms with values in ¢ as
Q8 (M;¢) = T(A*(T(M)* @ ().

The zero forms are simply the space of sections, Q°(M; () = T'(¢). Notice that
if ¢ is the trivial bundle ¢ = ¢, then one gets standard forms,

OF(M;e,) = QF(M) @ R™ = ©,08(M).

Even though spaces of forms with values in a bundle are easy to define,
there is no canonical analogue of the exterior derivative. There do however
exist differential operators

D : Q(M;¢) — QFTH(M; ()

that satisfy familiar product formulas. These operators are called covariant
derivatives (or connections ) and are related to the notion of a connection on
a principal bundle, which we now define and study.

Let G be a compact Lie group. Recall that the tangent bundle TG has a
canonical trivialization

V:GxTiG — TG
(9,v) = D(g)(v)

where for any g € G, ¢, : G — G is the map given by left multiplication by
g, and D({y) : ThG — Ty, G is its derivative. ry and D(ry) will denote the
analogous maps corresponding to right multiplication.

The differential of right multiplication on G defines a right action of G on
the tangent bundle T'G. We claim that the trivialization 1 is equivariant with
respect to this action, if we take as the right action of G on T1G to be the
adjoint action:

TlG x G — T1G
(v,9) = D(lg-1)(v)D(rg).

Exercise. Verify this claim.

As is standard, we identify 773G with the Lie algebra g. This action is
referred to as the adjoint representation of the Lie group G on its Lie algebra
g. Now let

p:P—>M

be a smooth principal G -bundle over a manifold M. This adjoint representa-
tion induces a vector bundle ad(P),

ad(P): P x¢g— M. (3.6)
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This bundle has the following relevance. Let p*(TM) : p*(TM) — P be
the pull - back over the total space P of the tangent bundle of M. We have a
surjective map of bundles

TP — p*(TM).

Define TP to be the kernel bundle of this map. So the fiber of TP at
a point y € P is the kernel of the surjective linear transformation Dp(y) :
TyP — T,,)M. Notice that the right action of G' on the total space of the
principal bundle P defines an action of G on the tangent bundle TP, which
restricts to an action of G on T P. Furthermore, by recognizing that the fibers
are equivariantly homeomorphic to the Lie group G, the following is a direct
consequence of the above considerations:

Proposition 3.25. TrP is naturally isomorphic to the pull - back of the
adjoint bundle,
TrpP = p*(ad(P)).

Thus we have an exact sequence of G - equivariant vector bundles over P:
0 — p*(ad(P)) — TP —22 p*(TM) — 0. (3.7)

Recall that short exact sequences of bundles split as Whitney sums. A
connection is a G - equivariant splitting of this sequence:

Definition 3.22. A connection on the principal bundle P is a G - equiv-
ariant splitting
wa : TP — p*(ad(P))

of the above sequence of vector bundles. That is, w4 defines a G - equivariant
isomorphism
wa @ Dp: TP — p*(ad(P)) & p"(TM).

The following is an important description of the space of connections on

P, A(P).

Proposition 3.26. The space of connections on the principal bundle P,
A(P), is an affine space modeled on the infinite dimensional vector space of
one forms on M with values in the bundle ad(P), QY(M;ad(P)).

Proof. Consider two connections w4 and wg,
wa,wp : TP — p*(ad(P).

Since these are splittings of the exact sequence 3.7, they are both the identity
when restricted to p*(ad(P)) < TP. Thus their difference, wy — wp is zero
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when restricted to p*(ad(P)). By the exact sequence it therefore factors as a
composition

wa —wp : TP — p*(TM) —2— p*(ad(P))

for some bundle homomorphism « : p*(T'M) — p*(ad(P)). That is, for every
y € P, a defines a linear transformation

ay 1 p (TM)y — p*(ad(P))y.
Hence for every y € P, « defines (and is defined by) a linear transformation
Q- Tp(y)M — ad(P)p(y)

Furthermore, the fact that both wa and wp are equivariant splittings says
that w4 —wp is equivariant, which translates to the fact that o, only depends
on the orbit of y under the G - action. That is,

ay = ayg: Tyo)yM — ad(P)p(y)

for every g € G. Thus «, only depends on p(y) € M. Hence for every x € M,
« defnes, and is defined by, a linear transformation

ay Ty M — ad(P),.

Thus o« may be viewed as a section of the bundle of homormorphisms,
Hom(TM,ad(P)), and hence is a one form,

a € QY (M;ad(P)).
Thus any two connections on P differ by an element in Q'(M;ad(P)) in this
sense.

Now reversing the procedure, an element 3 € Q!(M;ad(P)) defines an
equivariant homomorphism of bundles over P,

B:p*(TM) — p*(ad(P)).
By adding the composition
TP 2 p(TM) —2— p*(ad(P))
to any connection (equivariant splitting)
wa : TP — p*(ad(P))

one produces a new equivariant splitting of TP, and hence a new connection.
The proposition follows. O
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Remark. Even though the space of connections A(P) is affine, it is not, in
general a vector space. There is no “zero” in A(P) since there is no
pre-chosen, canonical connection. The one exception to this, of course, is
when P is the trivial G - bundle,

P=MxG— M.

In this case there is an obvious equvariant splitting of TP, which serves as
the “zero” in A(P). Moreover in this case the adjoint bundle ad(P) is also
trivial,

ad(P)=M x g — M.
Hence there is a canonical identification of the space of connections on the
trivial bundle with Q'(M;g) = Q1 (M) @ g.

Let p : P — M be a principal G - bundle and let was € A(P) be a
connection.
The curvature Fy of wy is a two form

Fa € Q*(M;ad(P))

which measures to what extent the splitting w4 commutes with the braket
operation on vector fields. More precisely, let X and Y be vector fields on M.
The connection w,4 defines an equivariant splitting of TP and hence defines

a “horizontal” lifting of these vector fields, which we denote by X and Y
respectively.

Definition 3.23. The curvature Fa € Q?(M;ad(P)) is defined by
Fa(X,Y) =wal[X,Y].
For those unfamiliar with the bracket operation on vector fields, we refer
you to [89]
Another important construction with connections is the associated covari-

ant derivative which is defined as follows.

Definition 3.24. The covariant derivative induced by the connection w4
Dy : Q°(M;ad(P)) — QY(M;ad(P))
is defined by
Da(0)(X) = [X,0].
where X is a vector field on M.
The notion of covariant derivative, and hence connection, extends to vector

bundles as well. Let ¢ : p : ES — M be a finite dimensional vector bundle
over M.
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Definition 3.25. A connection on ¢ (or a covariant derivative) is a linear
transformation
D+ Q°(M;¢) = Q1 (M; ()

that satisfies the Leibnitz rule

Da(f¢) =df ® ¢+ fDa(d) (3.8)
for any f € C°(M;R) and any ¢ € Q°(M;().

Now we can model the space of connections on a vector bundle, A({)
similarly to how we modeled the space of connections on a principal bundle
A(P). Namely, given any two connections D4 and Dp on ¢ and a function
f € C(M;R), one can take the convex combination

f-Da+(1—f) Dgp

and obtain a new connection. From this it is not difficult to see the following.
We leave the proof as an exercise to the reader.

Proposition 3.27. The space of connections on the vector bundle ¢, A(()
is an affine space modeled on the vector space of one forms QY (M; End(()),
where End(() is the bundle of endomorphisms of (.

Let X be a vector field on M and D4 a connection on the vector bundle
¢. The covariant derivative in the direction of X, which we denote by (D) x
is an operator on the space of sections of (,

(Da)x : QU(M;¢) — Q°(M;Q)
defined by
(Da)x (o) = (Da(¢); X).

One can then define the curvature Fy € Q2?(M; End(¢)) by defining its action
on a pair of vector fields X and Y to be

Fa(X,Y) = (Da)x(Da)y — (Da)y(Da)x — (Da)x,y]- (3.9)

To interpret this formula notice that a - priori F4(X,Y) is a second order
differential operator on the space of sections of (. However a direct calculation
shows that for f € C°(M;R) and o € Q°(M;(), then

Fa(X,Y)(fo) = fFa(X,Y)(0)

and hence F4(X,Y) is in fact a zero - order operator on Q°(M; (). But a zero
order operator on the space of sections of ( is a section of the endomorphism
bundle End(¢). Thus F4 assigns to any pair of vector fields X and Y a section
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of End(¢). Moreover it is straightforward to check that this assignment is ten-
sorial in X and Y (i.e Fa(fX,Y) = Fa(X, fY) = fF4(X,Y)). Thus F4 is an
element of Q2(M; End(¢)). The curvature measures the lack of commutativity
in second order partial covariant derivatives.

Given a connection on a bundle ¢ the linear mapping D4 : Q°(M;¢) —
QY (M;¢) extends to a deRham type sequence,

QO(M;¢) —22 QY M;() —22 QX(M;¢) —22 -
where for o € QP(M; (), Da(o) is the p 4+ 1 -form defined by the formula

p

DA(U)(XOV" ’XP) = Z(_ )j(DA) j(U(XOa"' s Xjyoe vXp)) (3'10)

+Z H—J XzaX]X07"'aXi7"'7Xj7"'7Xp)'

1<j

We observe that unlike with the standard deRham exterior derivative
(which can be viewed as a connection on the trivial line bundle), it is not
generally true that Dy o D4 = 0. In fact we have the following, whose proof
is a direct calculation that we leave to the reader.

Proposition 3.28.
DyoDy=Fy:QM;¢) = Q*(M;()

where in this context the curvature F'4 is interpreted as a assigning to a section
o € QO(M;() the 2 - form Fa(o) which associates to vector fields X and Y
the section Fa(X,Y)(0) as defined in (3.9).

Thus the curvature of a connection F4 can also be viewed as measuring the
extent to which the covariant derivative D4 fails to form a cochain complex
on the space of differential forms with values in the bundle {. However it is
always true that the covariant derivative of the curvature tensor is zero. This
is the well known Bianchi identity (see [89] for a complete discussion).

Theorem 3.29. Let A be a connection on a vector bundle (. Then

DjsFy =0.

We end this section by observing that if P is a principal G - bundle with
a connection w4, then any representation of G on a finite dimensional vector
space V induces a connection on the corresponding vector bundle

PxgV — M.

We refer the reader to [43] and [89] for thorough discussions of the various
ways of viewing connections. [7] has a nice, brief discussion of connections
on principal bundles, and [32] and [55] have similarly concise discussions of
connections on vector bundles.
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3.3.6 The Levi - Civita Connection

Let M be a manifold equipped with a Riemannian structure. Recall that this is
a Euclidean structure on its tangent bundle. In this section we will show how
this structure induces a connection, or covariant derivative, on the tangent
bundle. This connection is called the Levi - Civita connection associated to
the Riemannian structure. Our treatment of this topic follows that of Milnor
and Stasheff [74]

Let Dy : Q°(M;¢) — QY(M;¢) be a connection (or covariant derivative)
on an n - dimensional vector bundle (. Its curvature is a two- form with values
in the endomorphism bundle

Fa € Q*(M; End(())

The endomorphism bundle can be described alternatively as follows. Let E¢ be
the principal GL(n,R) bundle associated to ¢. Then of course ( = E¢ @G (n,Rr)
R"™. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.

Proposition 3.30.
End(¢) = ad(C) = E¢ Xar(n,r) Mn(R)
where GL(n,R) acts on M,(R) by conjugation,

A-B=ABA™ !

Let w be a differential p - form on M with values in End((),
w € QP (M; End(()) = QP (M;ad(()) = QP(M; E¢ XGrn,r) Mn(R)).

Then on a coordinate chart U C M with local trivialization ¢ : (|, £ U x C"
for ¢, (and hence the induced coordinate chart and local trivialization for
ad(¢)), w can be viewed as an n X n matrix of p -forms on M. We write

w=(wi;)-

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x € U, then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (w; j(v)) and (w; ;(x)) are two
matrix descriptions of w(x) defined by two different local trivializations of ¢,
then there exists an A € GL(n,C) with

Awi (@) A" = (wi ().

0,J

Now suppose the bundle ( is equipped with a Euclidean structure. As seen
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earlier in this chapter this is equivalent to its associated principal GL(n,R) -
bundle E¢ having a reduction to the structure group O(n). We let Eg(,y — M
denote this principal O(n) - bundle.

Now the Lie algebra o(n) of O(n) (i.e the tangent space T1(O(n))) is a
subspace of the Lie algebra of GL(n,R), i.e

o(n) € M,(R).
The following is well known (see, for example[83])

Proposition 3.31. The Lie algebra o(n) C M, (R) is the subspace consisting
of skew symmetric n x n - matrices. That is, A € o(n) if and only if

Al =—A
where At is the transpose.

So if ¢ has a Euclidean structure, we can form the adjoint bundle

ad®(¢) = Eo(n) Xo(n) 0(n) C E¢ XGr(nz) Ma(R) = ad(()

where, again O(n) acts on o(n) by conjugation.

Now suppose D4 is an orthogonal connection on (. That is, it is induced
by a connection on the principal O(n) - bundle E¢,) — M. The following is
fairly clear, and we leave its proof as an exercise.

Corollary 3.32. If D4 is an orthogonal connection on a Euclidean bundle
¢, then the curvature Fu lies in the space of o(n) valued two forms

Fa € Q*(M;ad(()) € *(M;ad(¢)) = Q*(M; End(Q).

Furthermore, on a coordinate chart U C M with local trivialization 1 : (|, =
U x C" that preserves the Euclidean structure, we may write the form Fa as
a skew - symmetric matriz of two forms,

Fyp = (wij) 4,j=1-,n

where each w;; € O%(M) and wij = —wj,i. In fact the connection D4 itself
can be written as skew symmetric matriz of one forms
Da,, = (aij)

where each a; ; € QY (M).

We now describe the notion of a “symmetric” connection on the cotangent
bundle of a manifold, and then show that if the manifold is equipped with
a Riemannian structure (i.e there is a Euclidean structure on the (co) - tan-
gent bundle), then there is a unique symmetric, orthogonal connection on the
cotangent bundle.
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Definition 3.26. A connection D4 on the cotangent bundle T*M is sym-
metric (or torsion free ) if the composition
* 0 * Da 1 * * * A 2k
T =Q°M;T*) ——— Q' (M;T")=T(T*"T*) ——— T'(A*T")

is equal to the exterior derivative d.

In terms of local coordinates 1, - - - ,x,, if we write

Da(day) =Y TFdv; © du; (3.11)
i,J

(the functions I‘f) ; are called the “Christoffel symbols”), then the requirement
that D4 is symmetric is that the image Zij I‘ﬁjdxi ® dx; be equal to the

exterior derivative d(dx) = 0. This implies that the Christoffel symbols I'} j
must be symmetric in ¢ and j. The following is straightforward to verify.

Lemma 3.33. A connection Dy on T* is symmetric if and only if the co-
variant derivative of the differential of any smooth function

Da(df) € T(T* @ T*)

is a symmetric tensor. That is, if Y1, , 1, form a local basis of sections of
T*, and we write the corresponding local expression

Dadf) =Y aijv; @ ¢
2
then Q5 = Qj j-

We now show that the (co)-tangent bundle of a Riemannian metric has a
preferred connection.

Theorem 3.34. The cotangent bundle T*M of a Riemannian manifold has
a unique orthogonal, symmetric connection. (It is orthogonal with respect to
the Euclidean structure defined by the Riemannian metric.)

Proof. Let U be an open neighborhood in M with a trivialization
Y:UXxR" :— T"';J

which preserves the Euclidean structure. 1) defines n orthonormal sections of
Tl”l‘/, Y1, ,¥n. The ;’s constitute an orthonormal basis of one forms on M.
We will show that there is one and only one skew-symmetric matrix (¢ ;) of
one forms such that

dyy, = Zak’j /\Qﬁj.
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We can then define a connection D4 on T{‘;J by requiring that

Da(¢y) = Zak,j ® ;.

It is then clear that D 4 is the unique symmetric connection which is compati-
ble with the metric. Since the local connections are unique, they glue together
to yield a unique global connection with this property.

In order to prove the existence and uniqueness of the skew symmetric
matrix of one forms (a; ;) we need the following combinatorial observation.

Any n xn xn array of real valued functions A; ; ; can be written uniquely
as the sum of an array B; ;, which is symmetric in ¢, j, and an array C; ;
which is skew symmetric in j, k. To see this, consider the formulas

1

Bi k= §(Ai,j,k + Ajik = Akyig — Ak + Ajki + Aikj)
1

Cijk = §(Az‘,j,k = Ajik + Ay + Ak gi — Ajki — Aik,j)

Uniqueness would follow since if an array D; j were both symmetric in ¢, j
and skew symmetric in j, k, then one would have

Di k= Djik =—Djri=—Drkji=Druij=Dikj=—Dijr

and hence all the entries are zero.
Now choose functions A; ;1 such that

dpe =Y Aijk i A

and set A; ;1 = By jx + Ci i as above. It then follows that

dpp =Y Cijkthi A1

by the symmetry of the B; ;’s. Then we define the one forms

ak; =Y Cijnti.

They clearly form the unique skew symmetric matrix of one forms with dyy =
> ag,j A;. This proves the lemma. O

This preferred connection on the (co)tangent bundle of a Riemannian met-
ric is called the Levi - Civita connection. Statements about the curvature of a
metric on a manifold are actually statements about the curvature form of the
Levi - Civita connection associated to the Riemannian metric. For example,
a “flat metric” on a manifold is a Riemannian structure whose correspond-
ing Levi-Civita connection has zero curvature form. As is fairly clear, these
connections form a central object of study in Riemannian geometry.
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Classification of Bundles

In this chapter we prove Steenrod’s classification theorem of principal G -
bundles, and the corresponding classification theorem of vector bundles. This
theorem states that for every group G, there is a “classifying space” BG with a
well defined homotopy type so that the homotopy classes of maps from a space
X, [X, BG], is in bijective correspondence with the set of isomorphism classes
of principal G - bundles, Pring(X). We then describe various examples and
constructions of these classifying spaces, and use them to study structures on
principal bundles, vector bundles, and manifolds.

4.1 The homotopy invariance of fiber bundles

The goal of this section is to prove the following theorem, and to examine
certain applications such as the classification of principal bundles over spheres
in terms of the homotopy groups of Lie groups.

Theorem 4.1. Let p : E — B be a fiber bundle with fiber F, and let fy :
X — B and f1 : X — B be homotopic maps. Then the pull - back bundles are
isomorphic,

fo(E) = fi(E).

The main step in the proof of this theorem is the basic Covering Homotopy
Theorem for fiber bundles which we now state and prove.

Theorem 4.2. Covering Homotopy theorem. Let py : E — B and q :
Z —'Y be fiber bundles with the same fiber, F', where B is normal and locally
compact. Let hg be a bundle map

E I,z

71
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Let H : Bx 1 —Y be a homotopy of ho (i.e ho = H,,_,.) Then there exists
a covering of the homotopy H by a bundle map

ExI " 7

w1 | |s

BxI —— Y.
H

Proof. We prove the theorem here when the base space B is compact. The
natural extension is to when B has the homotopy type of a CW - complex.
The proof in full generality can be found in Steenrod’s book [90].

The idea of the proof is to decompose the homotopy H into homotopies
that take place in local neighborhoods where the bundle is trivial. The theorem
is obviously true for trivial bundles, and so the homotopy H can be covered
on each local neighborhood. One then must be careful to patch the coverings
together so as to obtain a global covering of the homotopy H.

Since the space X is compact, we may assume that the pull - back bundle
H*(Z) — B x I has locally trivial neighborhoods of the form {U, x I;},
where {U,} is a locally trivial covering of B (i.e there are local trivializations
bop:Usx F — p 1 (Uy,)), and Iy, -+ , I, is a finite sequence of open intervals
covering I = [0,1], so that each I; meets only I;_; and I;;; nontrivially.
Choose numbers

O=to<ti <---<t, =1

so that t; € I; N Ij;1. We assume inductively that the covering homotopy
H(z,t) has been defined E x [0,1;] so as to satisfy the theorem over this part.

For each = € B, there is a pair of neighborhoods (W, W’) such that for
zr €W, W c W and W C U, for some U,. Choose a finite number of such
pairs (W;,W/), (i = 1,---,s) covering B. Then the Urysohn lemma implies
there is a map u; : B — [t;, t;+1] such that u;(W;) = t;41 and uj(B—W/) = t;.
Define 7(x) = t; for € B, and

7i(z) = maz(ui(x), - ,ui(x)), x€B, i=1,---,s.

Then
tj =7o(x) S Ti(x) < - <ts(@) =ty

Define B; to be the set of pairs (z,¢) such that t; < ¢t < 7;(x). Let E; be
the part of E x I lying over B;. Then we have a sequence of total spaces of
bundles

Eth:E()CEl c---CE;,=FEx [tjathrl]'

We suppose inductively that H has been defined on E;_; and we now define
its extension over E;.
By the definition of the 7’s, the set B; — B;_1 is contained in W} X [t;, t;41];
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and by the definition of the W’s, W’; x [t;,t;+1] C U, x I; which maps via H
to a locally trivial neighborhood, say Vi, for ¢ : Z — Y. Say ¢ : Vi x F —
q (V) is a local trivialization. In particular we can define py : ¢71(Vi) — F
to be the inverse of ¢ followed by the projection onto F'. We now define

H(e,t) = ¢p(H(x,t), p(H(e, 7i-1()))

where (e,t) € E; — E;_1 and x = p(e) € B. )
It is now a straightforward verification that this extension of H is indeed
a bundle map on E;. This then completes the inductive step. O

We now prove theorem 4.1 using the covering homotopy theorem.

Proof. Let p : E — B, and fy; X — B and f; : X — B be as in the
statement of the theorem. Let H : X x I — B be a homotopy with Hy = fj
and Hy = f;. Now by the covering homotopy theorem there is a covering
homotopy H : fG(E) x I — E that covers H : X x I — B. By definition this
defines a map of bundles over X x I, that by abuse of notation we also call
H

9

By x I —2 s H*(EB)
X x1I T)Xx[.

This is clearly a bundle isomorphism since it induces the identity map on
both the base space and on the fibers. Restricting this isomorphism to X x {1},
and noting that since H; = f;, we get a bundle isomorphism

fo(E) f(E)

l l

X x {1} T>X><{1}.

IZJI:

This proves theorem 4.1 O
We now derive certain consequences of this theorem.

Corollary 4.3. Let p : E — B be a principal G - bundle over a connected
space B. Then for any space X the pull back construction gives a well defined
map from the set of homotopy classes of maps from X to B to the set of
isomorphism classes of principal G - bundles,

pE : [X, B] = Pring(X).
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Definition 4.1. A principal G - bundle p : EG — BG is called universal if
the pull back construction

peG : [X, BG] = Pring(X)

is a bijection for every space X of the homotopy type of a CW complex. The
base space of the universal bundle BG is called a classifying space for G (or
for principal G - bundles).

The main goal of this chapter is to show that universal bundles exist for
every group G, and that the classifying spaces are unique up to homotopy

type.

Applying theorem 4.1 to vector bundles gives the following, which was
claimed at the end of chapter 1.

Corollary 4.4. If fo: X = Y and f1 : X — Y are homotopic, they induce
the same homomorphism of abelian monoids,

fo =[f1:Vect*(Y) = Vect™(X)
Vectg (V) = Vectg(X)

and hence of K theories

fo = KY)—> KX)
KO(Y) = KO(X)

Corollary 4.5. If f : X — Y is a homotopy equivalence, then it induces
isomorphisms

f*: Pring(Y) —— Pring(X)
Vect*(Y) —— Vect*(X)
K(Y) —  K(X)

Corollary 4.6. Any fiber bundle over a contractible space is trivial.

Proof. If X is contractible, it is homotopy equivalent to a point. Apply the
above corollary. O

The following result is a classification theorem for bundles over spheres. It
begins to describe why understanding the homotopy type of Lie groups is so
important in Topology.
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Theorem 4.7. There is a bijective correspondence between principal bundles
and homotopy groups
Pring(S™) 2 m,-1(G)

where as a set m,_1G =[S, x2¢; G, {1}], which refers to (based) homotopy
classes of basepoint preserving maps from the sphere S™~1 with basepoint xo €
S to the group G with basepoint the identity 1 € G.

Proof. Let p: E — S™ be a G - bundle. Write S™ as the union of its upper
and lower hemispheres,
S’I’L - Di USn—l DE.

Since D} and D" are both contractible, the above corollary says that FE re-
stricted to each of these hemispheres is trivial. Morever if we fix a trivialization
of the fiber of E at the basepoint 2o € S*~! C S™, then we can extend this
trivialization to both the upper and lower hemispheres. We may therefore
write

E = (D} xG)Uy (D" x G)

where 6 is a clutching function defined on the equator, # : S"~! — G. That
is, E consists of the two trivial components, (D} x G) and (D" x G) where
if z € "7, then (z,9) € (D% x G) is identified with (z,0(x)g) € (D™ x G).
Notice that since our original trivializations extended a common trivialization
on the basepoint zy € S"~1, then the trivialization § : S"~! — G maps the
basepoint x( to the identity 1 € G. The assignment of a bundle its clutching
function, will define our correspondence

O : Pring(S™) = m—1G.

To see that this correspondence is well defined we need to check that if E;
is isomorphic to FEs, then the corresponding clutching functions 6; and 65
are homotopic. Let ¥ : Fy — E5 be an isomorphism. We may assume this
isomorphism respects the given trivializations of these fibers of these bundles
over the basepoint g € S"~! C S™. Then the isomorphism ¥ determines an
isomorphism

(D" x G) Up, (D™ x G) —— (D" x G) Up, (D™ x G).

IR

By restricting to the hemispheres, the isomorphism ¥ defines maps

‘I’+:D1—>G
and
v_:D" > @G

which both map the basepoint zo € S"~! to the identity 1 € G, and further-
more have the property that for z € S”~1,

W (2)0 (2) = ba(2)V_ (),
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or, U (2)01(x)¥_(z)~! = Os(z) € G. Now by considering the linear homo-
topy W (tz)b1(x)W_(tz)~! for t € [0,1], we see that f(x) is homotopic to
W, (0)01(z)¥_(0)~!, where the two zeros in this description refer to the ori-
gins of D and D" respectively, i.e the north and south poles of the sphere
S™. Now since W, and W_ are defined on connected spaces, their images lie
in a connected component of the group G. Since their image on the basepoint
xo € S"1 are both the identity, there exist paths a4 (t) and a_(¢) in S™ that
start when ¢ = 0 at U, (0) and ¥_(0) respectively, and both end at ¢ = 1
at the identity 1 € G. Then the homotopy a. ()01 (z)a—(¢t)~! is a homotopy
from the map W, (0)6;(x)¥_(0)~! to the map 6;(x). Since the first of these
maps is homotopic to 02(z), we have that 6; is homotopic to s, as claimed.
This implies that the map © : Pring(S™) — m,-1G is well defined.

The fact that © is surjective comes from the fact that every map S" ! — G
can be viewed as the clutching function of the bundle

E = (D" x G)Up (D" x G)

as seen in our discussion of clutching functions in chapter 1.

We now show that © is injective. That is, suppose E; and F5 have homo-
topic clutching functions, ; ~ 6, : S"~1 — G. We need to show that E; is
isomorphic to Es As above we write

Ey = (D" x G) Up, (D" x G)

and
Ey = (D x G) Ug, (D" x G).

Let H : S"! x [-1,1] — G be a homotopy so that H; = 0; and H; = 0s.
Identify the closure of an open neighborhood N of the equator Sn=1in Sn
with §"~! x [-1,1] Write Dy = D3 UN and D_ = D2 UN Then Dy and
D_ are topologically closed disks and hence contractible, with

DiND_=N=5""1x[-1,1].
Thus we may form the principal G - bundle

E=D, xGUygD_xG

where by abuse of notation, H refers to the composition

N=gn-lx[-1,1] — G

We leave it to the interested reader to verify that F is isomorphic to both
Fy and Es. This completes the proof of the theorem. O
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4.2 Universal bundles and classifying spaces

The goal of this section is to study universal principal G - bundles, the result-
ing classification theorem, and the corresponding classifying spaces. We will
discuss several examples including the universal bundle for any subgroup of
the general linear group. We postpone the proof of the existence of universal
bundles for all groups until the next section.

In order to identify universal bundles, we need to recall the following def-
inition from homotopy theory.

Definition 4.2. A space X is said to be aspherical if all of its homotopy
groups are trivial,
T (X) =0 foralln>0.

Equivalently, a space X is aspherical if every map from a sphere S™ — X can
be extended to a map of its bounding disk, D"*1 — X.

Note. A famous theorem of J.H.C. Whitehead states that if X has the
homotopy type of a CW - complex, then X being aspherical is equivalent to
X being contractible (see [103]).

The following is the main result of this section. It identifies when a principal
bundle is universal.

Theorem 4.8. Letp: E — B be a principal G - bundle, where the total space
E is aspherical. Then this bundle is universal in the sense that if X is any
space of the homotopy type of a C'W-complex, the induced pull-back map

Y [X, B] = Pring(X)
f—= 1 (E)

is a bijective correspondence.

For the purposes of these notes we will prove the theorem in the setting
where the action of G on the total space FE is cellular. That is, there is a CW
- decomposition of the space E which, in an appropriate sense, is respected
by the group action. In practical terms there is not much loss in making
these assumptions, since the actions of compact Lie groups on manifolds, and
algebraic actions on projective varieties satisfy this property. For the proof
of the theorem in its full generality we refer the reader to Steenrod’s book
[90], and for a full reference on equivariant CW - complexes and how they
approximate a wide range of group actions, we refer the reader to [56]

In order to make the notion of cellular action precise, we need to define
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the notion of an equivariant CW - complex, or a G - CW - complex. The
idea is the following. Recall that a CW - complex is a space that is made up
out of disks of various dimensions whose interiors are disjoint. In particular
it can be built up skeleton by skeleton, and the (k + 1)** skeleton X (k+1) ig
constructed out of the k" skeleton X*) by attaching (k + 1) - dimensional
disks via “attaching maps”, S¥ — X %),

A “G - CW - complex” is one that has a group action so that the orbits
of the points on the interior of a cell are uniform in the sense that each point
in a cell DF has the same isotropy subgroup, say H, and the orbit of a cell
itself is of the form G'/H x DF. This leads to the following definition.

Definition 4.3. A G - CW - complex is a space with G -action X which
is topologically the direct limit of G - invariant subspaces {X(k)} called the
equivariant skeleta,

XO c x) o o xt-1) c x®) . x

where for each k > 0 there is a countable collection of k dimensional disks,
subgroups of G, and maps of boundary spheres

{DF, H; <G, ¢; : 0D x G/H; = SI™' x G/H; - X*~V je L}
so that

1. Each “attaching map” ¢; : S]]-“l xG/H; — X#=1) s G -equivariant, and

X® =X | | (D} x G/H).
¢jJEl;

This notation means that each “ disk orbit ” Df x G/Hj is attached to X (k=1)
via the map ¢; : S]’-“_l x G/H; — x (k—1)

We leave the following as an exercise to the reader.

Exercise. Prove that when X is a G - CW complex the orbit space X/G
has the an induced structure of a (non-equivariant) CW - complex.

Note. Observe that in a G -CW complex X with a free G action, all disk
orbits are of the form D* x G, since all isotropy subgroups are trivial.

We now prove the above theorem under the assumption that the principal
bundle p : E — B has the property that with respect to group action of G
on E, then E has the structure of a G - CW - complex. The basespace is
then given the induced C'W - structure. The spaces X in the statement of the
theorem are assumed to be of the homotopy type of CW - complexes.



Classification of Bundles 79

Proof. We first prove that the pull - back map

¥ : [X, B] = Pring(X)
is surjective. So let ¢ : P — X be a principal G - bundle, with P a G - CW -
complex. We prove there is a G - equivariant map h : P — E that maps each
orbit pG homeomorphically onto its image, h(y)G. We prove this by induction
on the equivariant skeleta of P. So assume inductively that the map h has
been constructed on the (k — 1) - skeleton,

hi—1: PFY - B
Since the action of G on P is free, all the k - dimensional disk orbits are of
the form D* x G. Let Df X G be a disk orbit in the G-CW - structure of the

k - skeleton P(®). Consider the disk Df x {1} C D;»“ x G. Then the map hj_;
extends to D¥ x {1} if and only if the composition

; By
SElx {1} c SF Tt x @ 2 pi-n ot g
is null homotopic. But since E' is aspherical, any such map is null homotopic
and extends to a map of the disk, 7 : D? x {1} — E. Now extend ~ equiv-
ariantly to a map hy ; : D}“ x G — E. By construction hy ; maps the orbit of

each point z € Df equivariantly to the orbit of v(z) in E. Since both orbits
are isomorphic to G (because the action of G on both P and E are free), this
map is a homeomorphism on orbits. Taking the collection of the extensions
hi,; together then gives an extension

hi : P® & B

with the required properties. This completes the inductive step. Thus we may
conclude we have a G - equivariant map h : P — FE that is a homeomorphism
on the orbits. Hence it induces a map on the orbit space f : P/G = X —
E/G = B making the following diagram commute

p_" . E

"l l”

X T) B
Since h induces a homeomorphism on each orbit, the maps h and f deter-
mine a homeomorphism of principal G - bundles which induces an equivariant

isomorphism on each fiber. This implies that A induces an isomorphism of
principal bundles to the pull - back

P (B

o

o ;

X —— X
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Thus the isomorphism class [P] € Pring(X) is given by f*(E). That is,
[P] = ¢(f), and hence

¥ [X, B] = Pring(X)

is surjective.

We now prove 1 is injective. To do this, assume fy: X — B and f; : X —
B are maps so that there is an isomorphism

O f(E) —— fr(E).

We need to prove that fy and f; are homotopic maps. Now by the cellular
approximation theorem (see [88]) we can find cellular maps homotopic to fj
and f; respectively. We therefore assume without loss of generality that fj
and f1 are cellular. This, together with the assumption that F is a G - CW
complex, gives the pull back bundles fi(F) and f;(E) the structure of G -CW
complexes.

Define a principal G - bundle £ — X x I by

€ = [fo(E) x[0,1/2] Ug f}(E) x [1/2,1]
where v € f§(E) x {1/2} is identified with ®(v) € fi(E) x {1/2}. £ also has
the structure of a G - CW - complex.
Now by the same kind of inductive argument that was used in the sur-
jectivity argument above, we can find an equivariant map H : £ — FE that

induces a homeomorphism on each orbit, and that extends the obvious maps
fG(E) x {0} = E and f{(E) x {1} — E. The induced map on orbit spaces

F:£/G=XxI—>E/G=B

is a homotopy between fy and f;. This proves the correspondence ¥ is injec-
tive, and completes the proof of the theorem. O

The following result establishes the homotopy uniqueness of universal bun-
dles.

Theorem 4.9. Let E; — By and Es — Bs be universal principal G - bundles.
Then there is a bundle map

ElL)EQ

l l

BlT>BQ

so that h is a homotopy equivalence.
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Proof. The fact that E5 — Bs is a universal bundle means, by 4.8 that there
is a “classifying map” h : By — Bs and an isomorphism h : E; — h*(E3).
Equivalently, h can be thought of as a bundle map h: E — E, lying over
h : By — Bs. Similarly, using the universal property of Fy — B, we get
a classifying map ¢g : By — Bj and an isomorphism g : Fs — ¢g*(E;), or
equivalently, a bundle map g : E5 — FE;. Notice that the composition

gof:By — By — B
is a map whose pull back,

(g0 f)(Er)

g (f*(E1))
9" (Es)
FE

1%

1

That is, (gof)*(E1) = id*(E;), and hence by 4.8 we have gof ~id: By — Bj.
Similarly, f o g ~id: Bo — Bs. Thus f and g are homotopy inverses of each
other. O

Because of this theorem, the basespace of a universal principal G - bundle
has a well defined homotopy type. We denote this homotopy type by BG, and
refer to it as the classifying space of the group G. We also use the notation
EG to denote the total space of a universal G - bundle.

We have the following immediate result about the homotopy groups of the
classifying space BG.

Corollary 4.10. For any group G, there is an isomorphism of homotopy
groups,
Tn-1G = 7, (BG).

Proof. By considering 4.7 and 4.8 we see that both of these homotopy groups
are in bijective correspondence with the set of principal bundles Pring(S™).
To realize this bijection by a group homomorphism, consider the “suspension”
of the group G, ¥G obtained by attaching two cones on G along the equator.
That is,

YG=Gx[-1,1]/ ~

where all points of the form (g,1), (h,—1), or (1,¢) are identified to a single
point.

Notice that this suspension construction can be applied to any space with
a basepoint, and in particular 3871 = ",

Consider the principal G bundle E over G defined to be trivial on both
cones with clutching function id : G x {0} ——— G on the equator. That is,
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if Cy =G x|[0,1]/ ~C XG and C_ = G x [-1,0] C XFE are the upper and
lower cones, respectively, then

E=(Cy xG) Uy (C- x Q)

where ((g,0),h) € C4 x G is identified with ((g,0)gh € C_ x G. Then by 4.8
there is a classifying map
f:XG — BG

such that f*(EG) = E.
Now for any space X, let QX be the loop space of X,

QX = {y:[~1,1] = X such thaty(—1) =~(1) = 29 € X}

where z¢ € X is a fixed basepoint. Then the map f : ¥G — BG determines
a map (its adjoint)

f:G— QBG
defined by f(g)(t) = f(g,t). But now the loop space QX of any connected
space X has the property that m,_1(QX) = m,(X) (see the exercise below).
We then have the induced group homomorphism

T (G) — 7 1(QBG) —=— 7,(BG)

which induces the bijective correspondence described above. O

Exercises. 1. Let X and Y be connected spaces equipped with basepoints.
Prove that there is a bijection

[$X,Y] = [X,QY].

Here the notation [—, —] denotes the set of homotopy classes of basepoint
preserving maps. As a special case, conclude that 7, (Y, y,) = m,—1(QY, ),
where ¢ : S! — Y is the constant map at the basepoint 7.

2. Let G be a topological group, and consider the map f : G — QBG defined
in the above proof of Corollary 4.10. Prove that f induces an isomorphism in
homotopy groups (in all degrees). Such a map is called a “weak homotopy
equivalence”.

3. Prove that the composition

Ta1(G) —L— 7,1 (QBG) —=— 7,(BG)

yields the bijection associated with identifying both m,_1(G) and 7, (BGQG)
with Pring(S™).

We recall the following definition from homotopy theory.



Classification of Bundles 83

Definition 4.4. An Eilenberg - MacLane space of type (G,n) is a space X

such that
G ifk=mn
7Tk(X) = f i
0 otherwise

We write K (G, n) for an Eilenberg - MacLane space of type (G,n). Recall
that for n > 2, the homotopy groups 7, (X) are abelian groups, so in this
K(G,n) only exists

Corollary 4.11. Let w be a discrete group. Then the classifying space B is
an Eilenberg - MacLane space K (m,1).

Examples.

e R has a free, cellular action of the integers Z by
(t,n) >t+n teR, nelZ.
Since R is contractible, R/Z = S' = BZ = K(Z,1).

e The inclusion S™ C S™*! as the equator is clearly null homotopic since
the inclusion obviously extends to a map of the disk. Hence the direct
limit space

lim ™ = U, 8" = 5%
-

is aspherical. Now Zs acts freely on each S™ by the antipodal map, and
the inclusions S™ C S™*! are equivariant with respect to these actions.
Hence there is an induced free action of Zy on S°°. Thus the projection
map

S — 8% /7y = RP™

is a universal principal Zy, = O(1) - bundle, and so

RP> = BO(1) = BZy = K(Zs,1)

e Similarly, the inclusion of the unit sphere in C™ into the unit sphere in
C"*! gives an the inclusion S?"~! C §2"*+! which is null homotopic. It is
also equivariant with respect to the free S = U(1) - action given by
(complex) scalar multiplication. Then the limit S = U,, 52" +1 is
aspherical with a free S action. We therefore have that the projection

S — 8% /8t = CP>
is a principal S = U(1) bundle. Hence we have
CP>* = BS' = BU(1).
Moreover since S! is a K(Z,1), then we have that

CP™ = K(Z,2).



84 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

e The cyclic groups Z, are subgroups of U(1) and so they act freely on S
as well. Thus the projection maps

§% 5 §%/7,

is a universal principal Z,, bundle. The quotient space S*°/Z,, is denoted
L*>°(n) and is referred to as the infinite Z,, - lens space.

These examples allow us to give the following description of line bundles
and their relation to cohomology. We first recall a well known theorem in
homotopy theory. This theorem will be discussed further in chapter 4. We
refer the reader to [101] for details.

Theorem 4.12. Let G be an abelian group. Then there is a natural isomor-
phism
¢: H"(K(G,n);G) —— Hom(G,G).

Let « € H"(K(G,n); G) be ¢~1(id). This is called the fundamental class.

Then if X has the homotopy type of a CW - complex, the mapping
(X, K(G,n)] = H"(X;G)
f o £

is a bijective correspondence.

With this we can now prove the following:

Theorem 4.13. There are bijective correspondences which allow us to classify
complex line bundles,

Vect'(X) = Pring)(X) =2 [X,BU(1)] = [X,CP>] = [X,K(Z,2)] = H?*(X;7)
where the last correspondence takes a map f: X — CP*> to the class
o = f*(c) € H*(X),

where ¢ € H?(CP>) is the generator. In the composition of these correspon-
dences, the class ¢y € H?(X) corresponding to a line bundle ¢ € Vect!(X)
is called the first Chern class of ¢ (or of the corresponding principal U(1) -
bundle).

Proof. These correspondences follow directly from the above considerations,
once we recall that Vect!(X) = Pringr,c)(X) = [X, BGL(1,C)], and that
CP* is a model for BGL(1,C) as well as BU(1). This is because, we can
express CP* in its homogeneous form as

CP™ = ling(C™*! — {0})/GL(1,0).

and that ligln((C”Jr1 — {0}) is an aspherical space with a free action of
GL(1,C) =C*. O
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There is a similar theorem classifying real line bundles:

Theorem 4.14. There are bijective correspondences
Vecty(X) = Prinoy(X) & [X, BO(1)] = [X,RP™] = [X, K(Z,1)] & H'(X; Z)
where the last correspondence takes a map f : X — RP*° to the class

wy = f*(w) € H'(X;Zo),

where w € H'(RP>;Zy) is the generator. In the composition of these cor-
respondences, the class w1 € HY(X;Zs) corresponding to a line bundle
¢ € Vecth(X) is called the first Stiefel - Whitney class of  (or of the corre-
sponding principal O(1) - bundle).

More Examples.

e Let V,(CV) be the Stieflel - manifold described in Chapter 2. We claim
that the inclusion of vector spaces CV C C2V as the first N - coordinates
induces an inclusion V,,(CY) < V,,(C?") which is null homotopic. To see
this, let ¢ : C* — C2V be a fixed linear embedding, whose image lies in
the last N - coordinates in C2V. Then given any p € V,,(CV) C V,,(C*),
then t- ¢+ (1 —t) - p for ¢t € [0,1] defines a one parameter family of linear
embeddings of C" in C2V | and hence a contraction of the image of V;,(CV)
onto the element ¢. Hence the limiting space V,,(C*) is aspherical with a
free GL(n,C) - action. Therefore the projection

Vi(C®) = Vi (C®)/GL(n, C) = Gry(C®)

is a universal GL(n,C) - bundle. Hence the infinite Grassmannian is the
classifying space
Gr,(C*) = BGL(n,C)

and so we have a classification

Vect"(X) & Pringrm,c)(X) = [X, BGL(n,C)] = [X,Gr,(C™)]. (4.1)

e A simlar argument shows that the infinite unitary Stiefel manifold,
VU(C>) is aspherical with a free U(n) - action. Thus the projection

Vi (C%) = Vo (C)/U(n) = Gra(C*)

is a universal principal U(n) - bundle. Hence the infinite Grassmanian
Gr,(C*) is the classifying space for U(n) bundles as well,

Gr,(C>) = BU(n).

The fact that this Grassmannian is both BGL(n,C) and BU(n) reflects
the fact that every n - dimensional complex vector bundle has a U(n) -
structure, and that structure is unique up to homotopy.
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e We have similar universal GL(n,R) and O(n) - bundles:
Vo (R*) = V,,(R*)/GL(n,R) = Gr,(R™)

and
VO(R*®) = V.2(R*®)/O(n) = Gr,(R™®).

Thus we have
Gr,(R*°) = BGL(n,R) = BO(n)
and so this infinite dimensional Grassmannian classifies real n - dimen-

sional vector bundles as well as principal O(n) - bundles.

Now suppose p : EG — EG/G = BG is a universal G - bundle. Suppose
further that H < G is a subgroup. Then H acts freely on EG as well, and
hence the projection

EG - EG/H

is a universal H - bundle. Hence EG/H = BH. Using the infinite dimensional
Stiefel manifolds described above, this observation gives us models for the
classifying spaces for any subgroup of a general linear group. So for example
if we have a subgroup (i.e a faithful representation) H C GL(n,C), then

BH =V, (C®)/H.

This observation also leads to the following useful fact.

Proposition 4.15. . Let p: EG — BG be a universal principal G - bundle,
and let H < G. Then there is a fiber bundle

BH — BG

with fiber the orbit space G/H.

Proof. This bundle is given by
G/H — EG x¢ G/H - EG/G = BG

together with the observation that EG x¢ G/H = EG/H = BH. O
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4.3 Classifying gauge groups

In this section we describe the classifying space of the group of automorphisms
of a principal G - bundle, or the gauge group of the bundle. We describe the
classifying space in two different ways: in terms of the space of connections
on the bundle, and in terms of the mapping space of the base manifold to
the classifying space BG. These constructions are important in Yang - Mills
theory, and we refer the reader to [7] and [27] for more details.

Let A be a connection on a principal bundle P — M where M is a closed
manifold equipped with a Riemannian metric. The Yang - Mills functional
applied to A, YM(A) is the square of the L? norm of the curvature,

YM(A) = 1 /M | Fall? d(vol).

We view Y M as a mapping Y M : A(P) — R. The relevance of the gauge
group in Yang - Mills theory is that Y M preserves this group of symmetries.

Definition 4.5. The gauge group G(P) of the principal bundle P is the group
of bundle automorphisms of P — M. That is, an element ¢ € G(P) is a
bundle isomorphism of P with itself lying over the identity:

p—L5p

Lol

M ——— M.
Equivalently, G(P) is the group G(P) = Autg(P) of G - equivariant diffeomor-
phisms of the space P, inducing the identity map on the orbit space P/G = M.

The gauge group G(P) can be thought of in several equivalent ways. The
following one is particularly useful.
Consider the conjugation action of the Lie group G on itself,

GxG—G@aG
(9,h) — ghg™".

This left action defines a fiber bundle
Ad(P)=P xgG— P/G=M

with fiber G. We leave the following as an exercise for the reader.
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Proposition 4.16. The gauge group of a principal bundle P — M is nat-
urally isomorphic (as topological groups) the the group of sections of Ad(P),
C>(M; Ad(P)).

The gauge group G(P) acts on the space of connections A(P) by the pull-
back construction. More generally, if f : P — @ is any smooth map of principal
G - bundles and A is a connection on @), then there is a natural pull back
connection f*(A) on @, defined by pulling back the equivariant splitting of
the tangent bundle T'Q to an equivariant splitting of TP in the obvious way.
The pull - back construction for automorphisms ¢ : P — P defines an action
of G(P) on A(P).

We leave the proof of the following is an exercise for the reader.

Proposition 4.17. Let P be the trivial bundle M x G — M. Then the gauge
group G(P) is given by the function space from M to G,

G(P) = C™(M;G).

Furthermore if ¢ : M — G is identified with an element of G(P), and A €
OY(M;g) is identified with an element of A(G), then the induced action of ¢
on G is given by

¢*(A) = ¢~ Ap + ¢~ do.

It is not difficult to see that in general the gauge group G(P) does not
act freely on the space of connections A(P). However there is an important
subgroup Go(P) < G(P) that does. This is the group of based gauge transfor-
mations. To define this group, let g € M be a fixed basepoint, and let P,
be the fiber of P at zq.

Definition 4.6. The based gauge group Go(P) is a subgroup of the group of
bundle automorphisms G(P) which pointwise fix the fiber Py,. That is,

Go(P)={¢p€G(P): if v€E Py, then ¢(v)=n}.

Theorem 4.18. The based gauge group Go(P) acts freely on the space of
connections A(P).

Proof. Suppose that A € A(P) is a fixed point of ¢ € Go(P). That is, ¢*(A) =
A. We need to show that ¢ = 1.

The equivariant splitting w4 given by a connection A defines a notion of
parallel transport in P along curves in M (see [43]). It is not difficult to see
that the statement ¢*(A) = A implies that application of the automorphism
¢ commutes with parallel transport. Now let w € P, be a point in the fiber of
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an element z € M. Given curve vy in M between the basepoint zy and x one
sees that

P(w) = Ty ($(Ty -1 (w))
where T, is parallel transport along v. But since 7. -1(w) € P,, and ¢ €
gO(P)a

Hence ¢(w) = w, that is, ¢ = 1. O

Remark. Notice that this argument actually says that if A € A(P) is the
fixed point of any gauge transformation ¢ € G(P), then ¢ is determined by
its action on a single fiber.

Let B(P) and By(P) be the orbit spaces of connections on P up to guage
and based gauge equivalence respectively,

B(P) = A(P)/G(P) By(P) = A(P)/Go(P).

Now it is straightforward to check directly that the Yang - Mills functional
in invariant under gauge transformations. Thus it yields maps

IM:B(P)—=R and YM:By(P)—R.

It is therefore important to understand the homotopy types of these orbit
spaces. Because of the freeness of the action of Gy(P), the homotopy type of
the orbit space Go(P) is easier to understand.

We end this section with a discussion of its homotopy type. Since the space
of connections A(P) is affine, it is contractible. Moreover it is possible to show
that the free action of the based gauge group Go(P) defines a principal bundle
A(P) = A(P)/Go(P) = Bo(P) (See [27]). Thus By(P) the classifying space of
the based gauge group,

Bo(P) = BGo(P).

But the classifying spaces of the gauge groups are relatively easy to un-
derstand. (see [7].)

Theorem 4.19. Let G — EG — BG be a universal principal bundle for
the Lie group G (so that EG is aspherical). Let yo € BG be a fized basepoint.
Then there are homotopy equivalences

BG(P) ~ Map" (M, BG) and By(P) ~ BGy(P) ~ Map} (M, BG)

where Map(M, BG) is the space of all continuous maps from M to BG and
Mapy(M, BG) is the space of those maps that preserve the basepoints. The
superscript P denotes the path component of these mapping spaces consisting
of the homotopy class of maps that classify the principal G - bundle P.
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Proof. Consider the space of all G - equivariant maps from P to EG,
Map® (P, EG). The gauge group G(P) = Aut®(P) acts freely on the left of
this space by composition. It is easy to see that Map® (P, EG) is aspherical,
and its orbit space is given by the space of maps from the G - orbit space of
P (= M) to the G - orbit space of EG (= BG),

Map® (P, EG)/G(P) = Map” (M, BG).

This proves that Map(M, BG) = BG(P). Similarly Map§ (P, EG), the space
of G - equivariant maps that send the fiber P, to the fiber EG,,, is an
aspherical space with a free Go(P) action, whose orbit space is Map} (M, BG).
Hence Map{’ (M, BG) = BGy(P). O

4.4 Existence of universal bundles: the Milnor join con-
struction and the simplicial classifying space

In the last section we proved a “recognition principle” for universal principal
G bundles. Namely, if the total space of a principal G - bundle p : E — B
is aspherical, then it is universal. We also proved a homotopy uniqueness
theorem, stating among other things that the homotopy type of the base space
of a universal bundle, i.e the classifying space BG, is well defined. We also
described many examples of universal bundles, and particular have a model
for the classifying space BG, using Stiefel manifolds, for every subgroup of a
general linear group.

The goal of this section is to prove the general existence theorem. Namely,
for every group G, there is a universal principal G - bundle p : EG — BG.
We will give two constructions of the universal bundle and the corresponding
classifying space. One, due to Milnor [72] involves taking the “infinite join” of
a group with itself. The other is an example of a simplicial space, called the
simplicial bar construction. It is originally due to Eilenberg and MacLane [28].
These constructions are essentially equivalent when G has a CW-structure,
and they both yield G - CW - complexes. Since they are so useful in algebraic
topology and combinatorics, we will also take this opportunity to introduce
the notion of a general simplicial space and show how these classifying spaces
are important examples.

4.4.1 The join construction

One can think of the “join” of two spaces X and Y, written X %Y as the
space consisting of points that lie on a line that connects a point in X to a
point in Y. The following is a more precise definition:
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Definition 4.7. The join X xY is defined by
X*Y=XxIxY/~

where I = [0,1] is the unit interval and the equivalence relation is given by
(2,0,9y1) ~ (2,0,y2) for any two points y1, y2 € Y, and similarly (z1,1,y) ~
(z2,1,y) for any two points x1, x2 € X.

A point (x,t,y) € X *Y can be viewed as a point on the line connecting
x to y. Here are some examples.

Examples.

e Let y be a single point. Then X x y is the cone CX = X x I/X x {1} .

e Let Y = {y1,y2} be the space consisting of two distinct points. Then
X %Y is the suspension XX discussed earlier. Notice that the suspension
can be viewed as the union of two cones, with vertices y; and y9
respectively, attached along the equator.

e Exercise. Prove that the join of two spheres, is another sphere,
™ x §m 2 gntmtl
e Let {xg, - ,xx} be a collection of k + 1 - distinct points. Then the k -

fold join xg % x1 * - - - % x} is the convex hull of these points and hence is
the k - dimensional simplex A* with vertices {xq,- - , ¢}

Observe that the space X sits naturally as a subspace of the join X %Y as
endpoints of line segments,

1 X - Xx*xY
x — (z,0,y).

Notice that this formula for the inclusion makes sense and does not depend
on the choice of y € Y. There is a similar embedding

7Y > XxY
y— (x,1,y).

Lemma 4.20. The inclusions 1 : X — X «Y and j:Y — X Y are null
homotopic.
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Proof. Pick a point yg € Y. By definition, the embedding ¢+ : X — X %Y
factors as the composition

t: X > Xxyy CX*xY
33_>(37»07y0)~

But as observed above, the join X *yq is the cone on X and hence contractible.
This means that ¢ is null homotopic, as claimed. The fact that j : Y — X %Y
is null homotopic is proved in the same way. O

Now let G be a group and consider the iterated join
GRD) — G G- x G

where there are k + 1 copies of the group element. This space has a free G
action given by the diagonal action

g-(g0,t1,91, -+ s te, gx) = (990, t1, 991, sk, 9GK)-

Exercise. 1. Prove that there is a natural G - equivariant map
Ak % Gk-‘,—l N G*(k—'rl)

which is a homeomorphism when restricted to AF x GF*1 where AF ¢ AF is
the interior. Here G acts on A* x G**1 trivially on the simplex AF and
diagonally on G*+1.

2. Use exercise 1 to prove that if G is a CW complex, the iterated join
G*(*+1) has the structure of a G - CW - complex.

Define J(G) to be the infinite join

J(G) = lim G**+D

k—o0

where the limit is taken over the embeddings ¢ : G**+1 — G*(+2) Since
these embedding maps are G -equivariant, we have an induced G - action on

J(G).
Theorem 4.21. If G is a CW-complex, the projection map
p: JG)— J(G)/G

is a universal principal G - bundle.
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Proof. By the above exercise the space J(G) has the structure of a G - CW -
complex with a free G - action. Therefore by the results of the last section the
projection p : J(G) — J(G)/G is a principal G - bundle. To see that J(G)
is aspherical, notice that since S™ is compact, any map « : S™ — J(G) is
homotopic to one that factors through a finite join (that by abuse of notation
we still call a), a : 8" — G***tD — 7(G). But by the above lemma the
inclusion G*("*Y C 7(G) is null homotopic, and hence so is a. Thus J(G)
is aspherical. By the results of last section, this means that the projection
J(G) = J(G)/G is a universal G - bundle. O

4.4.2 Simplicial spaces and classifying spaces

We therefore now have a universal bundle for every topological group G with
a CW-structure. We actually know a fair amount about the geometry of the
total space EG = J(G) which, by the above exercise can be described as the
union of simplices, where the k - simplices are parameterized by k + 1 -tuples
of elements of G,

EG=J(G) = JAF x G/ ~
k
and so the classifying space can be described by

BG =J(G)/G=| JAF xGF/ ~
k

It turns out that in these constructions, the simplices are glued together along
faces, and these gluings are parameterized by the k + 1 - product maps 9; :
Gk*2 — G*+1 given by multiplying the 7** and (i + 1)* coordinates.

Having this type of data (parameterizing spaces of simplices as well as
gluing maps) is an example of an object known as a “simplicial set” which is
an important combinatorial object in topology. We now describe this notion in
more detail and show how these universal G - bundles and classifying spaces
can be viewed in these terms.

Good references for this theory are [26], [61].

The idea of simplicial sets is to provide a combinatorial technique to study
cell complexes built out of simplices; i.e simplicial complexes. A simplicial
complex X is built out of a union of simplices, glued along faces. Thus if X,
denotes the indexing set for the n - dimensional simplices of X, then we can
write

X=[JA" x X,/ ~
n>0



94 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

where A" is the standard n - simplex in R";

A" = {(t, - ,t,) ER": 0<t; <1, and Zti <1}.

i=1

The gluing relation in this union can be encoded by set maps among the
X,,’s that would tell us for example how to identify an n — 1 simplex indexed
by an element of X,,_1 with a particular face of an n - simplex indexed by an
element of X,,. Thus in principal simplicial complexes can be studied purely
combinatorially in terms of the sets X, and set maps between them. The
notion of a simplicial set is a generalization of simplicial complex that makes
this idea precise.

Definition 4.8. A simplicial set X, is a collection of sets
X, n2>0
together with set maps
0i: Xp — Xn1 and s5: X, — Xy

for 0 < 4,57 < n called face and degeneracy maps respectively. These maps
are required to satisfy the following compatibility conditions

81'81' = 6]-_1& for i < j
8iSj = Sj+18; for ¢ <jJ
and
sj_18,» for i < j
Oisj =<1 fori=j,75+1
Sjai_l for i >]+1
As mentioned above, the maps 0; and s; encode the combinatorial infor-

mation necessary for gluing the simplices together. To say precisely how this
works, consider the following maps between the standard simplices:

5 : A" — A" and oj: AL AT
for 0 < 4,5 < n defined by the formulae

(tla"'ati—lvoatia"',tn—l) fOI'ZZl
(lizz;ft(ptly ,tn—l) fori:O

Oi(tr, - s tno1) = {
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and

(t1,- - stici,ti +tigi, tiyo, - s tpyr) fori>1
(tz,"',tn+1) fori=0.

oj(ti, - tpg1) = {

§; includes A"~ in A™ as the i face, and o projects, in a linear fashion,
A" onto its j** face.

We can now define the space associated to the simplicial set X, as follows.

Definition 4.9. The geometric realization of a simplicial set X, is the space

X = J A" x X/ ~

n>0
where if t € A" ! and = € X,,, then
(t,05(x)) ~ (6:(t), )
and if t € A"l and z € X,, then
(t,55(x)) ~ (05(t), @).

In the topology of || X.||, each X,, is assumed to have the discrete topology,
so that A™ x X, is a discrete set of n - simplices.

Thus || X.|| has one n - simplex for every element of X,,, glued together in
a way determined by the face and degeneracy maps.

Example. Consider the simplicial set S, defined as follows. The set of n -
simplices is given by

S, =Z/(n+ 1), generated by an element 7,,.
The face maps are given by

1 ifr<i<n
L ifo<i<r—1.

- Thy fr<i<n
Si(Tn): r+1 : .
T Hfo<i<r-—1.
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Notice that there is one zero simplex, two one simplices, one of them the
image of the degeneracy sp : Sg — S1, and the other nondegenerate (i.e not
in the image of a degeneracy map). Notice also that all simplices in dimensions
larger than one are in the image of a degeneracy map. Hence we have that the
geometric realization

[S.]| = A/0~1 =8

Let X, be any simplicial set. There is a particularly nice and explicit way
for computing the homology of the geometric realization, H, (|| X.]|)-

Consider the following chain complex. Define C), (X ) to be the free abelian
group generated by the set of n - simplices X,,. Define the homomorphism

dn : Co(Xy) — Cr1(X,)

by the formula

where x € X,.
Proposition 4.22. The homology of the geometric realization H,. (]| X.||) is
the homology of the chain complex

. e Cr(X,) _dn Cr1(X,) dno1 o _do

Co(X.,).

Proof. Tt is straightforward to check that the geometric realization | X, is a
CW - complex and that this is the associated cellular chain complex. O

Besides being useful computationally, the following result establishes the
fact that all CW complexes can be studied simplicially.

Theorem 4.23. Every CW complex has the homotopy type of the geometric
realization of a simplicial set.

Proof. Let X be a CW complex. Define the singular simplicial set of X ,
S(X). as follows. The n simplices S(X),, is the set of singular n - simplices,

S(X)p ={c: A" — X}.
The face and degeneracy maps are defined by
Oi(c)=cod : A"t — A" — X

and
si(c)=coo; : A" — A" — X,



Classification of Bundles 97

Notice that the associated chain complex to S(X). as in 4.22 is the sin-
gular chain complex of the space X. Hence by 4.22 we have that

H.([S(X)]) = H.(X).
This isomorphism is actually realized by a map of spaces
E:||SX)] — X
defined by the natural evaluation maps
A" x S(X), — X

given by
(t,c) — c(t).

It is straightforward to check that the map E does induce an isomorphism in
homology. In fact it induces an isomorphism in homotopy groups. We will not
prove this here; it is more technical and we refer the reader to [61] for details.
Note that it follows from the homological isomorphism by the Hurewicz the-
orem if we knew that X was simply connected. A map between spaces that
induces an isomorphism in homotopy groups is called a weak homotopy equiv-
alence. Thus any space is weakly homotopy equivalent to a CW - complex (i.e
the geometric realization of its singular simplicial set). But by the White-
head theorem, two CW complexes that are weakly homotopy equivalent are
homotopy equivalent. Hence X and ||S(X).| are homotopy equivalent. O

We next observe that the notion of simplicial set can be generalized as
follows. We say that X, is a simplicial space if it is a simplicial set (i.e it
satisfies definition 4.8) with the extra data that the sets X, have the structure
of a compactly-generated topological space, and the face and degeneracy maps

0i: Xp — Xp—1 and s5: X, — Xpq

are continuous maps. The definition of the geometric realization of a simplicial
space Xy, || X«||, is the same as in 4.9 with the proviso that the topology of
each A™ x X, is the product topology. Notice that since the “set of n -
simplices” X, is actually a space, it is not necessarily true that || X,|| is a
CW complex. However if in fact each X, is a CW complex and the face and
degeneracy maps are cellular, then || X,|| does have a natural CW structure
induced by the product CW - structures on A™ x X,,.

Notice that this simplicial notion generalizes even further. For example
a simplicial group would be defined similarly, where each X,, would be a
group and the face and degeneracy maps are group homomorphisms. Simpli-
cial vector spaces, modules, etc. are defined similarly. The categorical nature
of these definitions should by now be coming clear. Indeed more generally
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one can define a simplicial object in a category C using the above def-
inition where now the X,,’s are assumed to be objects in the category and
the face and degenarcies are assumed to be morphisms. If the category C is a
subcategory of the category of compactly-generated topological spaces, then
geometric realizations can be defined as in Definition 4.9. For example the ge-
ometric realization of a simplicial (abelian) group turns out to be a topological
(abelian) group. (Try to verify this for yourself!)

The notion of a simplicial object in a category C can be formalized some-
what in the following way.

Let A denote the simplex category. The objects of A are nonempty, linearly
ordered sets of the form [n] = {0,1,--- ,n}. A morphism ¢ : [n] — [m] is a
non-strictly order-preserving set map. Important examples of such morphisms
are “coface maps” 9;, 4 =0,--- ,n: [n—1] — [n], where ¢; is defined to be the
unique injective, order preserving set map from [n—1] to [n] whose image does
not contain ¢. There are also “codegeneracy maps” ¢;, j =0,--- ,n:[n+1] —
[n], where ¢; is the unique surjective order preserving set map [n + 1] — [n]
such that j is in the image of two elements.

We can then define a simplicial object X in a category C to be a con-
travariant functor

X:A—=C.

Given such a simplicial object X, the p simplicies are given by X, = X([p]),
and the face and degeneracy maps

0i: Xp — Xpo1 and s5: X, — Xpq

are given by X(&;) and X(oj), respectively.
Exercise: The two definitions of a simplicial object in a category C given

above are equivalent.

If C is a subcategory of the category of compactly-generated topological
spaces, then the geometric realization, || X|| of a simplicial object in C, can be
defined as in Definition 4.9. Observe that || X|| is then object in C.

We now use this simplicial theory to construct universal principal G -
bundles and classifying spaces.

Let G be a topological group and let £G, be the simplicial space defined
as follows. The space of n - simplices is given by the n + 1 - fold cartesian
product

G, =G

The face maps 9; : G"t! — G™ are given by the formula

ai(gOa"' 7gn) = (907"' 7.@1;7"' agn)



Classification of Bundles 99
The degeneracy maps s; : G"™' — G™ 12 are given by the formula

S](goa 7gn) = (907"' » 95,95, 7gn)-

Exercise. Show that the geometric realization ||EG.|| is aspherical.

Hint. Let ||£G.|™ be the n*" - skeleton,

€G] = | ) A7 x grt.
p=0

Then show that the inclusion of one skeleton in the next
|G| — ||EG.||FY) is null - homotopic. One way of doing this is to
establish a homeomorphism between ||EG.|(™ and n - fold join G * - -- % G.

Notice that the group G acts freely on the right of ||EG. | by the rule

IEG.|I x G = | |J AP x GPT | x G — ||EG.| (4.2)
p=>0

(t; (905 5 9p)) x g — (t; (909, 9pg)) -

Thus we can define EG = ||£G.||. The projection map
p: EG — EG/G = BG

is principal G-bundles whose total space is aspherical. Therefor it is universal
principal G - bundle.

This description gives the classfiying space BG an induced simplicial struc-
ture described as follows.

Let BG, be the simplicial space whose n - simplices are the cartesian
product

BG, = G". (4.3)

The face and degeneracy maps are given by

(927"'7977,) fOI"L.:O
0i(g1, 1 9n) = (g1, +9iGi+1," " Gn) for1<i<m—1
(91, 9n—1) for i = n.

The degeneracy maps are given by

1,01, ,9n for j =0
’gn)_{( 9 In) J

501, gm) = .
! (91, 9j: 1, gj41,+ ,gn) for j>1.
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The simplicial projection map
p: EG. — BG.,
defined on the level of n - simplicies by

p(go. »9n) = (9097 195 L gno19p )

is easily checked to commute with face and degeneracy maps and so induces
a map on the level of geometric realizations

p: EG = [[EG. || — [BG.|

which induces a homemorphism

BG = EG|G —=— |BG.]|.

Thus for any topological group this construction gives a simplicial space
model for its classifying space. This is referred to as the simplicial bar con-
struction. Notice that when G is discrete the bar construction is a CW
complex for the classifying space BG = K(G,1) and 4.22 gives a particu-
larly nice complex for computing its homology. (The homology of a K(G,1)
is referred to as the homology of the group G.)

The n - chains are the group ring

Cn(BG.) = Z|G™] = Z|G]®"
and the boundary homomorphisms
dy : Z[G®" — ZIG)®" !

are given by

n—1
dn(al ®...®an) — (a2®"'®an)+2(*1)i(al®"'®aiaz‘+1®"'®an)
=1

+(=D"(a1 @ @ an—1).

This complex is called the bar complex for computing the homology of
a group and was discovered by Eilenberg and MacLane in the mid 1950’s.

We end this chapter by observing that the bar construction of the classi-
fying space of a group did not use the full group structure. It only used the
existence of an associative multiplication with unit. That is, it did not use
the existence of inverse. So in particular one can study the classifying space
BA of a monoid A. Indeed one can define the classifying space BC of any
“small category” C in a similar way. (A “small” category is one whose objects
and morphisms are sets.) These are important construction in algebraic - K -
theory as well as homotopy theory.
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4.5 Some Applications

In a sense much of what we will study in the next chapter are applications of
the classification theorem for principal bundles. In this section we describe a
few immediate applications.

4.5.1 Line bundles over projective spaces

By the classification theorem we know that the set of isomorphism classes of
complex line bundles over the projective space CP" is given by

Vect' (CP") = Pringr,c)(CP") & Pring)(CP") = [CP", BU(1)] = [CP", CP>]
= [CP", K (Z,2)] = H*(CP",Z) = Z

Theorem 4.24. Under the above isomorphism,
Vect'(CP") 2 Z

the n - fold tensor product of the universal line bundle ’yi@” corresponds to the
integer n > 0.

Proof. The classification theorem says that every line bundle ¢ over CP" is
the pull back of the universal line bundle via a map f; : CP* — CP*>. That
is,
C= fim)-
The cohomology class corresponding to ¢, the first chern class ¢1((), is given
by
c1(Q) = fé(c) € H*(CP") = Z

where ¢ € H2(CP>) = Z is the generator. Clearly :*(c) € H?(CP") is the
generator, where ¢ : CP"* < CP> is natural inclusion. But t*(v1) = 71 €
Vect!(CP™). Thus 1 € Vect!(CP") 2 Z corresponds to the generator.

To see the effect of taking tensor products, consider the following “tensor
product map”

BU(1) x --- x BU(1) —2— BU(1)

defined to be the unique map (up to homotopy) that classifies the external
tensor product y; ®- - -®~; over BU(1) x---x BU(1). Using CP* = Gr,(C>)
as our model for BU(1), this tensor product map is given by taking k lines
£y, f in C* and considering the tensor product line

L@ 00, CC®®. . ®C® % oo
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where 1 : C* ® - - - ® C*® =2 C* is a fixed isomorphism. The induced map
7:CP* x --- x CP* — CP* = K(Z,2)

is determined up to homotopy by its effect on H2. Clearly the restriction to
each factor is the identity map and so

7(¢) = c14+ - 4 € HY(CP®x- .- xCP>®) = H*(CP®)®. - -@H?(CP>) = Z&- - -®Z

where ¢; denotes the generator of H? of the i*" factor in the product. Therefore
the composition

T

ty: CP® —2 4 CP® x ... x CP® —T— CP®

has the property that t;(c) = ke € H?*(CP*>). But also we have that on the
bundle level,
ti(n) = 2" € Vet (CP™).

The theorem now follows. O

We have a similar result for real line vector bundles over real projective
spaces.

Theorem 4.25. The only nontrivial real line bundle over RP™ is the canonical
line bundle 1.

Proof. We know that ~y; is nontrivial because its restriction to S* = RP! C
RP" is the Moebeus strip line bundle, which is nonorientable, and hence non-
trivial. On the other hand, by the classification theorem,

Vect: (RP") 2 [RP", BGL(1,R)] = [RP", RP™] = [RP", K(Zs,1)] = H'(RP", Zy) = Z,.

Hence there is only one nontrivial line bundle over RP™. O

4.5.2 Structures on bundles and homotopy liftings

The following theorem is a direct consequence of the classification theorem.
We leave its proof as an exercise.

Theorem 4.26. . Let p : E — B be a principal G - bundle classified by
a map f : B — BG. Let H < G be a subgroup. By the naturality of the
construction of classifying spaces, this inclusion induces a map (well defined
up to homotopy) « : BH — BG. Then the bundle p : E — B has an H -
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structure (i.e a reduction of its structure group to H) if and only if there is a
map }

f:B— BH
so that the composition

B — s BH —“ BG

is homotopic to f : B — BG. In particular if p: E — B is the principal H -

bundle classified by f, then there is an isomorphism of principal G bundles,

EXHG%’E

The map f : B — BH is called a “lifting” of the classifying map f: B —
BG. 1t is called a lifting because, as we saw at the end of the last section, the
map ¢ : BH — BG can be viewed as a fiber bundle, by taking our model for
BH to be BH = EG/H. Then ¢ is the projection for the fiber bundle

G/H - EG/H = BH —— EG/G = BG.

This bundle structure will allow us to analyze in detail what the obstructions
are to obtaining a lift f of a classifying map f: B — BG. We will study this
is chapter 4.

Examples.

e An orientation of a bundle classified by a map f : B — BO(k) is a lifting
f: B — BSO(k). Notice that the map ¢ : BSO(k) — BO(k) can be
viewed as a two - fold covering map

Zy = O(k)/SO(k) — BSO(k) —~— BO(k).

e An almost complex structure on a bundle classified by a map
f: B — BO(2n) is a lifting f : B — BU(n). Notice we have a bundle

O(2n)/U(n) — BU(n) — BO(2n).

The following example will be particularly useful in the next chapter when
we define characteristic classes and do calculations with them.

Theorem 4.27. A complex bundle vector bundle ( classified by a map f :
B — BU(n) has a nowhere zero section if and only if f has a lifting f:B—
BU(n—1). Similarly a real vector bundle n classified by a map f : B — BO(n)
has a nowhere zero section if and only if f has a lifting f : B — BO(n — 1).
Notice we have the following bundles:

S =U(n)/U(n —1) = BU(n —1) — BU(n)

and

S"=1 = O(n)/O(n — 1) — BO(n — 1) — BO(n).



104 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

This theorem says that BU(n — 1) forms a sphere bundle (S?"~!) over
BU(n), and similarly, BO(n — 1) forms a S"~! - bundle over BO(n). We
identify these sphere bundles as follows.

Corollary 4.28. The sphere bundles

S§?n=1  BU(n—1) — BU(n)
and

S"=1 — BO(n — 1) — BO(n)

are isomorphic to the unit sphere bundles of the universal vector bundles vy,
over BU(n) and BO(n) respectively.

Proof. We consider the complex case. The real case is proved in the same
way. Notice that the model for the sphere bundle in the above theorem is the
projection map

p:BU(n—1)=EU(n)/U(n—1) = EU(n)/U(n) = BU(n).

But 7, is the vector bundle EU(n) X,y C* — BU(n) which therefore has
unit sphere bundle

S(vm) = EU(n) Xy S**~' = BU(n) (4.4)

where S?"~! C C" is the unit sphere with the induced U(n) - action. But
S?n=1 >~ U(n)/U(n — 1) and this diffeomorphism is equivariant with respect
to this action. Thus the unit sphere bundle is given by

S(vn) = EU(n) xymy U(n)/U(n —1) = EU(n)/U(n —1) = BU(n —1)
as claimed. 0
We observe that by using the Grassmannian models for BU (n) and BO(n),
then their relation to the sphere bundles can be seen explicitly in the following

way. This time we work in the real case.
Consider the embedding

L Grp 1 (RY) < Gr, (RN x R) = Gr,, (RN 1)

defined by

(VCRY) = (VxRcCRY xR).
Clearly as N — oo this map becomes a model for the inclusion BO(n —1) <
BO(n). Now for V € Gr,,_1(RY) consider the vector (0,1) € V xR C RN xR.
This is a unit vector, and so is an element of the fiber of the unit sphere bundle
S(vn) over V' x R. Hence this association defines a map

j: Gra—1(RY) = S(m)
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which lifts ¢ : Gry,—1 (RY) — Gr,(RV*1). By taking a limit over N we get a
map j: BO(n —1) — S(v).

To define a homotopy inverse p : S(v,) = BO(n — 1), we again work on
the finite Grassmannian level.

Let (W, w) € S(v,), the unit sphere bundle over Gr,,(R¥). Thus W C RX
is an n -dimensional subspace and w € W is a unit vector. Let W,, C W denote
the orthogonal complement to the vector w in W. Thus W,, C W C R¥ is an
n — 1 - dimensional subspace. This association defines a map

p:S(n) = Grp_1(RE)

and by taking the limit over K, defines a map p : S(v,) = BO(n — 1). We
leave it to the reader to verify that j : BO(n — 1) = S(v,) and p : S(v,) —
BO(n — 1) are homotopy inverse to each other.

4.5.3 Embedded bundles and K -theory

The classification theorem for vector bundles says that for every n - dimen-
sional complex vector bundle ¢ over X, there is a classifying map fr : X —
BU(n) so that ¢ is isomorphic to pull back, f*(7,,) of the universal vector bun-
dle. A similar statement holds for real vector bundles. Using the Grassmannian
models for these classifying spaces, we obtain the following as a corollary.

Theorem 4.29. Everyn - dimensional complex bundle ¢ over a space X can
be embedded in a trivial infinite dimensional bundle, X x C*°. Similarly, every
n - dimensional real bundle n over X can be embedded in the trivial bundle
X x R*>.

Proof. Let fc: X — Gr,(C®) = BU(n) classify ¢. So ¢ = f*(y,). But recall
that
Y = {(V,v) € Gry(C®) x C* such thatv € V.}

Hence 7, is naturally embedded in the trivial bundle Gr,, (C>)xC>. Thus ¢ &
f*(7n) is naturally embedded in X x C*°. The real case is proved similarly. [

Notice that because of the direct limit topology on Gr,(C®) =
hAqGrn((CN), then if X is a compact space, any map f : X — Gr,(C*>)
has image that lies in Gr,,(CY) for some finite N. But notice that over this
finite Grassmannian, v,, C Gr,,(C") x C¥. The following is then an immedi-
ate corollary. This result was used in chapter one in our discussion about K
-theory.
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Corollary 4.30. If X is a compact space of the homotopy type of a CW -
complex, then every n - dimensional complex bundle zeta can be embedded in
a trivial bundle X x CN for some N. The analogous result also holds for real
vector bundles.

Let f : X — BU(n) classify the n - dimensional complex vector bundle (.
Then clearly the composition f : X — BU(n) < BU(n+1) classifies the n+1
dimensional vector bundle ¢ @ €1, where as before, €; is the one dimensional
trivial line bundle. This observation leads to the following.

Proposition 4.31. Let (1 and (3 be two n -dimensional vector bundles over
X classified by f1and fo : X — BU(n) respectively. Then if we add trivial
bundles, we get an isomorphism

G Der = De
if and only if the compositions,
fi, f2: X = BU(n) = BU(n+ k)

are homotopic.

Now recall from the discussion of K - theory in the last chapter that
the set of stable isomorphism classes of vector bundles SVect(X) is isomor-
phic to the reduced K - theory, K (X), when X is compact. This proposition
then implies the following important result, which displays how in the case of
compact spaces, computing K -theory reduces to a specific homotopy theory

calculation.

Definition 4.10. Let BU be the limit of the spaces

BU = lim BU(n).

Similarly,

BO = liy BO(n).

Theorem 4.32. For X compact there are isomorphisms (bijective correspon-
dences)

K(X) = SVect(X) = [X, BU]

and

KO(X) = SVectg(X) = [X, BO).
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4.5.4 Representations and flat connections

Recall the following classification theorem for covering spaces.

Theorem 4.33. . Let X be a connected space. Then the set of isomorphism
classes of connected covering spaces, p : E — X is in bijective correspondence
with conjugacy classes of normal subgroups of m1(X). This correspondence
sends a covering p: E — B to the image p.(m1(E)) C m1(X).

Let # = m(X) and let p : E — X be a connected covering space with
m1(F) = N < 7. Then the group of deck transformations of FE is the quotient
group m/N, and so can be thought of as a principal 7/N - bundle. Viewed
this way it is classified by a map fgr : X — B(w/N), which on the level of
fundamental groups,

fo :m=m(X) = m(B(x/N)) =7n/N
(4.5)

is just the projection on to the quotient space. In particular the universal
cover X — X is the unique simply connected covering space. It is classified
by a map

vx : X — Brw

which induces an isomorphism on the fundamental group.

Now let 6 : m — G be any group homomorphism. By the naturality of
classifying spaces this induces a map on classifying spaces,

BO : Br — BG.

This induces a principal G - bundle over X classified by the composition

X 2, pr 2%, BG.
The bundle this map classifies is given by
X %, G— X

where 7 acts on G via the homomorphism 0 : 7 — G.

This construction defines a map
p: Hom(m(X),G) — Pring(X).

Now if X is a smooth manifold then its universal cover p : X — X induces an
isomorphism on tangent spaces,

Dp(z) : T X — Ty X
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for every x € X. Thus, viewed as a principal 7 - bundle, it has a canonical
connection. Notice furthermore that this connection is flat, i.e its curvature is
Zero.

Exercise.
Check this claim! That is, show that the canonical connection on a covering
space is flat.

Now notice that any bundle of the form X x, G — X has an induced
flat connection. In particular the image of p : Hom(m(X),G) — Pring(X)
consists of principal bundles equipped with flat connections.

Notice furthermore that by taking G = GL(n,C) the map p assigns to
an n - dimensional representation an n - dimensional vector bundle with flat
connection

p: Repp(mi (X)) = Vect,(X).

By taking the sum over all n and passing to the Grothendieck group com-
pletion,we get a homomorphism of rings from the representation ring to K -
theory,

p: R(m (X)) - K(X).

An important question is what is the image of this map of rings. Again we
know the image is contained in the classes represented by bundles that have
flat connections. For X = Bm, for 7 a finite group, the following is a famous
theorem of Atiyah and Segal:
Let
€:R(nr)—»Z and e:K(Bm)—Z

be the augmentation maps induced by sending a representation or a vector
bundle to its dimension. Let I C R(r) and I C K(Bm) denote the kernels
of these augmentations, i.e the “augmentation ideals”. Finally let R(7) and

K (Bm) denote the completions of these rings with respect to these ideals.
That is,

R(m) = lim R(m)/I" and K(Bm)= Jim K(Bm)/I™
where I™ is the product of the ideal I with itself n - times.

Theorem 4.34. (Atiyah and Segal) [9] For 7 a finite group, the induced map
on the completions of the rings with respect ot the augmentation ideals,

p: R(r) = K(Br)

is an isomorphism.
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Characteristic Classes

In this chapter we define and calculate characteristic classes for principal
bundles and vector bundles. Characteristic classes are the basic cohomologi-
cal invariants of bundles and have a wide variety of applications throughout
topology and geometry. Characteristic classes were introduced originally by E.
Stiefel in Switzerland and H. Whitney in the United States in the mid 1930’s.
Stiefel, who was a student of H. Hopf intoduced in his thesis certain “charac-
teristic homology classes” determined by the tangent bundle of a manifold. At
about the same time Whitney studied general sphere bundles, and later in-
troduced the general notion of a characteristic cohomology class coming from
a vector bundle, and proved the product formula for their calculation.

In the early 1940’s, L. Pontrjagin, in Moscow, introduced new charac-
teristic classes by studying the Grassmannian manifolds, using work of C.
Ehresmann from Switzerland. In the mid 1940’s, after just arriving in Prince-
ton from China, S.S Chern defined characteristic classes for complex vector
bundles using differential forms and his calculations led a great clarification
of the theory.

Much of the modern view of characteristic classes has been greatly influ-
enced by the highly influential book of Milnor and Stasheff. This book was
originally circulated as lecture notes written in 1957 and finally published
in 1974. This book is one of the great textbooks in modern mathematics.
These notes follow, in large part, their treatment of the subject. The reader
is encouraged to consult their book for further details.

5.1 Preliminaries
Definition 5.1. Let G be a topological group (possibly with the discrete topol-

ogy). Then a characteristic class for principal G - bundles is an assignment to
each principal G - bundle p : P — B a cohomology class

c(P) € H*(B)

109
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satisfying the following naturality condition. If

Pl%PQ

n| |

Blf}BQ

is a map of principal G - bundles inducing an equivariant homeomorphism on
fibers, then
[ (e(P2)) = c(Pr) € H*(By).

Remarks. 1. In this definition cohomology could be taken with any co-
efficients, including, for example, DeRham cohomology, which has coefficients
in the real numbers R. The particular cohomology theory used is referred to
as the “values” of the characteristic classes.

2. The same definition of characteristic classes applies to real or complex
vector bundles as well as principal bundles.

The following is an easy consequence of the definition.

Lemma 5.1. Let ¢ be a characteristic class for principal G - bundles so that
¢ takes values in H1(—), for ¢ > 1. Then if € is the trivial G bundle,

e=XxG—-X
then c(e) = 0.
Proof. The trivial bundle € is the pull - back of the constant map to the one

point space e : X — pt of the bundle v = G — pt. Thus ¢(¢) = e*(¢(v)). But
c(v) € Hl(pt) = 0 when ¢ > 0. O

The following observation is also immediate from the definition.

Lemma 5.2. Characteristic classes are invariant under isomorphism. More
specifically, Let ¢ be a characteristic class for principal G - bundles. Also let
p1: E1 — X and py : Es — X be isomorphic principal G - bundles. Then

o(Ey) = c(Bs) € H*(X).

Thus for a given space X, a characteristic class ¢ can be viewed as a map

¢: Pring(X) — H*(X).

3. The naturality property in the definition can be stated in more functorial
terms in the following way.
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Cohomology (with any coefficients) H*(—) is a contravariant functor from
the category hoT op of topological spaces and homotopy classes of maps, to the
category Ab of abelian groups. By the results of chapter 2, the set of principal
G - bundles Pring(—) can be viewed as a contravariant functor from the
category hoT op to the category of sets Sets.

Definition 5.2. (Alternative) A characteristic class is a natural transfor-
mation ¢ between the functors Pring(—) and H*(—):

¢: Pring(—) ~ H*(—)

Examples.

1. The first Chern class ¢(¢) is a characteristic class on principal U(1) -
bundles, or equivalently, complex line bundles. If { is a line bundle over
X, then ¢;(¢) € H*(X;Z). As we saw in the last chapter, ¢ is a
complete invariant of line bundles. That is to say, the map

c1: Pringy(X) = H*(X;Z)
is an isomorphism.

2. The first Stiefel - Whitney class wi(n) is a characteristic class of two fold
covering spaces (i.e a principal Zs = O(1) - bundles) or of real line
bundles. If 7 is a real line bundle over a space X, then
w1(n) € HY(X;Zsy). Moreover, as we saw in the last chapter, the first
Stiefel - Whitney class is a complete invariant of line bundles. That is,
the map

wy 1 Pringay(X) — H' (X Zs)

is an isomorphism.

We remark that the first Stiefel - Whitney class can be extended to be a
characteristic class of real n - dimensional vector bundles (or principal O(n)
- bundles) for any n. To see this, consider the subgroup SO(n) < O(n). As
we saw in the last chapter, a bundle has an SO(n) structure if and only if it
is orientable. Moreover the induced map of classifying spaces gives a 2 - fold
covering space or principal O(1) - bundle,

Zs = O(1) = O(n)/SO(n) — BSO(n) — BO(n).

This covering space defines, via its classifying map wy : BO(n) — BO(1) =
RP> an element w; € H'(BO(n); Zs) which is the first Stiefel - Whitney class
of this covering space.

Now let 1 be any n - dimensional real vector bundle over X, and let

fn: X = BO(n)

be its classifying map.
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Definition 5.3. The first Stiefel - Whitney class w1(n) € HY(X;Zs) is de-
fined to be

wi(n) = fr(wy) € H'(X;Zsy)
The first Chern class ¢1 of an n - dimensional complex vector bundle ¢ over

X is defined similarly, by pulling back the first Chern class of the principal
U(1) - bundle

U(1)2U(n)/SU(n) = BSU(n) — BU(n)
via the classifying map fc : X — BU(n).

The following is an immediate consequence of the above lemma and the
meaning of SO(n) and SU(n) - structures.

Theorem 5.3. Given a complex n - dimensional vector bundle ( over X,
then c1(¢) € H*(X) is zero if and only if ¢ has an SU(n) -structure.

Furthermore, given a real n - dimensional vector bundle n over X, then
wi(n) € HY(X; Zy) is zero if and only if the bundle n has an SO(n) - structure,
which is equivalent to n being orientable.

We now use the classification theorem for bundles to describe the set of
characteristic classes for principal G - bundles.

Let R be a commutative ring and let Charg(R) be the set of all character-
istic classes for principal G bundles that take values in H*(—; R). Notice that
the sum (in cohomology) and the cup product of characteristic classes is again
a characteristic class. This gives Charg the structure of a ring. (Notice that
the unit in this ring is the constant characteristic class ¢(¢) =1 € H°(X).

Theorem 5.4. There is an isomorphism of rings

p:Charg(R) —— H*(BG;R)

Proof. Let ¢ € Charg(R). Define
p(c) = c¢(EG) € H*(BG; R)

where EG — BG is the universal G - bundle over BG. By definition of the
ring structure of Charg(R), p is a ring homomorphism.

Now let v € HY(BG; R). Define the characteristic class ¢, as follows. Let
p: E — X be a principal G - bundle classified by a map fr : X — BG. Define

& (E) = fp(y) € HY(X; R)

where [} : H*(BG : R) — H*(X; R) is the cohomology ring homomorphism
induced by fg. This association defines a map

c¢: H*(BG;R) — Charg(R)

which immediately seen to be inverse to p. O
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5.2 Chern Classes and Stiefel - Whitney Classes

In this section we compute the rings of unitary characteristic classes
Chary () (Z) and Zs - valued orthogonal characteristic classes Charomn)(Zz).
These are the characteristic classes of complex and real vector bundles and
as such have a great number of applications. By Theorem 5.4 computing
these rings of characteristic classes reduces to computing the cohomology rings
H*(BU(n);Z) and H*(BO(n); Z2). The following is the main theorem of this

section.

Theorem 5.5. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

ChaTU(n) (Z) = H” (BU(TL), Z) = Z[Cla Co, 7cn]

where ¢; € H*(BU(n);Z) is known as the i'" - Chern class.
b. The ring of Zs - valued O(n) characteristic classes is a polynomial algebra
on n - generators,

Charo(n)(Zz) = H*(BO(n); Zz) = Zy[wy, wa, - -+, wy]

where w; € HY(BO(n); Zy) is known as the it - Stiefel - Whitney class.

This theorem will be proven by induction on n. For n =1 BU(1) = CP>
and BO(1) = RP* and so the theorem describes the ring structure in the
cohomology of these projective spaces. To complete the inductive step we will
study the sphere bundles

St — BO(n — 1) — BO(n)
and
S§?n=! & BU(n —1) — BU(n)

described in the last chapter. In particular recall from Corollary 4.28 that in
these fibrations, BO(n —1) and BU(n — 1) are the unit sphere bundles S(v,,)
of the universal bundle ~,, over BO(n) and BU(n) respectively. Let D(~,) be
the unit disk bundles of the universal bundles. That is, in the complex case,

D(yn) = EU(n) Xy D** = BU(n)
and in the real case,
D(vn) = EO(n) Xo(my D™ — BO(n)

where D?" C C" and D™ C R" are the unit disks, and therefore have the
induced unitary and orthogonal group actions.
Here is one easy observation about these disk bundles.
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Proposition 5.6. The projection maps
p: D(yn) = EU(n) xg(ny D*™ — BU(n)

and
D(vn) = EO(n) Xo(my D" — BO(n)

are homotopy equivalences.

Proof. Both of these bundles have zero sections Z : BU(n) — D(y,) and
Z : BO(n) = D(¥,). In both the complex and real cases, we have po Z = 1.
To see that Z op ~ 1 consider the homotopy H : D(~,) x I — D(~,) defined
by H(v,t) = tv. O

We will use this result when studying the cohomology exact sequence of
the pair (D(7n),5(7n)):

= HI7Y(S () —2— HY(D(7), S(v)) = HI(D(3)) = HI(S(7n))
—2 s H™Y(D(y,),5(1m)) — H™ (D (7)) — - .

Using the above proposition and Corollary 4.28 we can substitute
H*(BU(n)) for H*(D(7y,)), and H*(BU(n — 1)) for H*(S(7y)) in this se-
quence to get the following exact sequence

<= HTY(BU(n — 1)) % HY(D(y,), S(va)) — HY(BU(n)) (5.2)
Y HY(BU(n — 1)) & HIN(D(3,), S(3n)) = HITY(BU(n)) — --- .

and we get a similar exact sequence in the real case

o HIYBO(n — 1);Zs) % HI(D (), S(yn): Z2) — HU(BO(n); Zs) )
5.3

4 HY(BO(n — 1);Z5) = HT™ (D(va), S (1n); Z2) — HTH(BO(n); Zo) — -

These exact sequences will be quite useful for inductively computing the
cohomology of these classifying spaces, but to do so we need a method for
computing H*(D(vn),S(vn)), or more generally, H*(D(¢), S(¢)), where ( is
any Euclidean vector bundle and D(¢) and S({) are the associated unit disk
bundles and sphere bundles respectively. The quotient space,
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T(¢) = D(¢)/S(¢) (5-4)

is called the Thom space of the bundle (. As the name suggests, this con-
struction was first studied by R. Thom [94], and has been quite useful in both
bundle theory and cobordism theory. Notice that on each fiber (say at z € X)
of the n - dimensional disk bundle (, the Thom space construction takes the
unit n - dimensional disk modulo its boundary n — 1 - dimensional sphere
which therefore yields an n - dimensional sphere, with marked basepoint, say
00, € S™(¢:) = D"(¢x)/S™ 1(¢s). The Thom space construction then identi-
fies all the basepoints oo, to a single point. Notice that for a bundle over a
point R® — pt, the Thom space T(R") = D"/S"~! = S" = R™ U co. More
generally, notice that when the basespace X is compact, then the Thom space
is simply the one point compactification of the total space of the vector bundle
¢

T(¢)=(¢r=(¢Uoo (5.5)

where we think of the extra point in this compactification as the common
point at infinity assigned to each fiber. In order to compute with the above
exact sequences, we will need to study the cohomology of Thom spaces. But
before we do we examine the topology of the Thom spaces of product bundles.
For this we introduce the “smash product” construction.

Let X and Y be spaces with basepoints g € X and yg € Y.

Definition 5.4. The wedge X VY is the “one point union”,
XVY=XxyUzgxY CX xY.
The smash product X AY is given by

XAY =X xY/X VY.

Observations. 1. The k be a field. Then the Kunneth formula gives
H*(X ANY: k)= H*(X; k) @ H*(Y; k).

2. Let V and W be vector spaces, and let V+ and W be their one point
compactifications. These are spheres of the same dimension as the respective
vector spaces. Then

VEAWT =V x W)*t.

So in particular,
S A ST = grtm,



116 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

Proposition 5.7. Let ( be an n - dimensional vector bundle over a space
X, and let n be an m - dimensional bundle over X. Let ( X n be the product
n+m - dimensional vector bundle over X NY . Then the Thom space of { X7
is given by

T(C x n) = T(C) AT ().

Proof. Notice that the disk bundle is given by
D(¢ xn) = D(C) x D(n)
and its boundary sphere bundle is given by
S(¢xm) = 5(C) x D(n) UD(C) x S(n).

Thus

T(¢xmn) =D xn)/S( xn)=

2
B~
o
X
)
=
~
=
o
X
S
=
-
-
o
X
“n
s

We now proceed to study the cohomology of Thom spaces.

5.2.1 The Thom Isomorphism Theorem

We begin by describing a cohomological notion of orientability of an vector
bundle ¢ over a space X.

Consider the 2 - fold cover over X defined as follows. Let £ be the principal
GL(n,R) bundle associated to ¢. Also let Gen,, be the set of generators of
H"(S™) = Z. So Gen,, is a set with two elements. Moreover the general
linear group GL(n,R) acts on S™ = R™ U oo by the usual linear action on R"
extended to have a fixed point at oo € S™. By looking at the induced map on
cohomology, there is an action of GL(n,R) on Gen,,. We can then define the
double cover

G(¢) = E¢ Xgr(mpr) Gen, — E¢/GL(n,R) = X.

Lemma 5.8. The double covering G(C) is isomorphic to the orientation double
cover Or(().
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Proof. Recall from chapter 1 that the orientation double cover Or(() is given
by
OT’(C) = EC XGL(n,]R) OT’(R”)

where Or(R™) is the two point set consistingof orientations of the vector space
R™. A matrix A € GL(n,R) acts on this set trivially if and only if the deter-
minant detA is positive. It acts nontrivially (i.e permutes the two elements) if
and only if detA is negative. Now the same is true of the action of GL(n,R)
on Gen,. This is because A € GL(n,R) induces multiplication by the sign of
detA on H™(S™).

Exercise. Verify this claim. That is, prove that A € GL(n,R) induces multi-
plication by the sign of detA on H™(S™).

Since Or(R™) and Gen,, are both two point sets with the same action
of GL(n,R), the corresponding two fold covering spaces Or(¢) and G({) are
isomorphic. O

Corollary 5.9. An orientation of an n - dimensional vector bundle ¢ is equiv-
alent to a section of G(¢) and hence defines a continuous family of generators

ug € H"(5"(C2)) = Z

for every x € X. Here S™((,) is the unit disk of the fiber (, modulo its
boundary sphere. S™((,) is called the sphere at x.

Now recall that given a pair of spaces A C Y, there is a relative cup
product in cohomology,

HYY)® H"(Y,A) —>— HT"(Y, A).

So in particular the relative cohomology H*((Y, A) is a (graded) module
over the (graded) ring H*(Y).

In the case of a vector bundle ¢ over a space X, we then have that
H*(D(¢),S(¢)) = H*(T(¢)) is a module over H*(D(()) = H*(X). So in
particular, given any cohomology class in the Thom space, o € H"(T(¢)) we
get an induced homomorphism

HI(X) —"= HI"(T(Q)).

Our next goal is to prove the famous Thom Isomorphism Theorem which
can be stated as follows.

Theorem 5.10. Let ( be an oriented n - dimensional real vector bundle over
a connected space X. Let R be any commutative ring. The orientation gives
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generators u, € H"(S™((,); R) & R. Then there is a unique class (called the
Thom class) in the cohomology of the Thom space

ue H"(T(¢); R)
so that for every x € X, if
Ja 2 8" (Ce) = D(€)/S5(¢) =T(¢)

is the natural inclusion of the sphere at x in the Thom space, then under the
induced homomorphism in cohomology,

Jo s H'(T(C); R) — H"(5"(C); R) = R

Furthermore The induced cup product map

v:HI(X;R) —— H™"(T((); R)

is an isomorphism for every q € 7. So in particular H"(T(C);R) = 0 for
r<<n.

If ¢ is not an orientable bundle over X, then the theorem remains true if
we take Zo coefficients, R = Zo.

Proof. We prove the theorem for oriented bundles. We leave the nonorientable
case (when R = Zs) to the reader. We also restrict our attention to the case
R =7, since the theorem for general coefficients will follow immediately from
this case using the universal coefficient theorem.

Case 1: ( is the trivial bundle X x R™.
In this case the Thom space T'({) is given by

T() =X xD"/X x S" 1,
The projection of X to a point, X — pt defines a map
7:T()=XxD"/X xS" ' = D"/s" 1 = 8",
Let u € H™(T(¢)) be the image in cohomology of a generator,
Z= H"(S") —"— H"(T(Q)).
The fact that taking the cup product with this class
HY(X) —2y Hatn(T(¢)) = HI*"(X x D", X x S*~1) = HI+"(X x S", X x pt)

is an isomorphism for every ¢ € Z follows from the universal coefficient theo-
rem.
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Case 2: X is the union of two open sets X = X; U X5, where we know
the Thom isomorphism theorem holds for the restrictions ¢; = (| X fori=1,2
and for (1,2 = (5, nx, -

We prove the theorem for X using the Mayer - Vietoris sequence for co-
homology. Let X; » = X; N Xo.

= HIY(T(C12)) = HUT(C) = HYT(Q)®HY(T((2)) = HI(T(Cr2)) = -+
Looking at this sequence when ¢ < n, we see that since
HYT(C2)) = HU(T(G)) = H(T(¢2)) = 0,

then by exactness we must have that H4(T'(¢)) = 0.

We now let ¢ = n, and we see that by assumption, H*(T((1)) =
H™(T((2)) = H™(T(C1,2)) = Z, and that the Thom classes of each of the
restriction maps H"(T((1)) — H(T(¢i.0)) and HYT(G)) — HMT((1.2))
correspond. Moreover H" 1(T(¢;2)) = 0. Hence by the exact sequence,
H™(T(¢)) = Z and there is a class u € H"(T({)) that maps to the direct
sum of the Thom classes in H™(T'(¢1)) ® H™(T(¢2)).-

Now for ¢ > n we compare the above Mayer - Vietoris sequence with the
one of base spaces,

— HT7Y (X1 5) » H(X) = HY(X;) ® HY(X) — H1(X12) — -+~

This sequence maps to the one for Thom spaces by taking the cup product
with the Thom classes. By assumption this map is an isomorphism on H*(X;),
i=1,2 and on H*(X;2). Thus by the Five Lemma it is an isomorphism on
H*(X). This proves the theorem in this case.

Case 3. X is covered by finitely many open sets X;, ¢ = 1,--- , k so that
the restrictions of the bundle to each X;, (; is trivial.

The proof in this case is an easy inductive argument (on the number of
open sets in the cover), where the inductive step is completed using cases 1
and 2.

Notice that this case includes the situation when the basespace X is com-
pact.

Case 4. General Case. We now know the theorem for compact spaces.
However it is not necessarily true that the cohomology of a general space (i.e
homotopy type of a C.W complex) is determined by the cohomology of its
compact subspaces. However it is true that the homology of a space X is
given by

H.(X) = li_n>1H*(K)
K

where the limit is taken over the partially ordered set of compact subspaces
K C X. Thus we want to first work in homology and then try to transfer our
observations to cohomology.
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To do this, recall that the construction of the cup product pairing actually
comes from a map on the level of cochains,

CUY)® C"(Y,A) —=— CUH7(Y, A)

and therefore has a dual map on the chain level

C (Y, A) —2— C.(Y)® CL(Y, A).
and thus induces a map in homology
¢ : Hk(Ya A) — ®T20Hk—T(Y) ® HT(K A)

Hence given o« € H"(Y, A) we have an induced map in homology (the “slant
product”)
Ja: Hy (Y, A) — Hp_.(Y)

defined as follows. If 0 € H,(Y, A) and

P(0) = a;®b; € Hy(Y) @ H, (Y, A)

J

then
Jo(0) = alb;) - a;
J
where by convention, if the degree of a homology class b; is not equal to the
degree of «, then a(b;) = 0.
Notice that this slant product is dual to the cup product map

HY(Y) —2 HI" (Y, A).

Again, by considering the pair (D(¢), S(¢)), and identifying H.(D(()) &
H.(X), we can apply the slant product operation to the Thom class, to define
a map

Ju: Hy(T(C)) = Hp—n(X).

which is dual to the Thom map v: HYX) _Yu HI(T(Q)). Now since 7 is
an isomorphism in all dimensions when restricted to compact sets, then by the
universal coefficient theorem, /u : Hy(T((),)) — Hyq—n(K) is an isomorphism
for all ¢ and for every compact subset K C X. By taking the limit over the
partially ordered set of compact subsets of X, we get that

Ju: Hy(T(¢)) = Hy—n(X)

is an isomorphism for all g. Applying the universal coefficient theorem again,
we can now conclude that

v HA(X) —"= HM™(T(())

is an isomorphism for all k. This completes the proof of the theorem. O
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We now observe that the Thom class of a product of two bundles is the
appropriately defined product of the Thom classes.

Lemma 5.11. Let { and n be an n and m dimensional oriented vector bundles
over X andY respectively. Then the Thom class u(¢ xn) is given by the tensor
product: u(¢ x n) € H"™™(T(¢ x 1)) is equal to

u(C) @u(n) € H*(T(C)) @ H™(T'(n))
o~ H"+m(T(C) /\T(U))
=H"""(T(¢ x n)).

In this description, cohomology is meant to be taken with Zo - coefficients if
the bundles are not orientable.

Proof. u(¢) ® u(n) restricts on each fiber (z,y) € X x Y to

Uy @ Uy € H"(S™((5)) @ H™(S™(ny))
= [ (S™(¢) A S™ (1)
= H"™™(S"™(C X 0) (2)))

which is the generator determined by the product orientation of (, x n,. The
result follows by the uniqueness of the Thom class. O

We now use the Thom isomorphism theorem to define a characteristic class
for oriented vector bundles, called the Fuler class.

Definition 5.5. The Fuler class of an oriented, n dimensional bundle (, over
a connected space X, is the n - dimensional cohomology class

x(¢) € H™(X)
defined to be the image of the Thom class uw(¢) € H™(T(¢)) under the compo-
sition
H™(T(¢)) = H"(D(¢), S(¢)) — H"(D(¢)) = H"(X).

Again, if  is not orientable, cohomology is taken with Zo - coefficients.

Exercise. Verify that the Euler class is a characteristic class according to
our definition.

The following is then a direct consequence of Lemma 5.11.
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Corollary 5.12. Let ( and n be as in 5.11. Then the Euler class of the
product is given by

xX(¢xn) =x(Q)@x(n) € H"(X) @ H™(Y) < H"™™(X x Y).
We will also need the following observation.

Proposition 5.13. Let n be an odd dimensional oriented vector bundle over
a space X. Say dim (n) = 2n+ 1. Then its Euler class has order two:

2x(n) = 0 € H™(X).

Proof. Consider the bundle map

v:n—n
v — —U.

Since 7 is odd dimensional, this bundle map is an orientation reversing au-
tomorphism of 7. This means that v*(u) = —u, where u € H?"*1(T(n)) is
the Thom class. By the definition of the Euler class this in turn implies that
v*(x(n)) = —x(n). But since the Euler class is a characteristic class and v is
a bundle map, we must have v*(x(n)) = x(n). Thus x(n) = —x(n). O

5.2.2 The Gysin sequence

We now input the Thom isomorphism theorem into the cohomology exact
sequence of the pair D({), S(¢)) in order to obtain an important calculational
tool for computing the homology of vector bundles and sphere bundles.

Namely, let ¢ be an oriented n - dimensional oriented vector bundle over
a space X, and consider the exact sequence

= HTY(S(Q)) —2— HU(D((),S(C)) = HI(D(C)) — HU(S(C))

—2 s HI(D(Q), S(¢)) — HITH(D(()) = ---

By identifying f*(D((),S(C)) = H*(T(¢)) and H*(D(¢)) = H*(X), this
exact sequence ecomes
o HONS(Q)) —2— HY(T(Q)) — HI(X) — HU(S(C))
% H‘I‘H(T(C)) N Hq+1(X) .

Uu

2y HI(T(C))

we get the following exact sequence known as the Gysin sequence:

Finally, by inputting the Thom isomorphism, H?~"(X)



Characteristic Classes 123

o HITY(S(Q) —2— HITM(X) —X— HI(X) = HI(S(C)) (5.6)

— 0 gy X gOH(X) -

We now make the following observation about the homomorphism x :
H1(X) — H7"™(X) in the Gysin sequence.

Proposition 5.14. The homomorphism x : H1(X) — HY"(X) is given by
taking the cup product with the Euler class,

Y HY(X) —X Hotv(X).

Proof. The theorem is true for ¢ = 0, by definition. Now in gen-
eral, the map x was defined in terms of the Thom isomorphism
v H™(X) _Yu HT™™(T(¢)), which, by definition is a homomorphism of
graded H*(X) - modules. This will then imply that

X HY(X) — H(X)

is a homomorphism of graded H*(X) - modules. Thus

x(a) = x(1- )
=x(1)Ua since x is an H*(X) - module homomorphism
=x(QUa
as claimed. O

5.2.3 Proof of theorem 5.5
the goal of this section is to use the Gysin sequence to prove 5.5, which we
begin by restating:
Theorem 5.15. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

Chary ) (Z) = H*(BU(n); Z) = Zlc1, ¢, -+, ¢

where ¢; € H*(BU(n);Z) is known as the ith - Chern class.
b. The ring of Zs - valued O(n) characteristic classes is a polynomial algebra
on n - generators,

Charo(n)(Zg) = H*(BO(TL),ZQ) = Zg[wl, Wao, - - ,U}n]
where w; € HY(BO(n); Z3) is known as the ith - Stiefel - Whitney class.
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Proof. We start by considering the Gysin sequence, applied to the universal
bundle v, over BU(n). We input the fact that the sphere bundle S(v,) is
given by BU(n — 1) see 5.2:

S HIYBUM-1) —s HeM(BUM)) XU meBUm) —Y HYBU(n - 1))

s gt (BU(n)) X0 g (BU(n)) -

(5
and we get a similar exact sequence in the real case
S HIYBOM — 1) 2y) —2s  HTM(BO();Zy) X0 HyBOM);Z,)  —S
HIBO(n —1)Zy)  —2 HI"Y(BOM)); Zo) —X02% HHHL(BO(n); Zs) — - --
(5.8)

We use these exact sequences to prove the above theorem by induction on
n. For n = 1 then sequence 5.7 reduces to the short exact sequences,

0— Hi-2(BU(1) 29 meBUI)) =0

for each ¢ > 2. We let ¢; € H?(BU(1)) = H?(CP*) be the Euler class x(71).
These isomorphisms imply that the ring structure of H*(BU(1)) is that of a
polynomial algebra on this single generator,

H*(BU(1)) = H*(CP®) = Z|cy]

which is the statement of the theorem in this case.
In the real case when n = 1 the Gysin sequence 5.8 reduces to the short
exact sequences,

0 — HY(BO(1): Zo) —20 Ha(BO(1); Z5) — 0

for each ¢ > 1. We let w; € H(BO(1);Zy) = H*(RP>; Z3) be the Euler class
X(71). These isomorphisms imply that the ring structure of H*(BO(1);Zs) is
that of a polynomial algebra on this single generator,

H*(BO(1); Z2) = H(RP>; Z3) = Za[w:]
which is the statement of the theorem in this case.

We now inductively assume the theorem is true for n — 1. That is,

H*(BU(n-1)) 2 Z[c1, - ycn—1] and H*(BO(n—1);Zs) = Zo|w1, -+, wp_1].
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We first consider the Gysin sequence 5.7, and observe that by exactness, for
g < 2(n — 1), the homomorphism

*: HY(BU(n)) —» HY(BU(n — 1))

is an isomorphism. That means there are unique classes, ¢1, - ,ch_1 €
H*(BU(n)) that map via ¢* to the classes of the same name in H*(BU (n —
1)). Furthermore, since ¢* is a ring homomorphism, every polynomial in
€1, ,Cn—1 in H*(BU(n — 1)) is in the image under ¢* of the correspond-
ing polynomial in the these classes in H*(BU(n)). Hence by our inductive
assumption,

o H*(BU(n)) — H*(BU(n— 1)) = Zler, -+, cn—1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.7
this implies that this long exact splits into short exact sequences,

0 — H2(BU(n)) XU H*(BU(n)) —— H*(BU(n—1)) 2 Zlcy, - cuy] — 0

Define ¢, € H?"(BU(n)) to be the Euler class x(v,). Then this sequence
becomes

O—)H*on(BU(n)) &) H*(BU(n)) L—*) Z[Cl,"‘Cn—l] —0

which implies that H*(BU(n)) = Zlc1, - - - , ¢]. This completes the inductive
step in this case.

In the real case now consider the Gysin sequence 5.8, and observe that by
exactness, for ¢ < n — 1, the homomorphism

V2 HY(BO(n); Zs) — HY(BO(n — 1); Zs)

is an isomorphism. That means there are unique classes, wi, -+ ,wy_2 €
H*(BO(n); Zs) that map via t* to the classes of the same name in H*(BO(n—

In dimension ¢ = n—1, the exactness of the Gysin sequence tells us that the
homomorphism ¢* H"~1(BO(n); Z2) — H"*(BO(n—1); Zs) is injective. Also
by exactness we see that ¢* is surjective if and only if x(v,) € H"(BO(n);Zs)
is nonzero. But to see this, by the universal property of +,, it suffices to prove
that there exists some n -dimensional bundle ¢ with Euler class x({) # 0.
Now by 5.12, the Euler class of the product

XYk X Yn-k) = X(V) @ X(Yn-r) € H*(BO(k) x BO(n — k); Zs)
= wy, @ Wy_p € H(BO(k); Zy) ® H" ¥(BO(n — k); Zs)

which, by the inductive assumption is nonzero for k& > 1. Thus x(v,) €
H™(BO(n);Zs) is nonzero, and we define it to be the n'? Stiefel - Whitney
class

wy, = X(n) € HY(BO(n); Zs).
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As observed above, the nontriviality of x (7, ) implies that t* H"~1(BO(n); Zs

H" Y(BO(n — 1);Z3) is an isomorphism, and hence there is a unique class
Wp—1 € H" Y(BO(n — 1); Z3) (as well as wy, - - w,_2) restricting to the in-
ductively defined classes of the same names in H*(BO(n — 1); Zs).

Furthermore, since (* is a ring homomorphism, every polynomial in
Wi,y Whpo1 in H*(BO(n — 1);Z2) is in the image under ¢* of the corre-
sponding polynomial in the these classes in H*(BO(n);Zs). Hence by our
inductive assumption,

U H*(BO(n); Zg) — H*(BO(n — 1);Zs) = Zowy, -+ ,wp—1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.8
this implies that this long exact splits into short exact sequences,

which implies that H*(BO(n);Zs) = Za[wy, - - ,wy,]. This completes the in-
ductive step and therefore the proof of the theorem. O

5.3 The product formula and the splitting principle
Perhaps the most important calculational tool for characteristic classes is the

Whitney sum formula, which we now state and prove.

Theorem 5.16. a. Let  and n be vector bundles over a space X. Then the
Stiefel - Whitney classes of the Whitney sum bundle { ® n are given by

S

wi(C B ) =Y wi(¢) Vwe—;(n) € HY(X;Zy).

=0

where by convention, wo = 1 € H(X;Zs).
b. If ¢ and n are complex vector bundles, then the Chern classes of the
Whitney sum bundle ( & n are given by

k
ck(C@n) :zcj Uck—j(n) € H*(X).
7=0

Again, by convention, co =1 € H(X).

) —

Z2[w17...

wn_l] —0
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Proof. We prove the formula in the real case. The complex case is done the
same way.

Let ¢ be an n - dimensional vector bundle over X, and let n be an m -
dimensional bundle. Let N = n 4+ m. Since we are computing wi (¢ © 1), we
may assume that k& < N, otherwise this characteristic class is zero.

We prove the Whitney sum formula by induction on N > k. We begin
with the case N = k. Since ¢ @7 is a k - dimensional bundle, the k" Stiefel -
Whitney class, wi (¢ @ 1) is equal to the Euler class x(¢ ® n). We then have

wr(C®n) =x(CDn)
=x(Q)Ux(n) by 5.12
= wn(¢) U wm(n).

This is the Whitney sum formula in this case as one sees by inputting the fact
that for a bundle p with j > dim (p), w;(p) = 0.

Now inductively assume that the Whitney sum formula holds for comput-
ing wy, for any sum of bundles whose sum of dimensions is < N — 1 > k. Let
¢ have dimension n and 7 have dimension m with n +m = N. To complete
the inductive step we need to compute wg (¢ ® 7).

Suppose ( is classified by a map f. : X — BO(n), and 7 is classified by a
map f, : X = BO(m). Then ¢ @7 is classified by the composition

feon: X L% BO(n) x BO(m) —“— BO(n +m)

where p is the map that classifies the product of the universal bundles ~,, X Vi,
over BO(n)x BO(m). Equivalently, u is the map on classifying spaces induced
by the inclusion homomorphism of the subgroup O(n) x O(m) — O(n + m).
Thus to prove the theorem we must show that the map p : BO(n)x BO(m) —
BO(n + m) has the property that

k
w*(wg) = ij ®@ wy—; € H*(BO(n); Z2) @ H*(BO(m); Zs). (5.9)
j=0

For a fixed j < k, let
pj : H*(BO(n) x BO(m); Zs) — H?(BO(n); Z) ® H"™7 (BO(m); Zs)

be the projection onto the summand. So we need to show that p;(u*(wy)) =
wj ® wg—;. Now since n +m = N > k, then either j < nor k—j <m (or
both). We assume without loss of generality that j < n. Now by the proof of
5.5

2 HY(BO(n); Zy) — H?(BO(j); Zz)

is an isomorophism. Moreover we have a commutative diagram:
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H¥(BO(N); Zs) AN H*(BO(n) x BO(m); Zs) LR HI(BO(n); Zs) ® H*=7(BO(m); Zs)

N oo

H¥(BO(j +m); Zs) T) H*(BO(j) x BO(m); Zs) T) HI(BO(j); Z3) @ H*=7(BO(m); Zs).

Since j < mn, j+m <n+m = N and *(wy) = w, € H*(BO(j + m); Zy).
This fact and the commutativity of this diagram give,
(" @1) opj o p*(wr) = pj o p” o™ (w)

= pj o " (w)

= w; ® wi—; by the inductive assumption.
Since ¢* ® 1 is an isomorphism in this dimension, and since *(w; ® wy—;) =
w;j @ wi—; we have that

pj o p(wy) = w; @ wi—j.

As remarked above, this suffices to complete the inductive step in the proof
of the theorem. O

We can restate the Whitney sum formula in the following convenient way.
For an n - dimensional bundle (, let

w(¢) =1+ wi(C) +wa2(C) + -+ +wn(C) € H(X;Zs)

This is called the total Stiefel - Whitney class. The total Chern class of a
complex bundle is defined similarly.

The Whitney sum formula can be interpreted as saying these total charac-
teristic classes have the “exponential property” that they take sums to prod-
ucts. That is, we have the following:

Corollary 5.17.
w(C & n) =w(C) Uw(n)
and

c(C®n) =c(C)uUc(n).

This implies that these characteristic classes are invariants of the stable
isomorphism types of bundles:

Corollary 5.18. If ( and n are stably equivalent real vector bundles over a
space X, then
w(C) = w(n) € H(X;Zy),

Similarly if they are complex bundles,

c(¢) = c(n) € H*(X).



Characteristic Classes 129
Proof. If ¢ and n are stably equivalent, then
Coe" =Ende
for some m and r. So
w((Se) =wn o).

But by 5.17
w(C® ™) = w(uw(e) = w(() - 1 =w(().

Similarly w(n@®e”) = w(n). The statement follows. The complex case is proved
in the same way. O

By our description of K - theory in chapter 3, we have that these charac-
teristic classes define invariants of K - theory.

Theorem 5.19. The Chern classes ¢; and the Stiefel - Whitney classes w;
define natural transformations

¢t K(X) — H*(X)
and '
w; . KO(X) — HZ(X;ZQ).
The total characteristic classes
c: K(X)— H*(X)
and -
w: KOX)— H*(X;Zs)

are exponential in the sense that
cla+p) =cla)e(B) and w(a+f)=w(a)w(B).

Here H*(X) is the direct product H*(X) = [I, H4(X).

As an immediate application of these product formulas, we can deduce a
“splitting principle” for characteristic classes. We now explain this principle.

Recall that an n - dimensional bundle ¢ over X splits as a sum of n line
bundles if and only if its associated principal bundle has an O(1) x --- x O(1)
- structure. That is, the classifying map f. : X — BO(n) lifts to the n -fold
product, BO(1)™. The analogous observation also holds for complex vector
bundles. If we have such a lifting, then in cohomology, f¥ : H*(BO(n); Zs) —
H*(X;Zs) factors through ®, H*(BO(1);Zs).

The “splitting principle” for characteristic classes says that this cohomo-
logical property always happens.
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To state this more carefully, recall that H*(BO(1); Za) = Zo[w1]. Thus
H*(BO<1)7L, Zg) = Zg[l‘l, tee ,.’En]

where z; € H! is the generator of the cohomology of the 4t factor in this
product. Similarly,
H*(BU(l)n> = Z[yla T ’yn]

where y; € H? is the generator of the cohomology of the j* factor in this
product.

Notice that the symmetric group ¥, acts on these polynomial algebras
by permuting the generators. The subalgebra consisting of polynomials fixed
under this symmetric group action is called the algebra of symmetric polyno-
mials, Sym[z1,- -, zn] or Symlyr, -+, yn]-

Theorem 5.20. (Splitting Principle.) The maps
p:BU)" - BU(n) and p:BO(1)" — BO(n)
induce injections in cohomology
p*: H*(BU(n)) —» H*(BU(1)") and u*: H*(BO(n);Zs) — H*(BO(1)"; Z2).

Furthermore the images of these monomorphisms are the symmetric polyno-
mials

H*(BU(n)) = Sym[y1, -+ ,yn] and H*(BO(n);Zs) = Symlz1, -+, 2]

Proof. By the Whitney sum formula,

prwy)) = Y w; ®---®w,, € H(BO(1):Z:) ®---© H*(BO(1); Zs).
Jitetin=i

But w;(71) = 0 unless ¢ = 0, 1. So

p(wj) = Z Ty @y € Lo[Ty, -, 2y
1<y < <i;<n
This is the j** - elementary symmetric polynomial, o;(x1,- -+ ,2y,). Thus the
image of Za[wy, -+ ,w,] = H*(BO(n); Z2) is the subalgebra of Zs[z1, - - , Ty
generated by the elementary symmetric polynomials, Zs[oy, -+ ,0,]. But
it is well known that the elementary symmetric polynomials generate
Sym[z1,- -, 2] (see [54]). The complex case is proved similarly. O

This result gives another way of producing characteristic classes which is
particularly useful in index theory.
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Let p(z) be a power series in one variable, which is assumed to have a
grading equal to one. Say
p(x) = Z a;x".
i

Consider the corresponding symmetric power series in n -variables,

p(x1, -+ wn) = plar) - p(an).

Let pj(z1,--- ,zy) be the homogeneous component of p(z1,- - - , x,,) of grading
j. So
pi(T1, 0, w0) = Z Qiy * " A, TY T
it tin=j

Since p; is symmetric, by the splitting principle we can think of
pj € H(BO(n);Zs)

and hence determines a characteristic class (i.e a polynomial in the Stiefel -
Whitney classes).

Similarly if we give x grading 2, we can think of p; € H?*/(BU(n)) and so
determines a polynomial in the Chern classes.

In particular, given a real valued smooth function y = f(x), its Tay-
)
lor series pf(xz) = >, ! k,(o)xk determines characteristic classes f; €

H(BO(n); Zy) or fi € H¥*(BU(n); Zs).

Exercise. Consider the examples f(x) = e®, and f(z) = tanh(x). Write the
low dimensional characteristic classes f; in H*(BU(n)) for i = 1,2,3, as
explicit polynomials in the Chern classes.

5.4 Applications

In this section all cohomology will be taken with Zs - coefficients, even if not
explicitly written.

5.4.1 Characteristic classes of manifolds

We have seen that the characteristic classes of trivial bundles are trivial. How-
ever the converse is not true, as we will now see, by examining the character-
istic classes of manifolds.

Definition 5.6. The characteristic classes of a manifold M, w;(M), ¢;(M),
are defined to be the characteristic classes of the tangent bundle, TM .
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Theorem 5.21. w;(S™) =0 for all j,n > 0.

Proof. As we saw in chapter 1, the normal bundle of the standard embedding
S™ <3 R™*! is a trivial line bundle. Thus

TSn D €1 = €En+1

and so T'S™ ! is stably trivial. The theorem follows. O

Of course we know 7'S? is nontrivial since it has no nowhere zero cross
sections. Thus the Stiefel- Whitney classes do not form a complete invariant of
the bundle. However they do constitute a very important class of invariants,
as we will see below.

Write a € H'(RP";Zsy) = Zy as the generator. Then the total Stiefel -
Whitney class of the canonical line bundle ~; is

w(n) =14a€ H(RP").

This allows us to compute the Stiefel - Whitney classes of RP™ (i.e of the
tangent bundle T'(RP™)).

Theorem 5.22. w(RP") = (1 + a)"™' € H*(RP";Zs). So w;(RP") =
("th)a? € HI(RP™).

Note: Even though the polynomial (1 + a)"*! has highest degree term
a™t1, this class is zero in H*(RP") since H" ™} (RP") = 0.
Proof. As seen in Chapter 3,

TRP" @D €1 = EBn—Q—l’YL

Thus
w(TRP") = w(T(RP") & ;)
= w(®n41m)
=w(y)"", by the Whitney sum formula

=(1+a)"h

O

Observation. The same argument shows that the total Chern class of CP"”
is

c(CP™) = (1 + b)"*! (5.10)
where b € H?(CP"Z) is the generator.
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This calculation of the Stiefel - Whitney classes of RP™ allows us to rule out
the possibility that many of these projective spaces are parallelizable.

Corollary 5.23. IfRP" is parallelizable, then n is of the form n = 2F —1 for
some k.

Proof. We show that if n # 2F — 1 then there is some j > 0 such that
w;(RP™) # 0. But w; (RP") = (";’1)(13'7 so we are reduced to verifying that if m
is not a power of 2, then thereisa j € {1,--- ,m—1} such that (Z") = 1 mod2.
This follows immediately from the following combinatorial lemma, whose proof
we leave to the reader.

Lemma 5.24. Let j € {1,--- ,m — 1}. Write j and m in their binary repre-
sentations,

k
m = Z a; 2!
1=0
k
j= b2
1=0

where the a;’s and b;’s are either 0 or 1. Then

k
(m) = H <Zl> mod 2.
J i—o \Ui
Note. Here we are adopting the usual conventions that (8) =1, ((1)) =1, and
0

(1) =0.
O
Since we know that Lie groups are parallelizable, this result says that RP™
can only have a Lie group structure if n is of the form 2% — 1. However a

famous theorem of Adams [2] says that the only RP™’s that are parallelizable
are RP!, RP3, and RP”.

Now as seen in chapter 2 an n - dimensional vector bundle (" has k -
linearly independent cross sections if and only if

Cn o~ pn—k @ e

for some n — k dimensional bundle p. Moreover, having this structure is equiv-
alent to the classifying map

fc: X = BO(n)
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having a lift (up to homotopy) to a map f, : X — BO(n — k).

Now the Stiefel - Whitney classes give natural obstructions to the existence
of such a lift because the map ¢ : BO(n — k) — BO(n) induces the map of
rings

U Dolw, -y wn] = Zolwr, - We—g]

that maps w; to w; for j <n—£k, and w; to 0 for n > j > n — k. We therefore
have the following result.

Theorem 5.25. Let ¢ be an n -dimensional bundle over X. Suppose wg(()
is nonzero in H*(X; 7). Then ¢ has no more than n— k linearly independent
cross sections. In particular, if w,(C) # 0, then ¢ does not have a nowhere
zero cross section.

This result has applications to the existence of linearly independent vector
fields on a manifold. The following is an example.

Theorem 5.26. If m is even, RP™ does not have a nowhere zero vector field.
Proof. By 5.22

Wy, (RP™) = (m + 1) a™
m
=(m+1)a™ € H™(RP™; Zs).

For m even this is nonzero. Hence w,, (RP™) # 0. O

5.4.2 Normal bundles and immersions

Theorem 5.25 has important applications to the existence of immersions of a
manifold M in Euclidean space, which we now discuss.

Let e : M™ 9 R™* be an immersion. Recall that this means that the
derivative at each point,

De(z) : TyM™ — Ty R™TF = R HF

is injective. Recall also that the Inverse Function Theorem implies that an
immersion is a local embedding.

The immersion e defines a k - dimensional normal bundle v* whose fiber
at 2 € M is the orthogonal complement of the image of T, M™ in R"** under
De(z). In particular we have

TM"™ @ vl = e*(TR™) 2 6,44
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Thus we have the Whitney sum relation among the Stiefel - Whitney classes

w(M™) - wWh) = 1. (5.11)

So we can compute the Stiefel - Whitney clases of the normal bundle
formally as the power series

w(vk) =1/w(M) € H*(M;Zy).

This proves the following;:

Proposition 5.27. The Stiefel - Whitney classes of the normal bundle to an
immersion e : M™ 9 R™" "% are independent of the immersion. They are called
the normal Stiefel - Whitney classes, and are written w;(M). These classes
are determined by the formula

w(M)-o(M)=1.

Example. w(RP") = 1/(1 + a)"*! € H*(RP"; Zs).

So for example, when n = 2%, k > 0, w(RPQk) = 1+a+a?". This is true since

by 5.24 (2kr+l) = 1mod?2 if and only if » = 0,1,2%. Thus the total normal
Stiefel - Whitney class is given by

@RP)=1/1+a+a*)=1+a+a*+ --+a* L

Note. The reason this series is truncated a a2 ~! is because
I+a+a®)l+a+a®+ - +a¥ 1) =1€ H (RP" Z,)

since H4(RP™) = 0 for ¢ > n.
Corollary 5.28. There is no immersion of RP? in RN for N < 2F+1 2

Proof. The above calculation shows that ’lI}2k_1(R]P2k) # 0. Thus it cannot
have a normal bundle of dimension less than 2¥ — 1. The result follows. O
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5.5 Pontrjagin Classes

In this section we define and study Pontrjagin classes. These are integral char-
acteristic classes for real vector bundles and are defined in terms of the Chern
classes of the complexification of the bundle. We will then show that polyno-
mials in Pontrjagin classes and the Euler class define all possible characteristic
classes for oriented, real vector bundles when the values of the characteristic
classes is cohomology with coefficients in an integral domain R which con-
tains 1/2. By the classification theorem, to deduce this we must compute
H*(BSO(n); R). For this calculation we follow the treatment given in Milnor
and Stasheff [74].

5.5.1 Orientations and Complex Conjugates

We begin with a reexamination of certain basic properties of complex vector
bundles.

Let V be an n - dimensional C - vector space with basis {vy, - ,v,}.
By multiplication of these basis vectors by the complex number i, we get a
collection of 2n - vectors {vy, vy, va, V2, -+ , Up, vy, } which forms a basis for
V as a real 2n - dimensional vector space. This basis then determines an
orientation of the underlying real vector space V.

Exercise. Show that the orientation of V' that the basis
{v1, 101, V2,009, -+ , Uy, iU, } determines is independent of the choice of the
original basis {v1,- -+ ,v,}

Thus every complex vector space V' has a canonical orientation. By choos-
ing this orientation for every fiber of a complex vector bundle (, we see that
every complex vector bundle has a canonical orientation. By the results of
section 2 this means that every n - dimensional complex vector bundle ¢ over
a space X has a canonical choice of Thom class u € H?*"(T({)) and hence
Euler class

X(Q) = en(Q) € H*™(X).

Now given a complex bundle ¢ there exists a conjugate bundle ¢ which is
equal to ¢ as a real, 2n - dimensional bundle, but whose complex structure is
conjugate. More specifically, recall that a complex structure on a 2n - dimen-
sional real bundle ¢ determines and is determined by a linear transformation

Je:(—=¢

with the property that Jg = JeoJs = —id. If ¢ has a complex structure then
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J¢ is just scalar multiplication by the complex number i on each fiber. If we
replace J¢ by —J¢ we define a new complex structure on ¢ referred to as the
conjugate complex structure. We write { to denote ¢ with this structure. That
is,

Je=—Je.
Notice that the identity map -

id: ¢ —(
is anti-complex linear (or conjugate complex linear) in the sense that

id(J; - v) = —Jg - id(v).

We note that the conjugate bundle ¢ is often not isomorphic to ¢ as com-
plex vector bundles. For example, consider the two dimensional sphere as
complex projective space

5? = CP! = C U oo.
The tangent bundle T'(CP!) has the induced structure as a complex line bun-
dle.

Proposition 5.29. The complex line bundles T(S?) and T(S?) are not iso-
morphic.

Proof. Suppose ¢ : T(S?) — T(S?) is a isomorphism as complex vector bun-
dles. Then at every tangent space

¢y TpS? — T,,5°?

is a an isomorphism that conjugates the complex structure. Any such iso-
morphism is given by reflection through a line £, in the tangent plane T}.52.
Therefore for every = we have picked a line ¢, C T,.S2. This defines a (real)
one dimensional subbundle ¢ of T'(S?), which, by the classification theorem is
given by an element of

[S%, BO(1)] = H'(S?,Z5) = 0.

Thus / is a trivial subbundle of T'(S?). Hence we can find a nowhere vanishing
vector field on S2, which gives us a contradiction. O

Exercise. Let 7, be the conjugate of the universal bundle ,, over BU(n).
By the classification theorem, 7, is classified by a map

q: BU(n) — BU(n)

having the property that ¢*(v,) = 7. Using the Grassmannian model of
BU(n), find an explicit description of a map ¢ : BU(n) — BU(n) with this

property.
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The following describes the effect of conjugating a vector bundle on its
Chern classes.

Theorem 5.30. c;(¢) = (—1)*¢c(¢)

Proof. Suppose ( is an n - dimensional bundle. By the classification theorem
and the functorial property of Chern classes it suffices to prove this theorem
when ( is the universal bundle +,, over BU(n). Now in our calculations of
the cohomology of these classifying spaces, we proved that the inclusion ¢ :
BU(k) — BU(n) induces an isomorphism in cohomology in dimension k,

v H?*(BU (n)) —— H2*(BU(k)).

Hence it suffices to prove this theorem for the universal k£ - dimensional bundle
v over BU (k).
Now ¢k () = x(vk) and similarly, ¢, (3%) = x(J%)- So it suffices to prove
that
x(w) = (=17 x(3x)-

But by the observations above, this is equivalent to showing that the canonical
orientation of the underlying real 2k - dimensional bundle from the complex
structures of «; and 75 are the same if k is even, and opposite if k is odd.
To do this we only need to compare the orientations at a single point. Let
x € BU(k) be given by C¥ C C* as the first k - coordinates. If {e1,--- ,ex}
forms the standard basis for C*, then the orientations of 4 (x) determined by
the complex structures of 7, and 7 are respectively represented by the real
bases
{e1,ie1, -+ ,ex,iex} and {ey, —iey, - ,ep, —ieg}.

The change of basis matrix between these two basis has determinant (—1)%.

The theorem follows. O

Now suppose 7 is a real n - dimensional vector bundle over a space X, we
then let ¢ be its complexification

ne =1 ®r C.
nc has the obvious structure as an n - dimensional complex vector bundle.
Proposition 5.31. There is an isomorphism

¢:nc — fc.
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Proof. Define

¢ :nec — e
n®C-=n®C
VR z—=>VRZ

for v € n and z € C. Clearly ¢ is an isomorphism of complex vector bundles.

O
Corollary 5.32. For a real n - dimensional bundle n, then for k odd,
2¢x(nc) = 0.
Proof. By 5.30 and 5.31
ex(ne) = (=1)*er(ne).
Hence for k odd ¢ (nc) has order 2. O

5.5.2 Pontrjagin classes

We now use these results to define Pontrjagin classes for real vector bundles.

Definition 5.7. Let i be an n - dimensional real vector bundle over a space
X. Then define the ith - Pontrjagin class

pi(n) € H*(X;Z)

by the formula '
pi(n) = (—=1)"c2i(nc).

Remark. The signs used in this definition are done to make calculations in
the next section come out easily.

As we’ve done with Stiefel - Whitney and Chern classes, define the total
Pontrjagin class

p(n) =1+pi(n)+- +pi(n) + -+ € H (X, Z).

The following is the Whitney sum formula for Pontrjagin classes, and fol-
lows immediately for the Whitney sum formula for Chern classes and 5.32.
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Theorem 5.33. For real bundles n and & over X, we have

2(p(n ® &) —p(n)p(§)) =0 € H*(X;Z).

In particular if R is a commutative integral domain containing 1/2, then
viewed as characteristic classes with values in H*(X; R), we have

p(n @& =pn)p(€) € H(X : R).

Remark. Most often Pontryagin classes are viewed as having values in
rational cohomology, and so the formula p(n & &) = p(n)p(§) applies.

We now study the Pontrjagin classes of a complex vector bundle. Let ¢ be
a complex n - dimensional bundle over a space X, and let (¢ = ( ®r C be
the complexification of its underlying real 2n - dimensional bundle. So (¢ is a
complex 2n - dimensional bundle. We leave the proof of the following to the
reader.

Proposition 5.34. As complex 2n - dimensional bundles,
(c (@

This result, together with 5.30 and the definition of Pontrjagin classes
imply the following.

Corollary 5.35. Let ¢ be a complex n - dimensional bundle. Then its Pon-

tryagin classes are determined by its Chern classes according to the formula

l—pitpe—-Epp=(1-crt+ca—Fc)(l+citeat+ - +en)
€ H*(X, 7).

Example. We will compute the Pontrjagin classes of the tangent bundle of
projective space, T'(CP™). Recall that the total Chern class is given by

o(T(CP™) = (1 +a)™*

where a € H? (CP™) = Z is the generator. Notice that this implies that for
the conjugate, T(CP™) we have

¢(T(CP™)) = (1 — a)"*?
Thus by the above formula we have
L—pi+pr—-Ep,=14a)"(1 —a)"!
= (1—a*)"".
We therefore have the formula

pr(CP") = (n Z 1>a2k € H*(CPm).
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Now let 1 be an oriented real n- dimensional vector bundle. Then the
complexification nc¢ = n ® C = n & i which is simply n & n as real vector
bundles.

Lemma 5.36. The above isomorphism

nc=noén

of real vector bundles takes the canonical orientation of ne to (—1) "5 times

the orientation of n @ n induced from the given orientation of 7).

Proof. Pick a particular fiber, n,. Let {v1, - ,v,} be a C - basis for V. Then

the basis {vy,évy,- - ,vpiv,} determines the orientation for 7, ® C. However

the basis {v1,- -+ ,vn, vy, -iv, } gives the natural basis for (n @ in),. The
. . . n(n—1)

change of basis matrix has determinant (—1)~ = 2 O

Corollary 5.37. Ifn is an oriented 2k - dimensional real vector bundle, then

pe(n) = x(n)* € H*¥(X).

Proof.

(—l)kc%(n x C)
(—1)*x(n®C)
(—DF(=1) Dy (n@n)
(nen)
(n)*.

pr(n)

X
X

5.5.3 Oriented characteristic classes

We now use the results above to show that Pontrjagin classes and the Euler
class yield all possible characteristic classes for oriented vector bundles, if the
coefficient ring contains 1/2. More specifically we prove the following.

Theorem 5.38. Let R be an integral domain containing 1/2. Then

H*(BSO(2n+1);R) = R[p1,-* ,n]
H*(BSO(2n); R) = Rp1,- -, pn—1, X(72n)]
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Remark. This theorem can be restated by saying that H(BSO(n); R) is
generated by {p1,---,pn 21} and x, subject only to the relations

x =0 ifnisodd

2= Pny2)  if n is even.

Proof. In this proof all cohomology will be taken with R coefficients. We first
observe that since SO(1) is the trivial group, BSO(1) is contractible, and so
H*(BSO(1)) = 0. This will be the first step in an inductive proof. So we
assume the theorem has been proved for BSO(n — 1), and we now compute
H*(BSO(n)) using the Gysin sequence:

o> HI"Y(BSO(n—1)) —>— HI"(BSO(n)) —2X->  HYBSO(n))  —-—s

HYBSO(n—1))  —— HT"(BSO(n)) —— H®*(BSO(n)) - ---
(5.12)

Case 1. n is even.

Since the first n/2 — 1 Pontrjagin classes are defined in H*(BSO(n)) as
well as in H*(BSO(n — 1)), the inductive assumption implies that ¢* :
H*(BSO(n)) — H*(BSO(n — 1)) is surjective. Thus the Gysin sequence
reduces to short exact sequences

0 — HI(BSO(n)) —X— HI*"(BSO(n)) —-— HI*"(BSO(n — 1)) — 0.

The inductive step then follows.

Case 2. n is odd, say n = 2m + 1.

By 5.13 in this case the Euler class x has order two in integral cohomology.
Thus since R contains 1/2, in cohomology with R coefficients, the Euler class
is zero. Thus the Gysin sequence reduces to short exact sequences:

0 — HI(BSO(2m + 1)) ——— H*(BSO(2m)) — HI=?"(BSO(2m + 1)) — 0.

Thus the map ¢* makes H*(BSO(2m + 1)) a subalgebra of H*(BSO(2m)).
This subalgeabra contains the Pontrjagin classes and hence it contains the
graded algebra A* = R[pi,---pm]. By computing ranks we will now show
that this is the entire image of +*. This will complete the inductive step in this
case.

So inductively assume that the rank of A7~! is equal to the rank of
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H/(BSO(2m + 1)). Now we know that every element of H’(BSO(2m)) can
be written uniquely as a sum a + xb where a € A7 and b € 4772, Thus

HI(BSO(2m)) = A’ @ A7—2m
which implies that
rk(H? (BSO(2m)) = rk(A7) + rk(A7~2™).
But by the exactness of the above sequence,
rk(H(BSO(2m)) = rk(H?(BSO(2m + 1)) + rk(H’~?™(BSO(2m + 1))).

Comparing these two equations, and using our inductive assumption, we con-
clude that 4 4
rk(H?(BSO(2m + 1)) = rk(A47).

Thus A7 = *(H?(BSO(2m + 1))), which completes the inductive argument.
O

5.6 Connections, Curvature, and Characteristic Classes

In this section we describe how Chern and Pontrjagin classes can be defined
using connections (i.e covariant derivatives) on vector bundles. What we will
describe is an introduction to the theory of Chern and Weil that describe the
cohomology of a classifying space of a compact Lie group in terms of invariant
polynomials on its Lie algebra. The treatment we will follow is from Milnor
and Stasheff [74].

Definition 5.8. Let M, (C) be the ring of n x n matrices over C. Then an
invariant polynomial on M, (C) is a function

P:M,(C)—C

which can be expressed as a complex polynomial in the entries of the matrix,
and satisfies,
P(ABA™') = P(B)

for every B € M,,(C) and A € GL(n,C).

Examples. The trace function (a; ;) — Z?Zl a;,; and the determinant
function are examples of invariant polynomials on M,,(C).
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Now let D4 : Q9(M;¢) — QY(M; () be a connection (or covariant derivative)
on a complex n - dimensional vector bundle (. Its curvature is a a two- form
with values in the endomorphism bundle

Fa € Q*(M; End(¢))

The endomorphism bundle can be described alternatively as follows. Let E¢ be
the principal GL(n, C) bundle associated to ¢. Then of course ( = E¢ ®gr(n,c)
C™. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.

Proposition 5.39.
End(¢) = ad(¢) = E¢ Xgrn,c) Mn(C)
where GL(n,C) acts on M, (bc) by conjugation,
A-B=ABA™"

Let w be a differential p - form on M with values in End((),
w € QP(M; End(¢)) = QP (M; ad(C)) = QP (M; E¢ Xgrn,c) Ma(C)).

Then on a coordinate chart U C M with local trivialization ¢ : (|, = U x C"
for ¢, and hence the induced coordinate chart and local trivialization for ad((),
w can be viewed as an n x n matrix of p -forms on M. We write

w = (wi,j).

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x € U, then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (w; j(7)) and (w; ;(x)) are two
matrix descriptions of w(z) defined by two different local trivializations of ¢,
then there exists an A € GL(n,C) with

Awi (@) AT = (wi ;(@)).

Now let P be an invariant polynomial on M, (C) of degree d. Then using
the wedge bracket we can apply P to a matrix of p forms, and produce a
differential form of top dimension pd on U C M: P(w; ;) € QPY(U). Now
since the polynomial P is invariant under conjugation the form P(w; ;) is
independent of the local trivialization of (| ;. These forms therefore fit together
to give a well defined global form

P(w) € Q*(M). (5.13)
If Pis homogeneous of degree d, then

P(w) € QPY(M) (5.14)
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An important example is when w = F4 € Q?(M; End(()) is the curvature
form of a connection D4 on (. We have the following fundamental lemma,
that will allow us to define characteristic classes in terms of these forms and
invariant polynomials.

Lemma 5.40. For any connection D 4 and invariant polynomial (or invariant
power series) P, the differential form P(F4) is closed. That s,

dP(F4) = 0.

Proof. (following Milnor and Stasheff [74]) Let P be an invariant polynomial
or power series. We write P(A) = P(a;,;) where the a; ;’s are the entries of the
matrix. We can then consider the matrix of partial derivatives (0P/0(x; ;))
where the z; ;’s are indeterminates. Let Iy = (wi’j) be the curvature matrix
of two - forms on an open set U with a given trivialization. Then the exterior
derivative has the following local expression

dP(Fa) =Y (OP/0w; j)dw; ;. (5.15)
In matrix notation this can be written as
dP(F4) = trace(P'(Fa)dF4)

Now as seen in chapter 1, on a trivial bundle, and hence on this local coordinate
patch, a connection D4 can be viewed as a matrix valued one form,

D4 = (ai )

and with respect to which the curvature F'4 has the formula
wij = daig = Y wig Ak
k

In matrix notation we write
Fi=da—aAa.
Differentiating yields the following form of the Bianchi identity
dFs =aNF4—F4 N a. (5.16)

We need the following observation.

Claim. The transpose of the matrix of first derivatives of an invariant
polynomial (or power series) P’(A) commutes with A.
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Proof. Let E;; be the matrix with entry 1 in the (j,4)-th place and zeros in
all other coordinates. Now differentiate the equation

P((I+tE;;)A) = P(A(I+1tE;;))
with respect to t and then setting ¢ = 0 yields
> Ak (0P/0A; 1) =D (OP/0Ak;) Ak
k k

Thus the matrix A commutes with the transpose of (0P/JAi, j) as claimed.
O

We now complete the proof of the lemma. Substituting F4 for the matrix
of indeterminates in the above claim means we have

FA/\P/(FA):P/(FA)/\FA. (517)

Now for notational convenience let X = P’(F4) A . Then substituting the
Bianchi identity 5.16 into 5.15 and using 5.17 we obtain

dP(Fa) =trace (X NFq — Fy A X)
=Y (Xij Awji—wii A Xy ).

Since each X; ; commutes with the 2 - form wj ;, this sum is zero, which proves
the lemma. O

Thus for any connection D 4 on the complex vector bundle ¢ over M, and
invariant polynomial P, the form P(Fj4) represents a deRham cohomology
class with complex coefficients. That is,

[P(Fa)] € H*(M : C).

Theorem 5.41. The cohomology class [P(F4)] € H*(X,C) is independent
of the connection D 4.

Proof. Let Dy, and D4, be two connections on ¢. Pull back the bundle ¢ over
M x R via the projection map M x R — M. Call this pull - back bundle ¢
over M x R. We get the induced pull back connections Dy,, i = 0,1 as well.
We can then form the linear combination of connections

Dy = tDAl + (1 *t)DA(y

Then P(F4) is a deRham cocycle on M xR. Now let ¢ = 0 or 1 and consider the
inclusions j; : M = M x {i} < M xR. The induced connection j*(D4) = Dy,
on (. But since there is an obvious homotopy between jo and j; and hence
the cohomology classes

lo(P(Fa)) = P(Fa,)] = [j1(P(Fa)) = P(Fa,)].
This proves the theorem. O
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Thus the invariant polynomial P determines a cohomology class given
any bundle ¢ over a smooth manifold. It is immediate that these classes are
preserved under pull - back, and are hence characteristic classes for U(n)
bundles, and hence are given by elements of

H*(BU(n);C) = Cley, -+ ).

In order to see how an invariant polynomial corresponds to a polynomial in
the Chern classes we need the following bit of algebra.

Recall the elementary symmetric polynomials oy,---0, in n -variables,
discussed in section 3. If we view the n - variables as the eigenvalues of an
n X n matrix, we can write

det(I +tA) =1+ tor(A) + - + t"op (A). (5.18)

Lemma 5.42. Any invariant polynomial on M, (C) can be expressed as a
polynomial of o1, ,0p.

Proof. Given A € M, (C), chose a B such that BAB~! is in Jordan canonical
form. Replacing B with diag(e,€?,--- ,¢")B, we can make the off diagonal
entries arbitrarily close to zero. By continuity it follows that P(A) depends
only on the diagonal entries of BAB™!, i,e the eigenvalues of A. Since P(A)
is invariant, it must be a symmetric polynomial of these eigenvalues. Hence it
is a polynomial in the elementary symmetric polynomials. 0

So we now consider the elementary symmetric polynomials, viewed as in-
variant polynomials in M, (C). Hence by the above constructions they deter-
mine characteristic classes [0,.(Fa)] € H?"(M;C) where Fy4 is a connection
on a vector bundle ¢ over M.

Now we’ve seen the elementary symmetric functions before in the context
of characteristic classes. Namely we’ve seen that H*(BU (n)) can be viewed as
the subalgebra of symmetric polynomials in Z[xy, - - x,] = H*(BU(1) x - -+ X
BU(1)), with the Chern class C). corresponding to the elementary symmetric
polynomial o,. This was the phenomenon of the splitting principle.

We will now use a splitting principle argument to prove the following.

Theorem 5.43. Let ¢ be a complex n - dimensional vector bundle with con-
nection Da. Then the cohomology class [0,.(Fa)] € H*"(X;C) is equal to
(27i)" ¢, (C), forr=1,--- ,n.
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Proof. We first prove this theorem for complex line bundles. That is, n = 1.
In this case 01(Fa) = Fa which is a closed form in Q?(M;ad(¢)) = Q?(M;C)
because the adjoint action of GL(1,C) is trivial since it is an abelian group. In
particular F4 is closed in this case by 5.40. Thus F4 represents a cohomology
class in H%(M;C). Moreover as seen above, this cohomology class [Fa] is a
characteristic class for line bundles and hence is an element of H2(BU(1);C) =
C generated by the first Chern class ¢; € H?(BU(1)). So for this case we need

to prove the following generalization of the Gauss - Bonnet theorem.

Lemma 5.44. Let { be a complex line bundle over a manifold M with con-
nection D 4. Then the curvature form Fa is a closed two - form representing
the cohomology class

[F'a] = 2mici(C) = 2mix(C)-

Before we prove this lemma we show how this lemma can in fact be in-
terpreted as a generalization of the classical Gauss - Bonnet theorem. So let
D4 be a unitary connection on (. (That is, D4 is induced by a connection
on an associated principal U(1) - bundle.) If we view ¢ as a two dimensional,
oriented vector bundle which, to keep notation straight we refer to as (g, then
D, induces (and is induced by) a connection D4, on the real bundle (g.
Notice that since SO(2) = U(1) then orthogonal connections on oriented real
two dimensional bundes are equivalent to unitary connections on complex line
bundles.

Since SO(2) is abelian, the real adjoint bundle

ad(Cr) = E¢; Xso(2) Ma(R)
is trivial. Hence the curvature F4, is then a 2 x 2 matrix valued two - form.
Fa, € Q*(M; My(R)).

Moreover, since the Lie algebra of SO(2) consists of skew symmetric 2 x 2 real
matrices, then it is straightforward to check the following relation between
the original complex valued connection Fy € Q?(M;C) and the real curvature
form Fa, € QY(M; M>(R)).

Claim. If F4, is written as the skew symmetric matrix of 2 — forms

Fa, = (_Ow 3) € 02 (M; My (R))

then
Fa =iw € Q*(M;C).
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When the original connection Dy, is the Levi - Civita connection associated
to a Riemannian metric on the tangent bundle of a Riemann surface, the
curvature form

w € Q*(M,R)

is referred to as the “Gauss - Bonnet”” connection. If dA denotes the area
form with respect to the metric, then we can write

w=~krdA

then k is a scalar valued function called the “Gaussian curvature” of the
Riemann surface M. In this case, by the claim we have [Fa] = 2mix(T(M)),
and since

(X(T(M)), [M]) = xar,

Where x s the Euler characteristic of M, we have

<[FA1,[M1>=/MFA:¢/1V[w:iA[ﬁdA.

Thus the above lemma applied to this case, which states that
([Fal, [M]) = 2mixn

is equivalent to the classical Gauss - Bonnet theorem which states that
/ kdA =2mxy = 27(2 — 2g) (5.19)
M

where g is the genus of the Riemann surface M.

We now prove the above lemma.

Proof. As mentioned above, since [F4] is a characteristic class for line bundles,
and so it is some multiple of the first Chern class, say [Fa] = gc1(¢). By the
naturality, the coefficient ¢ is independent of the bundle. So to evaluate g it
is enough to compute it on a specific bundle. We choose the tangent bundle
of the unit sphere T'(S?), equipped with the Levi - Civita connection D4
corresponding to the usual round metric (or equivalently the metric coming
from the complex strucure S? = CP!). In this case the Gaussian curvature is
constant at one,
k=1

Moreover since T(S?) @ e; = 1 @ 71, the Whitney sum formula yields
(e1(5%),[5%)) = 2(e1(m), [$%]) = 2.
Thus we have

([Fal. [S%)) = a{ea(5%), [S%])
= 2q.
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Putting these facts together yields that
2q = ([Fal, [5%])

S2
—i/ kdA
SZ

= 2/ dA =i surface area of S2
SZ

=1 - 4m.

Hence ¢ = 271, as claimed. O

We now proceed with the proof of theorem 5.43 in the case when the
bundle is a sum of line bundles. By the splitting principal we will then be able
to conclude the theorem is true for all bundles.

Solet (=L ®---&® L, where Ly, ---, L, are complex line bundles over
M. Let Dq,---, D, be connections on Ly, --- , L, respectively. Now let D 4 be
the connection on ¢ given by the sum of these connections

Dyo=D1%---®D,.

Notice that with respect to any local trivialization, the curvature ma-
trix Fy is the diagonal n x m matrix with diagonal entries, the curvatures
Fy, .-, F, of the connections D1, - - - D,, respectively. Thus the invariant poly-
nomial applied to the curvature form o,.(F4) is given by the symmetric poly-
nomial in the diagonal entries,

UT(FA) :Jr(Fla"' aFr)-

Now since the curvatures F; are closed 2 - forms on M, we have an equation
of cohomology classes

[JT(FA)] = Jr([F1]7 T 7[Fr])

By the above lemma we therefore have

[UT(FA)] = UT([Fl]v T [Fn])
=o.((2mi)e1 (L), -+, (2mi)er (Ly))
= (2mi) o, (c1(L), -+ ,c1(Ly)) since o, is symmetric
= (2mi)"¢,(L1 @ ---® Ly,) Dby the splitting principal 5.20
— (2ri)er (<)

as claimed.

This proves the theorem when ( is a sum of line bundles. As observed
above, the splitting principal implies that the theorem then must be true for
all bundles. O
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We end this section by describing two corollaries of this important theorem.

Corollary 5.45. For any real vector bundle n, the deRham cocycle ooy (Fa)
represent the cohomology class (2m)**pr(n) € H*(M;R), while [oar+1(Fa)]
is zero in HY¥*+2(M;R).

Proof. This just follows from the definition of the Pontrjagin classes in terms
of the even Chern classes of the complexification, and the fact that the odd
Chern classes of the complexification have order two and therefore represent
the zero class in H*(M;R). O

Recall that a flat connection is one whose curvature is zero. The following
is immediate form the above theorem.

Corollary 5.46. If a real (or complex) vector bundle has a flat connection,
then all its Pontrjagin (or Chern) classes with rational coefficients are zero.

We recall that a bundle has a flat connection if and only if its structure
group can be reduced to a discrete group. Thus a complex vector bundle with
a discrete structure group has zero Chern classes with rational coefficients.
This can be interpreted as saying that if . : G C GL(n,C) is the inclusion of
a discrete subgroup, then the map in cohomology,

Qles, -, el = H*(BU(n); Q) = H'(BGLn(C); Q) —— H*(BG;Q)

is zero.






6

Embeddings and Immersions in Euclidean
Space

|
6.1 The existence of embeddings: The Whitney Embed-
ding Theorem

The following result is often known as the “Easy Whitney Embedding Theo-
rem”. It tells us that we may view any manifold as a submanifold of Euclidean
space.

Theorem 6.1. Let M™ be a C" manifold of dimension n. Then there is a
C"-embedding e : M™ — R for L sufficiently large.

Proof. We prove this theorem in the case when M™ is closed. We refer the
reader to [44] for the general case. Since M™ is compact we can find a finite
atlas {¢;, U;}M | with the following properties:

1. Foralli=1,---,m, By(0) C ¢;(U;) C R", and
2. M =", Int ¢; *(B1(0)).

Here B,.(0) C R™ is the open ball around the origin of radius r.
Let A : R™ — [0,1] be a C* “bump function” such that

- 1 on Bl(O)
Ae) = {O on R"™— By(0)

Define A; : M™ — [0,1] by

N Aog; on U
10 on M™ —U,.

These are “local bump functions”. Notice that the sets S; = )\;1(1) cU;
i=1,---,m cover M".

Now define f; : M™ — R" by

oy Ji(@)gi(x) itz eU;
M@_L)ﬁzeMm

153
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Notice that f; is O". Define g;(x) = (fi(z), \i(z)) € R" x R = R"*! and
g= (g1, ,gm) : M" = R" " x ... x R = R+,

g is a C" map. We claim it is an embedding.

If x € 5;, g; is immersive at x, so therefore g is immersive at x. Since the
S;’s cover M™, g; is an immersion. We observe that g is one-to-one.

Suppose = # y and y € S;. If x also lies in S, then since

fig, = i,
then f;(x) # fi(y) since ¢; is injective. If = does not lie in S;, then
Ai(y) =1 # N\i(z).
So g(x) # g(y).

So g : M™ — R™™+1 is an injective immersion. Since M™ is compact, g
is an embedding. O
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FIGURE 6.1
A graph of A when n = 2.

Remark. Notice that this theorem implies that a compact n-manifold M™
can be embedding in any manifold N™ if the dimension of N™ is sufficiently
large. This is because N™ looks locally like Euclidean space, and so by the
above theorem N™ can be embedding in an open set inside M™.

6.1.1 Obstructions to the existence of embeddings and im-
mersions, and the immersion conjecture

A stronger version of Theorem 6.1 was proved by H. Whitney in a seminal
paper published in 1944 [106].

Theorem 6.2. [106] A. (Whitney Embedding Theorem) Let M™ be a compact
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C" manifold of dimension n, with r > 1. Then there is a C"-embedding e :
M™ < R2". Furthermore there is a C"-immersion j : M™ 9 R?"~1,

An extension of Whitney’s theorem to the setting of manifolds with bound-
ary is the following;:

Theorem 6.3. Let M™ be a C"-n-dimensional compact manifold with bound-
ary, with r > 1. Then there is a neat C" embedding of M™ into H?".

It is natural to ask if Whitney’s theorem is the best possible. More spectf-
ically, one can ask the following question. From now on all manifolds we con-
sider are closed and C'°°, unless specifically stated otherwise.

Question 1. What is the smallest positive integer ¢(n) so that every
compact n-dimensional manifold can be embedded in R**?(")? Notice that
Whitney’s theorem says that ¢(n) < n.

Question 2. What is the smallest positive integer 1)(n) so that every com-
pact n-dimensional manifold can be immersed in R**%(™? Whitney’s theorem
says that ¥(n) <n — 1.

Question 1 poses a problem that as of this date is unsolved. There are many
results of the best possible embedding dimension for particular n-manifolds,
but general the answer to Question 1 is unknown. However in the case when
n is a power of 2 one can prove that Whitney’s result is best possible. That is,
if n = 2%, then ¢(2%) = 2. We give a sketch of a proof of this fact by proving
the following.

Proposition 6.4. The projective space RP?2" embeds in R by Whitney’s
theorem, but it does not embedd in R2" -1

Proof. We give a sketch of an argument that uses a theory of Haefliger devel-
oped in [42]. For X any space, consider the configuration space of k ordered,
distinct points in X:

F(X, k) ={(x1, -, o) € X" 2y £ if i#j}

Notice that the symmetric group Xy acts freely on F'(X, k) by permuting the
order of the elements.

Notice that if e : M™ < R” is an embedding of a manifold into Euclidean
space, there is an induced map of configuration spaces

F(e): F(M™,2)/%y — F(RF2)/%,.

We claim that F(R,2)/%, has the homotopy type of the projective space
RPE~1. To see this, notice that F(RF, 2) is diffeomorphic to R x (RF —
{0}) via the map that sends (z1,z2) to (z1 + =2, 1 — x2). This is a Xs-
equivariant diffeomorphism, where the action on R x (R — {0}) is given by
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(u,v) — (u, —v). But clearly with respect to this action RY x (RY — {0}) is
Yg-equivariantly homotopy equivalent to the sphere S*~! with the antipodal
Ys-action. Then claim then follows.

Now since any compact n- manifold M™ embeds in RY for L sufficiently
large, and since any two embeddings into sufficiently large dimensional Eu-
clidean space are isotopic (to be discussed below), then one always comes
equipped with a map, well defined up to homotopy,

w: F(M™,2)/Sy — F(R®,2)/S, ~ RP™.

Furthermore, by the above claim, if M™ embeds in R”, this map factors, up
to homotopy, through a map wy : F(M",2)/3; — RPL~1. By Whitney’s
theorem, one can always find such a wy for L = n. However in the case of
M"™ = RIP’Qk, Haefliger showed using obstruction theory that there is no map
war_q : F(RP?2)/5,) — RP2" 2 that factors w : F(RP2",2)/5,) — RP™.
This means that RP2* cannot be embedded in R2""'~1. O

Notice that this proposition says that in the case n = 2 the answer to
Question 1 above is ¢(2¥) = 2¥. But as was mentioned above, in general Ques-
tion 1 is unresolved. However, as we have observed, Haefligger’s theory supplies
a homotopy theoretic obstruction to embedding manifolds in Euclidean space.
We remark that in recent years Haefligger’s theory has been generalized to a
theory of “Embedding Calculus”, as developed by T. Goodwillie, M. Weiss,
and others [38], [39], [104] [105]. This is a beautiful and effective theory for
studying spaces of embeddings of one manifold into an other, using sophisti-
cated homotopy theoretic techniques. We encourage the reader to learn more
about this theory.

The situation with immersions instead of embeddings is considerably eas-
ier, due to the following famous result of Hirsch and Smale [45]. This is an
early example of the h-principle (where “h” stands for homotopy) as defined
by Gromov [37] and developed further by Eliashberg and Mishachev [30]. We
now describe the Hirsch-Smale result.

Suppose f : M™ & P"** is an immersion between smooth (C*°) mani-
folds. Then one has the induced map of tangent bundles yielding the commu-
tative diagram

M 2L, ppntk

! |

M™ Pn+k
f

This is an example of a bundle monomorphism, meaning a map of vector
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bundles B
¢ 7 ¢

Lo

so that 7, : ¢z = &4(2) is a linear monomorphism of vector spaces for each
x € X. We denote the space of such bundle monomorphisms by Mono((,§).
Let Imm(M " P"*t*) be the space of immersions, topologized in the space
of all maps given the compact-open topology. Then differentiation induces a
map

D : Imm(M™, P"**) — Mono(TM™,TP"*%).

Theorem 6.5. (Hirsch and Smale [45]). Let M™ be a compact, smooth man-
ifold of dimension n, and P"** be a smooth manifold of dimension n+k, with
k > 1. Then the map

D : Imm(M™, P"**) — Mono(TM™,TP"*%).
is a weak homotopy equivalence.

Notice that in particular, if Mono(TM™, TR"**) is nonempty, then there
exists an immersion M™ & R"*k, for k > 1.

Notice furthermore that a bundle monomorphism v : TM" — TRtk
determines a k-dimensional normal bundle,

ﬂ:u,?—)M”

where 771 (z) = {v € R"** such thatv L (T, M™)}. That is v is the orthog-
onal complement to TM", inside TR™**. In otherwords,

TM" & yj ~ M x R*HE

The following is is a direct consequence of the Hirsch-Smale theorem.

Corollary 6.6. A compact n-manifold M™ immerses in R** if and only if
there is a k-dimensional bundle v* — M™ such that

TM" @ v* = M™ x R**,

We now give an interpretation of these results in terms of classifying spaces.
We use [23] as a reference. This allows one to recast the question of immersing
manifolds into Euclidean space into a homotopy theoretic problem.

As above, let BO(k) denote the classifying space of k-dimensional vector
bundles, and let BO = limy_,o, BO(k). Since every manifold immerses, and
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indeed embeds in sufficiently high dimensional Euclidean space means there
is a map
v:M" — BO

representing this high dimensional (or “stable” ) normal bundle. This map is
well-defined up to homotopy for the following reason. Given any compact space
X with basepoint, the homotopy classes of basepoint preserving maps [X, BO]
represents the set of stable vector bundles SVect(S), which is isomorphic to
the reduced K-theory, KO (X), and is therefore an abelian group. (We refer the
reader to Theorem 3.17 for a discussion of this fact.) In particular the addition
in this abelian group corresponds to the Whitney sum of vector bundles. In
this abelian group structure, the stable normal bundle is the inverse of the
stable tangent bundle represented by the composite

TM : M"™ — BO(n) — BO.

Thus the stable normal bundle map is well-defined, up to homotopy. We may
therefore restate Corollary 6.6 as follows.

Theorem 6.7. Let M™ be a compact n-manifold and v : M™ — BO represent
its stable normal bundle. Then M™ immerses in R™"* if and only if there is
a map v* : M™ — BO(k) so that the composite

M™% BO(k) = BO

is homotopic to the stable normal bundle map v : M™ — BO.

Using this theorem, the work of Brown and Peterson [17] [18] [19], and
the author [21], combined to give a resolution of Question 2 above. We now
outline how this was achieved.

In [60] Massey showed that for every closed m-manifold M", the homo-
morphism induced by the stable normal bundle map

v*: H*(BO;Z/2) - H*(M™,7Z/2)

factors through H*(BO(n — a(n)), where a(n) is the number of ones in the
dyadic (base 2) expansion of n. That is to say, there is a homomorphism
v*: H*(BO(2n — a(n); Z/2) — H*(M™;Z/2) so that the composition

H*(BO;Z/2) i H*(BO(n—a(n));Z/2) 7, H*(M™7Z/2)

is equal to v*. Here ¢+ : (BO(n — a(n)) — BO is the usual inclusion. Now
recall from Theorem 5.15 that H*(BO;Z/2) = Z/2[w1, - - ,wk, - - -] and that
H*(BO(m);Z/2) =2 Z/2[w;, - ,wm] for every m. So Massey’s result can be
restated as the following.
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Theorem 6.8. (Massey [60]) Let M™ be a closed n-dimensional manifold,
and let vy : M™ — BO classify its stable normal bundle. Then

wi(va) =0

for alli >n — a(n).

For a closed n-manifold M™, let Ipyn C H*(BO;Z/2) 2 7./2[wy, - -+ ,w;, -]
be the kernel of the stable normal bundle homomorphism, v* :
H*(BO;Z/2) — H*(M™;Z/2). Let I,, be the intersection

In = ﬂ IMn.
Mm

Here the intersection is taken over all closed n-manifolds. I,, is an ideal in
Z/2[wr,- - ,w;, -], and by Massey’s result we know that w; € I,, for all ¢ >
n—a(n). In [17] [18] Brown and Peterson computed I,, explicitly, thus refining
Massey’s theorem. In [19] they went further and constructed a “universal
space” for normal bundles of n-manifolds, and proved the following theorem.

Theorem 6.9. (Brown and Peterson [19]). For every n there is a space
BO/I, equipped with a map p, : BO/I, — BO satisfying the following prop-
erties.

1. In cohomology p} : H*(BO;Z/2) — H*BO/I,;7/2) is surjective, with
kernel I,. That s, p}, induces an isomorphism

H*(BO/I,:Z/2) = H*(BO;Z/2)/I,.

2. Ewvery closed n-manifold M™ admits a map Dy : M™ — BO/I,, such that
the composition

M"™ 2 BO/IL, £ BO

is homotopic to the stable normal bundle map vy : M™ — BO.

Notice that by combining the work of Massey and Brown-Peterson, we
have the following commutative diagram for every closed n-manifold M™:

H*(BO;Z/2) Lzt H*(BO(n — a(n); Z/2)

* *
Vyn P

H*(M™2/2) <——  H*(BO;Z/2))/1,

Uiy
Brown and Peterson’s work [19] can be viewed as realizing a part of this
cohomology diagram as coming from a diagram of spaces:
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BO &t BO(n — a(n))

varn T

M" ——  BO/I,

Vpnrm

In [21] the topological realization of this cohomology diagram was made
complete when the author proved the following.

Theorem 6.10. (/21]) For every n there is a map p, : BO/I, — BO(n —

a(n)) such that the composition BO/I, Ln, BO(n — a(n)) 22y BO s
homotopic to p, : BO/I, — BO as in Theorem 6.9.

Now let M™ be an n-manifold, and let oy @ M™ — BO/I, be as in
Theorem 6.9. Combining Theorem 6.9 with Theorem 6.10 implies that the
composition

D M™ 22 BO/IL, 2% BO(n — a(n))

factors (up to homotopy) the stable normal bundle map vym : M™ — BO.
Then by Theorem 6.7 we can conclude the following theorem.

Theorem 6.11. ([21]) Every closed n-manifold M"™ admits an immersion
Jam : M™ s R0,

We end this section by describing why this is the best possible result. That
is, the answer to Question 2 above, which asks what is the smallest integer 1(n)
such that every closed n-manifold immerses in R**¥(") is ¢)(n) = n — a(n).

We will actually describe a closed manifold M™ whose normal Stiefel-
Whitney class, wy,_q(n)(Van) is nonzero. This would then supply an obstruc-
tion to immersing M" into R2"—a(m)—1,

The manifold M™ can be described as follows. Write n as a sum of distinct
powers of 2:

n=2" 4202 ... 420

Note that r, the number of distinct powers of 2 in this description, is equal to
a(n). We then define

M™ =RP*" x RP*? x --- x RP?".
We then need to prove the following.

Proposition 6.12. The normal Stiefel-Whitney class
Wp—a(n) (VM") € Hn—a(n) (Mn7 Z/Z)

1S NONZEro.
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Proof. . We first observe that the case when n is a power of 2 was proved in
Corollary 5.28. This used the fact that

I 1 1 -
@(RP™) = w(vgpm) = P ~ T © l;IH’“(RIP’ . 7,/2),

where a € H'(RP™;Z/2) = 7/2 is the generator. This was proved in the
example following Proposition 5.27 above. In particular,

@(szj) = w(Vppas) = 1 tata®+a¥

We now turn to the general case. v ,
Write n = 21 4292 4 ... 4 2% as above, and let M™ = RP?" x ... x RP?"",
Then the total normal Stiefel-Whitney class is given by

D(M™) = w(vym) = @ W(RP*) = @F_y (1 +a; + -0’ 1) € @ H*(RP*; Z,/2)
~ H*(M™,Z/2).
Notice that the highest dimensional nonzero monomial in this expression is

i1 ir _
2l a2t

which lies in dimension Z;Zl(QiJ‘ —1)=n—r=n—a(n). Thus

mn—a(n)(yl\/[") — azn 71®. . .®a2i7~71 c ana(n)(H RPQij : Z/2) _ ana(n)(Mn; Z/Q),
j=1

and this class is clearly nonzero. O

To summarize, this proposition says that for M™ defined as the product
of projective spaces as above, then wy,_qm)(Vamn) € H" M) (M™ Z/2) is
nonzero. Thus, even though M" admits an immersion into R2"~*(") there is
no immersion of M™ into R2"~*(")~1 Tn particular this says that the answer
to Question 2 above is ¢¥(n) =n — a(n).

6.2 “Turning a sphere inside-out”.

In the last subsection we used the Smale-Hirsch theorem (Theorem 6.5) to dis-
cuss the existence or nonexistence of immersions of manifolds into Euclidean
spaces of varying dimensions. In this subsection we discuss the first applica-
tion of this theorem, which was to show that any two immersions of S? into
R3 are isotopic (sometimes referred to as “regularly homotopic”).
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Specifically we will give Smale’s proof of his famous theorem saying that
the identity embedding ¢ : % < R? defined by t(x,y, 2) = (2, v, 2), is isotopic
as immersions to its opposite, —t(x,y, z) = —(z,y, z). That is, there exists a
one-parameter family of immersions connecting ¢ to —¢. Such a one parameter
family is called an “eversion” of the sphere. The fact that such an eversion
exists is perhaps counter-intuitive. It is sometimes described as “turning the
sphere inside out”, and indeed there are now videos showing such eversions.
However Smale’s original proof was a nonconstructive one, which relied on (an
early version of) Theorem 6.5.

Notice that the statement that two immersions f,g: M & N are isotopic
(or “regularly homotopic”) is equivalent to the statement that f and g lie in
the same path component of Imm(M, N). To prove that the immersions ¢ and
j of S% into R? are isotopic, Smale proved the following:

Theorem 6.13. (Smale [86]) The space Imm(S?,R3) is path connected.

Note. The proof of this theorem uses some of the basics of the homotopy
theory of fibrations developed in the next chapter. The student may want
to delay the proof of this theorem until these homotopy theoretic techniques
have been learned. We place the proof of this theorem in this chapter though,
because of its historical impact on the development of immersion theory.

Proof. By Theorem 6.5 one has a weak homotopy equivalence
D : Imm(S?,R?) = Mono(TS? TR?).

We can think about the space Mono(T'S?, TR?) in the following way. Con-
sider the fiber bundle

Mono(R* R?) — I(T'S? R?) & 52 (6.1)
where I(T'S?,R3) is defined to be the space

I(TS*R?) = {(x,%) : € S? and:T,S? — R is a linear monomorphism. }

Then p(z,v) = x € S% So each fiber of p is equivalent to the Stiefel
manifold Vo3 = Mono(R?,R3). Notice that V53 has the homotopy type of
0(3)/0(1) =2 SO(3). This is true by the following reasoning. Using the Gram-
Schmidt process, one sees that Mono(R? R3) is homotopy equivalent to the
space of inner-product preserving monomorphisms, Mono<>(R?,R?). Now
this space has a transitive action of the orthogonal group O(3), and the
isotropy subgroup of the inclusion of R? in R3 given by (z,y) — (0,,%)
is O(1) < O(3).

Notice there is a natural homeomorphism

Mono(TS? TR?) = Tg= (I(T'S?,R?))
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where T'g2(I(T'S?,R3)) is the space of (differentiable) sections of the bundle
(6.1). To prove the theorem it then suffices to prove the following.

Lemma 6.14. The space of sections I's2(I(T'S?,R?)) is path connected.

o~

Proof. For ease of notation let v represent the space I'gz(I(T'S? R3))
Mono(TS?, TR3) ~ Imm(S?,R3). Let a, and 8 € 7 be any two sections. We
will show that they live in the same path component of v. Write $? = R?Uoo,
and fix an identification of T, S? with R?. Without loss of generality we may
assume that
a(00) = B(o0) = (00,1) € I(TS? R?)

where ¢ : T, 5% 2 R? < R? is the natural inclusion (u,v) — (0,u,v). This is
because the group SO(3) acts transitively on V5 3, and so one may rotate «
and S if necessary so that they satisfy this basepoint relation. Since SO(3) is
connected such rotations preserve the path components of o and 8.

So we may assume that « and g lie in , C v which we define to be the
space of sections satisfying this basepoint condition. Notice that ~, can be
viewed as a subspace of the space of all maps S? to I(T'S?,R?) that take oo
to (0o,¢). This is the two-fold based loop space Q2I(T'S? R3). Indeed 7, is
exactly that subspace of Q2I(T'S? R3) which maps to the identity element
in 9252 under the map Q2p : Q?I(TS?,R3?) — Q2S2. This map, being the
two-fold loop map of the fibration (6.1), defines a fibration

0Vay - O21(TS%, R?) 22 0262, (6.2)
We make a couple of observations about this fibration. First recall that the
homotopy group ma(Va,3) = m2(SO(3)) = 0. This is because SO(3) = RP? and
the universal cover of RP? is §3, whose second homotopy group vanishes. This
implies that Q?RP3 = Q2S0(3) = O?V4 3 is path connected. By considering
this fibration sequence one then deduces that there is a bijection between
the path components of Q2I(T'S?,R3) and Q252. In fact this bijection is an
isomorphism between abelian groups. This is because the path components of
two-fold loop spaces are abelian groups and Q2p is a map that preserves this
two-fold loop structure. Thus we may conclude that

mo(Q2I(T'S?, R?)) 22 mp(Q25?) = 7y(S?) = Z.

Furthermore, observe that the path components of a two-fold loop space are
all homotopy equivalent. This is seen as follows. Let Q22Y be a two-fold loop
space. Let g and h represent elements of this space and QZY and Q2hY be the
path components of this space containing g and h respectively. “Multiplying
by g~ 'h defines a map xg 'h : QEY — Q7Y which has homotopy inverse
xh™lg: Q2Y — Q!QJY.

We conclude that we can restrict two-fold loop fibration (6.2) to any path
component of 2252 to obtain a homotopy fibration sequence

Vo5 — OF, 1(TS? R®) 205 2, 52,
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(By “homotopy fibration sequence” we mean that the fibers are homotopy
equivalent to Q2V5 3). Here an 5?2 is the component of Q252 containing maps
of degree n. But notice that when n = 1, then by the definition of what a
section means, v, is the fiber of 22p over the identity map of S?, id € Q[Ql] 52,
We may then conclude that v, ~ Q2V, 3, which as just observed, is path
connected. In particular our original sections o and £ in v live in the same
path component. O

O

Exercises

Let M™ be a closed differentiable manifold, and let eg : M™ & RY and
e1 & RY be two immersions of M™. We say that ey and e, are isotopic if
there is a one-parameter family of immersions connecting ey and e;. That is,
eo and e; are isotopic if there is a continuous map H : M™ x [0,1] — RY so
that

o H(z,0) =eo(z) and H(x,1) = eq(x) for all z € M™

e The map H; : M™ — RY defined by H;(z) = H(x,t) is a differentiable
immersion for every ¢ € [0, 1].

Smale’s theorem about “turning a sphere inside out” says that any two im-
mersions S? 3 R3 are isotopic.

1. Show, however, that there are infinitely many distinct isotopy classes of
immersions S! 9> R2. You may use Smale’s theorem saying that the space
of immersions M 9+ R is weakly homotopy equivalent to the space of
bundle monomorphiisms TM — TRY.

2. Describe a representative of each isotopy class you find.

Final Remark. In discussing eversions of spheres, we proved (ala Smale)
that all immersion of S? in R? are regularly homotopic (isotopic). Ultimately,
using Hirsch-Smale theory, this was because m3(V2,3) = 0. However, somewhat
surprisingly, there are infinitely many isotopy classes of immersions of S? into
R*. This is because ma(Va 4) 22 Z. We leave it to the reader to fill in the details
of this striking result.






7

Homotopy Theory of Fibrations

In this chapter we study the basic algebraic topological properties of fiber bun-
dles, and their generalizations, “Serre fibrations”. We begin with a discussion
of homotopy groups and their basic properties. We then show that fibrations
yield long exact sequences in homotopy groups and use it to show that the
loop space of the classifying space of a group is homotopy equivalent to the
group. We then develop basic obstruction theory for liftings in fibrations, use
it to interpret characteristic classes as obstructions, and apply them in several
geometric contexts, including vector fields, Spin structures, and classification
of SU(2) - bundles over four dimensional manifolds. We also use obstruction
theory to prove the existence of Eilenberg - MacLane spaces, and to prove
their basic property of classifying cohomology. We then develop the theory
of spectral sequences and then discuss the famous Leray - Serre spectral se-
quence of a fibration. We use it in several applications, including a proof of
the theorem relating homotopy groups and homology groups, a calculation of
the homology of the loop space 25", and a calculation of the homology of the
Lie groups U(n) and O(n).

7.1 Homotopy Groups

We begin by adopting some conventions and notation. In this chapter, unless
otherwise specified, we will assume that all spaces are connected and come
equipped with a basepoint. When we write [X,Y] we mean homotopy classes
of basepoint preserving maps X — Y. Suppose zg € X and yg € Y are
the basepoints. Then a basepoint preserving homotopy between basepoint
preserving maps fpand f; : X — Y is a map

F:XxI—>Y

such that each F; : X x {t} — Y is a basepoint preserving map and Fy = fy
and I} = f1. If A C X and B C Y, are subspaces that contain the basepoints,
(zo € A, and yo € B), we write [X, A;Y, B] to mean homotopy classes of maps
f+ X =Y so that the restriction f|, maps A to B. Moreover homotopies are
assumed to preserve these subsets as well. That is, a homotopy defining this

167
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equivalence relation is a map F' : X x I — Y that restricts to a basepoint
preserving homotopy F' : AxI — B. We can now give a careful strict definition
of homotopy groups.

Definition 7.1. The n** homotopy group of a space X with basepoint xg € X
is defined to be the set

T (X) = m (X, 20) = [S", X].
Equivalently, this is the set
T (X) = [D", "7 X, ]

where S"~Y = D™ is the boundary sphere.

Exercise. Prove that these two definitions are in fact equivalent.

Remarks. 1. It will often helpful to us to use as our model of the disk D™
the n - cube I"™ = [0, 1]™. Notice that in this model the boundary 9I™
consists of n - tuples (¢1,--- ,t,) with ¢; € [0, 1] where at least one of the
coordinates is either 0 or 1.

2. Notice that for n = 1, this definition of the first homotopy group is the
usual definition of the fundamental group.

So far the homotopy “groups” have only been defined as sets. We now
examine the group structure. To do this, we will define our homotopy groups
via the cube I", which we give the basepoint (0,---,0). Let

f and g:(I",0I") — (X, o)
be two maps representing elements [f] and [¢g] € 7, (X, z¢). Define
fg: 1" —X

by
F@ty o, ty) for ¢1 € [0,1/2]

cg(ty,te, e ty) =
froltats ") {g(2t—17t2,---7tn) for ¢, € [1/2,1]

The map f-g: (I",0I") — (X, x) represents the product of the classes

[f gl =[f]" 9] € mn(X, 20).

Notice that in the case n = 1 this is precisely the definition of the product
structure on the fundamental group m (X, o). The same proof that this prod-
uct structure is well defined and gives the fundamental group the structure of
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an associative group extends to prove that all of the homotopy groups are in
fact groups under this product structure. We leave the details of checking this
to the reader. We refer the reader to any introductory textbook on algebraic
topology for the details.

As we know the fundamental group of a space can be quite complicated.
Indeed any group can be the fundamental group of a space. In particular
fundamental groups can be very much noncommutative. However we recall
the relation of the fundamental group to the first homology group, for which
we again refer the reader to any introductory textbook:

Theorem 7.1. Let X be a connected space. Then the abelianization of the
fundamental group is isomorphic to the first homology group,

m1(X)/[m1, m] =2 Hi(X)

where [m1,m1] is the commutator subgroup of w1(X).
We also have the following basic result about higher homotopy groups.

Proposition 7.2. For n > 2, the homotopy group m,(X) is abelian.

Proof. Let [f] and [g] be elements of 7, (X) represented by basepoint preserv-
ing maps f : (I",0I") — (X, 7o) and g : (I",0I") — (X, ), respectively.
We need to find a homotopy between the product maps f - g and g - f defined
above. The following schematic diagram suggests such a homotopy. We leave
it to the reader to make this into a well defined homotopy.

O

Now assume A C X is a subspace containing the basepoint zy € A.

Definition 7.2. Forn > 1 we define the relative homotopy group m, (X, A) =
(X, A, xo) to be homotopy classes of maps of pairs

(X, A) = [(D",0D",19); (X, A, xg)].

where to € OD"™ = 8" ! and zy € A are the basepoints.

Exercise. Show that for n > 1 the relative homotopy group m, (X, 4) is in
fact a group. Notice here that the zero element is represented by any
basepoint preserving map of pairsf : (D™, 0I™) — (X, A) that is homotopic
(through maps of pairs) to one whose image lies entirely in A C X.
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Again, let A € X be a subset containing the basepoint xy € A, and let
i : A — X be the inclusion. This induces a homomorphism of homotopy
groups
st (A, z0) = (X, o).

Also, by ignoring the subsets, a basepoint preserving map f : (D", 0D") —
(X, x0) defines a map of pairs f : (D™, 0D",tg) — (X, A, zy) which defines a
homomorphism

Jx t (X, 20) = (X, A, x0).
Notice furthermore, that by construction, the composition
Jx 0ty 1 p(A) = mp(X) — (X, A)

is zero. Finally, if given a map of pairs g : (D™, S" "1, t5) — (X, A, z), then we
can restrict ¢ to the boundary sphere S™~! to produce a basepoint preserving
map

89 : (Sn_l,to) — (A, .’Eo).

This defines a homomorphism

Oy : Wn(X7 A, (E0) — anl(A,l'o).
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Notice here that the composition
04 0 Ju i (X)) = (X, A) = mp_1(A)

is also zero, since the application of this composition to any representing map
f (D", S" 1) — (X,z0) yields the constant map S"~! — zg € A. We now
have the following fundamental property of homotopy groups. Compare with
the analogous theorem in homology.

Theorem 7.3. Let A C X be a subspace containing the basepoint xy € A.
Then we have a long exact sequence in homotopy groups

D (A) B (X)L (X A) D a1 (A) > -

Oey m(A) 2 1 (X) —

Proof. We've already observed that j,oi, and 0, 0, are zero. Similarly, i, 00,
is zero because an element in the image of 0, is represented by a basepoint
preserving map S”~! — A that extends to a map D™ — X. Thus the image
under i,, namely the composition S?"~! — A < X has an extension to D"
and is therefore null homotopic. We therefore have

image(0s) C kernel (i)
image(ix) C kernel(j.)
image(j.) C kernel(0y).

To finish the proof we need to show that all of these inclusions are actually
equalities. Consider the kernel of (i.). An element [f] € 7,(A) is in ker(i.)
if and only if the basepoint preserving composition f : S™ — A C X is null
homotopic. Such a null - homotopy gives an extension of this map to the
disk F : D"*! — X. The induced map of pairs F : (D" S") — (X, A)
represents an element in 7,41 (X, A) whose image under 9, is [f]. This proves
that image(0x) = kernel(i.). The other equalities are proved similarly, and
we leave their verification to the reader. O

Remark. Even though this theorem is analogous to the existence of exact
sequences for pairs in homology, notice that its proof is much easier.

Notice that mo(X) is the set of path components of X. So a space is (path) -
connected if and only if mo(X) = 0 (i.e the set with one element). We generalize
this notion as follows.

Definition 7.3. A space X is said to be m - connected if my(X) = 0 for
0<g<m.
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We now do our first calculation.

Proposition 7.4. An n - sphere is n — 1 connected.

Proof. We need to show that any map S* — S™, where k < n is null homo-
topic. Now since spheres can be given the structure of simplicial complexes,
the simplicial approximation theorem says that any map f : S¥ — S™ is homo-
topic to a simplicial map (after suitable subdivisions). So we assume without
loss of generality that f is simplicial. But since k < n, the image of of f lies
in the k - skeleton of the n - dimensional simplicial complex S™. In particular
this means that f : S¥ — S™ is not surjective. Let yo € S™ be a point that is
not in the image of f. Then f has image in S™ — yo which is homeomorphic
to the open disk D™, and is therefore contractible. This implies that f is null
homotopic. O

7.2 Fibrations

Recall that in chapter 2 we proved that locally trivial fiber bundles satisfy
the Covering Homotopy Theorem 4.2. A generalization of the notion of a
fiber bundle, due to Serre, is simply a map that satisfies this type of lifting

property.

Definition 7.4. A Serre fibration is a surjective, continuous map p: E — B
that satisfies the Homotopy Lifting Property for CW - complexes. That is, if
X is any CW - complex and F' : X x [ — B is any continuous homotopy so
that Fy : X x {0} — B factors through a map fo: X — E, then there exists
a lifting F': X x I — F that extends fo on X x {0}, and makes the following
diagram commute:

XxI -5 E
'
XXIT>B.

A Hurewicz fibration is a surjective, continuous map p : £ — B that satisfies
the homotopy lifting property for all spaces.
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Remarks. 1. Obviously every Hurewicz fibration is a Serre fibration. The
converse is false. In these notes, unless otherwise stated, we will deal with
Serre fibrations, which we will simply refer to as fibrations.

2. The Covering Homotopy Theorem implies that a fiber bundle is a
fibration in this sense.

The following is an important example of a fibration.

Proposition 7.5. Let X be any connected space with basepoint xo € X. Let
PX denote the space of based paths in X. That is,

PX ={a:I—X:a0)=umx}

The path space PX is topologized using the compact - open function space
topology. Define
p: PX - X

by p(a) = a(1). Then PX is a contractible space, and the map p: PX — X
is a fibration, whose fiber at xg, p~*(xzo) is the loop space QX .

Proof. The fact that PX is contractible is straightforward. For a null homo-
topy of the identity map one can take the map H : PX x I — PX, defined
by H(a,s)(t) = a((l — s)t).

To prove that p: PX — X is a fibration, we need to show it satisfies the
Homotopy Lifting Property. Solet F': Y x I — X and fy : X — PX be maps
making the following diagram commute:

Y x {0} —L pPx

ml lp
Y x1I T> X
Then we can define a homotopy lifting, ' : Y x I — PX by defining for
(y,s) € Y x I, the path
F(y,s): I —- X
n {fo(y)(f_ts) for t € [g, 255]

F(yvs)(t): F(y72t—2+8) fort e [ ;s,l]

One needs to check that this definition makes F(y, s)(t) a well defined conti-
nous map and satisfies the boundary conditions

F(y,5)(0) = zo

F(y,s)(l) = F(y78)

These verifications are all straightforward. O
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The following is just the observation that one can pull back the Homotopy
Lifting Property.

Proposition 7.6. Let p: E — B be a fibration, and f : X — B a continuous
map. Then the pull back, py : f*(E) — X is a fibration, where

Y (E) ={(x,e) € X x E such that f(z) = p(e)}

and py(x,e) = z.

The following shows that in the setting of homotopy theory, every map
can be viewed as a fibration in this sense.

Theorem 7.7. Every continuous map f : X — Y is homotopic to a fibration
in the sense that there exists a fibration

f: XY

and a homotopy equivalence

h:X —— X

making the following diagram commute:

X#X

fl lf

Yy = Y

Proof. Define X to be the space
X ={(z,a) € X x Y such that o(0) = z.}

where here Y/ denotes the space of continuous maps « : [0,1] — Y given the
compact open topology. The map f : X = Y is defined by f(a?,a) = a(1).
The fact that f : X — Y is a fibration is proved in the same manner as
theorem 7.5, and so we leave it to the reader.

Define the map h: X — X by h(z) = (z,¢,) € X, where €,(t) = z is the
constant path at z € X. Clearly foh = f so the diagram in the statement of
the theorem commutes. Now define g : X 5 X by g(z,a) = x. Clearly go h
is the identity map on X. To see that h o g is homotopic to the identity on
X, consider the homotopy F : X x I — X, defined by F((z,a),s) = (,as),
where o, : I — X is the path a4(t) = a(st). So in particular ap = €, and
a1 = a. Thus F is a homotopy between hog and the identity map on X. Thus
h is a homotopy equivalence, which completes the proof of the theorem. [
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The homotopy fiber of a map f: X — Y, FY, is defined to be the fiber of
the fibration f: X — Y defined in the proof of this theorem. That is,

Definition 7.5. The homotopy fiber F¢ of a basepoint preserving map f :
X — Y is defined to be

Fy ={(z,a) € X x Y such thata(0) = f(x) anda(1) = yo.}
where yg € Y 1is the basepoint.

So for example, the homotopy fiber of the inclusion of the basepoint yg —
Y is the loop space QY. The homotopy fiber of the identity map id: Y — Y
is the path space PY. The homotopy fibers are important invariants of the
map f: X =Y.

The following is the basic homotopy theoretic property of fibrations.

Theorem 7.8. Let p: E — B be a fibration over a connected space B with
fiber F. So we are assuming the basepoint of E, is contained in F, ey € F,
and that p(eg) = bg is the basepoint in B. Let i : F < E be the inclusion of
the fiber. Then there is a long exact sequence of homotopy groups:

O rn(F) — 1 (B) —2s 1 (B) —Z 11 (F) —

oo m(F) —2— m(B) —2— m(B).

Proof. Notice that the projection map p : E — B induces a map of pairs
p:(E,F)— (B;b).

By the exact sequence for the homotopy groups of the pair (E,F), 7.3 it is
sufficient to prove that the induced map in homotopy groups

Px T (E, F) = (B, bo)

is an isomorphism for all n > 1. We first show that p, is surjective. So let
f:(I",0I™) — (B, by) represent an element of m,,(B). We can think of a map
from a cube as a homotopy of maps of cubes of one lower dimension. Therefore
by induction on n, the homotopy lifting property says that that f : I — B
has a basepoint preserving lifting f : I™ — E. Since po f = f, and since
the restriction of f to the boundary 01" is constant at by, then the image of
the restriction of f to the boundary dI™ has image in the fiber F. That is, f
induces a map of pairs
f: (™01 — (E,F)

which in turn represents an element [f]| € 7, (F, F') whose image under p, is
[f] € mn(B,bo). This proves that p. is surjective.
We now prove that p. : mp(E,F) — m,(B,by) is injective. So let f :
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(D",0D™) — (E,F) be a map of pairs that represents an element in the
kernel of p,. That means po f : (D™ dD™) — (B,bg) is null homotopic. Let
F : (D", 0D™) x I — (B,by) be a null homotopy between F = f and the
constant map € : D™ — by. By the Homotopy Lifting Property there exists a
basepoint preserving lifting

F:D"xI—>E

having the properties that po FF' = F and F : D" x {0} — E is equal to
f:(D",0D") — (E,F). Since po F = F maps dD" x I to the basepoint by,
we must have that F maps dD™ x I to p~(bg) = F. Thus F determines a
homotopy of pairs,
F:(D",0D™) x I — (E, F)

with Fy = f. Now consider Fy : (D", 0D") x {1} - E. Nowpo F} =F; =¢:
D™ — bg. Thus the image of F} lies in p~1(by) = F. Thus F gives a homotopy
of the map of pairs f : (D", 0D™) — (FE,F) to a map of pairs whose image
lies entirely in F'. Such a map represents the zero element of 7, (E, F). This
completes the proof that p, is injective, and hence is an isomorphism. As
observed earlier, this is what was needed to prove the theorem. O

We now use this theorem to make several important calculations of homo-
topy groups. In particular, we prove the following seminal result of Hopf.

Theorem 7.9.

m2(S?) = m3(S%) = Z.
76(S%) = 1 (S?) for all k > 3. In particular,
73(S%) = Z, generated by the Hopf map n : S® — S2.

Proof. Consider the Hopf fibration 1 : S3 — S? = CP! with fiber S*. Recall
that S! is an Eilenberg - MacLane space K(Z,1) since it is the classifying

space of Z. Thus
7 f =1
(1) = -~
0 for all other gq.

(Remark. The fact that the classifying space Bw of a discrete group 7 is an
Eilenberg - MacLane space K (m,1) can now be given a simpler proof, using
the exact sequence in homotopy groups of the universal bundle Ex — Br.)

Using this fact in the exact sequence in homotopy groups for the Hopf
fibration n : S — S2, together with the fact that m,(5®) = 0 for ¢ < 2,
one is led to the facts that ma(S?) = m(S!) = Z, and that n, : 7 (S®) —
7,(S?) is an isomorphism for k£ > 3. To examine the case k = 3, consider the
homomorphism (called the Hurewicz homomorphism)

h:ms(S®) — Hy(S®) =17
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defined by sending a class represented by a self map f : S% — S2, to the image
of the fundamental class in homology, f.([S?]) € H3(S?%) = Z. Clearly this is
a homomorphism (check this!). Moreover it is surjective since the image of the
identity map is the fundamental class, and thus generates, H3(S?%), H([id]) =
[S3] € H3(S3). Thus 73(S?) contains an integral summand generated by the
identity. In particular, since 7, : m3(S3) — m3(S?) is an isomorphism, this
implies that 3(S?) contains an integral summand generated by the Hopf map
[n] € m3(S?). The fact that these integral summands generate the entire groups
73(S?) = 73(S5?) will follow once we know that the Hurewicz homomorphism
is an isomorphism in this case. Later in this chapter we will prove the more
general “Hurewicz theorem” that says that for any k& > 1, and any (k —
1) - connected space X, the Hurewicz homomorphism is an isomorphism in
dimension k: h : m(X) & Hp(X). O

Remark. As we remarked earlier in these notes. these were the first
nontrivial elements found in the higher homotopy groups of spheres,

Ttk (S™), and Hopf’s proof of their nontriviality is commonly viewed as the
beginning of modern Homotopy Theory [102]

Before we continue to apply the notion of fibrations to homotopy theory,
we point out that there is a dual notion of a cofibration that is also very im-
portant. Instead of satisfying a homotopy lifting property, cofibratons satisfy
a homotopy extension property,

Definition 7.6. A map ¢ : A — X of topological spaces is called a cofibration
if for any map f: X — Y and any homotopy

H:Ax[0,1] Y

with H(a,0) = f(c(a)), then there is an extension of the homotopy H to X x I,

H:X x[0,1 =Y.

so that H(x,0) = f(x) for all z € X, and H(i(a),t) = H(a,t) for alla € A
and t € [0,1].

Exercise. Show that if X is a CW-complex and A C X is a subcomplex then
the inclusion map ¢ : A < X is a cofibration.

Notice we have the following analogue of Theorem 7.7:

Theorem 7.10. Fvery map g : A — X is homotopic to a cofibration in the
sense that there is a space X equipped with a deformation retraction j : X —»
X and a cofibration

A= X

b

g
that is homotopic to jog: A — X =
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Proof. Define X to be the mapping cylinder
X=XU(AxI))~

where (a,0) € A x I is identified with g(a) € X. Define g : A — X to be
the inclusion as A x {0}. We leave it to the reader to verify that the pair
(X,73: A — X) satisfies the required properties. O

Definition 7.7. Lett: A — X be a cofibration. The cofiber of v is the quotient
space X /A defined to be
X/A=X/~

where the equivalence relation is given by t(a) ~ ¢(b) for any two points a, b €
A. Notice that in the case where v is the inclusion of a subcomplex v: A C X
of a CW complez, the cofiber is the quotient complex, X /A.

Exercises.
1. Show that if ¢ : A — X is a cofibration, it’s cofiber X/A is homotopy
equivalent to the mapping cone

X U, ¢(A)

where ¢(A) = Ax[0,1]/Ax{1}, and the notation XU, c(A) refers to the disjoint
union of X with ¢(A4), modulo the identification (a,0) € ¢(A) is identified with
t(a) € X for all a € A.

2. Show that if . : A — X is a cofibration, then there is an isomorphism
of homology groups, R
H. (X, A) = H,(X/A).

Remark. . Since any map f : X — Y is homotopic to a cofibration with
cofiber the mapping cone Y Uy ¢(X), the mapping cone is sometimes referred
to as the “homotopy cofiber” of f. Notice furthermore that the inclusion of Y
into the mapping cone,

Y CY Uy ¢(X)

is a cofibration with cofiber the suspension XX = ¢(X)/X x {0}.
We end this section with an application to the “homotopy stability” of the

orthogonal and unitary groups, as well as their classifying spaces.

Theorem 7.11. The inclusion maps

t:0(n) = O0Mn+1) and
Umn)—=Umn+1)
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induce isomorphisms in homotopy groups through dimensions n—2 and 2n—1
respectively. Also, the induced maps on classifying spaces,

Bi.: BO(n) - BO(n+1) and
BU(n) — BU(n + 1)

induce isomorphisms in homotopy groups through dimensions n — 1 and 2n
respectively.

Proof. The first two statements follow from the existence of fiber bundles
On) =0(n+1)— 5"

and
U(n) = U(n+1) — 8§27+,

the connectivity of spheres 7.4, and by applying the exact sequence in ho-
motopy groups to these fiber bundles. The second statement follows from the
same considerations, after recalling from 4.28 the sphere bundles

S™ — BO(n) - BO(n+1)

and
S+l s BU(n) — BU(n +1).

7.3 Obstruction Theory

In this section we discuss the obstructions to obtaining a lifting to the total
space of a fibration of a map to the base space. As an application we prove the
important “Whitehead theorem” in homotopy theory, and we prove general
results about the existence of cross sections of principal O(n) or U(n) - bun-
dles. We do not develop a formal theory here - we just develop what we will
need for our applications to fibrations. For a full development of obstruction
theory we refer the reader to [101].

Let X be a CW - complex. Recall that its cellular k - chains, Cy(X) is the
free abelian group generated by the k - dimensional cells in X. The co-chains
with coefficients in a group G are defined by

C*(X,G) = Hom(Cy(X), Q).
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Theorem 7.12. Let p: E — B be a fibration with fiber F'. Let f : X — B
be a continuous map, where X is a CW - complex. Suppose there is a lifting
of the (k — 1) - skeleton fro1 s X* =D s B That is, the following diagram
commutes:

X (k—1) Fr-1 E

n| |7

X T)B'

Then the obstruction to the existence of a lifting to the k -skeleton, fk X))
E that extends fy—1, is a cochain v € C*(X;m_1(F)). That is, v = 0 if and
only if such a lifting fy, exists.

Proof. We will first consider the special case where X*) is obtained from
X =1 by adjoining a single k -dimensional cell. So assume

x k) — x (k-1 U, DF

where a : 9DF = =1 5 X*=1 is the attaching map. We therefore have
the following commutative diagram:

gk—1 @ X (k—1) Fe—1 E

| | 8

Dt ——— XDy, D —— B

Notice that f,_; has an extension to X *~1 U, D¥ = X ) that lifts f, if
and only if the composition pk - x (k-1 pk — I, plifts to E in such
a way that it extends fr_; o a.

Now view the composition pk - x(k=1) y pFk _J ., pasaamap from
the cone on S*~! to B, or in other words, as a null homotopyF : S¥*~'xI — B
from Fy = po fy_ioa : S - X*k=1) s E 5 B to the constant map
Fy = €: 8%-1 5 by € B. By the Homotopy Lifting Property, F lifts to a
homotopy

F:SE x5 E

with Fy = fr_1 0. Thus the extension fj, exists on X *~1) U, D if and only
if this lifting ' can be chosen to be a null homotopy of fr_; o o. But we know
Fy : Sk=1 x {1} — FE lifts F} which is the constant map € : S*~! — by € B.
Thus the image of F} lies in the fiber F, and therefore determines an element
v € mp_1(F). The homotopy F} can be chosen to be a null homotopy if and
only if F} : S¥~! — F is null homotopic. (Because combining F with a null
homotopy of F}, i.e an extension of Fy to a map D¥ — F, is still a lifting of
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F, since the extension lives in a fiber over a point.) But this is only true if the
homotopy class v =0 € mi—1(F).

This proves the theorem in the case when X *) = X =1y, D¥ In the gen-
eral case, suppose that X (%) is obtained from X *~1 by attaching a collection
of k - dimensional disks, indexed on a set, say J. That is,

k k—1 k
X = x| Ju,, D
JjeJ

The above procedure assigns to every j € J an “obstruction” ~y; € mp_1(F).
An extension fj exists if and only if all these obstructions are zero. This
assignment from the indexing set of the k - cells to the homotopy group can
be extended linearly to give a homomorphism ~ from the free abelian group
generated by the k - cells to the homotopy group 7_1(F), which is zero if
and only if the extension f;, exists. Such a homomorphism v is a cochain,
v € C*(X;mp_1(F)). This completes the proof of the theorem. O

We now discuss several applications of this obstruction theory.

Corollary 7.13. Any fibration p : E — B over a CW - complex with an
aspherical fiber F' admits a cross section.

Proof. Since my(F') = 0 for all ¢, by the theorem, there are no obstructions to
constructing a cross section inductively on the skeleta of B. O

Proposition 7.14. Let X be an n - dimensional CW - complex, and let
be an m - dimensional vector bundle over X, with m > n. Then ( has m —n
linearly independent cross sections. If £ is a d - dimensional complex bundle
over X, then & admits d — [n/2] linearly independent cross sections, where
[n/2] is the integral part of n/2.

Proof. Let ¢ be classified by a map f,, : X — BO(m). To prove the theorem
we need to prove that f,, lifts (up to homotopy) to a map f,X — BO(n).
We would then have that

g = f:;L('Ym) = f;:(’)%) D e€m_n

where 7, is the universal k - dimensional vector bundle over BO(k), and ¢;
represents the j - dimensional trivial bundle. These isomorphisms would then
produce the m —n linearly independent cross sections of . over X. Now recall
there is a fibration

O(m)/O(n) — BO(n) — BO(m).
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That is, the fiber of p : BO(n) — BO(m) is the quotient space O(m)/O(n).
Now by a simple induction argument using 7.11 shows that the fiber
O(m)/O(n) is n — 1 connected. That is, m,(O(m)/O(n)) = 0 for ¢ < n — 1.
By 7.12 all obstructions vanish for lifting the n - skeleton of X to the total
space BO(n). Since we are assuming X is n - dimensional, this completes the
proof. The complex case is proved similarly. O

Corollary 7.15. Let X be a compact, n - dimensional CW complex. Then
every element of the reduced real K - theory, KO(X) can be represented by
a n - dimensional vector bundle. Every element of the complex K - theory,
K(X) can be represented by an [n/2] - dimensional complex vector bundle.

Proof. By 4.32 we know

KO(X) = [X,BO] and
K(X) = [X, BU.

But by the above proposition, any element « € [X, BO] lifts to an element
ay, € [X, BO(n)] which in turn classifies an n - dimensional real vector bundle
representing the KO - class o

Similarly, any element 5 € [X, BU] lifts to an element «,, € [X, BU([n/2])]
which in turn classifies an [n/2] - dimensional complex vector bundle repre-
senting the K - class 3. O

We now use this obstruction theory to prove the well known “Whitehead
Theorem”, one of the most important foundational theorems in homotopy
theory.

Theorem 7.16. Suppose X and Y are CW - complexes and f: X =Y a
continuous map that induces an isomorphism in homotopy groups,

foime(X) —— mp(Y) forallk >0

Then f: X —Y is a homotopy equivalence.

Proof. By 7.7 we can replace f : X — Y by a homotopy equivalent fibration
f X Y.

That is, there is a homotopy equivalence h : X — X so that f oh = f.
Since f induces an isomorphism in homotopy groups, so does f. By the exact
sequence in homotopy groups for this fibration, this means that the fiber of
the fibration f : X — Y, i.e the homotopy fiber of f, is aspherical. thus by
7.12 there are no obstructions to finding a lifting § : Y — X of the identity
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map of Y. Thus § is a section of the fibration, so that foj =id: Y — Y. Now
let h~!: X — X denote a homotopy inverse to the homotopy equivalence h.
Then if we define

g=hltog:Y =X

we then have fog:Y — Y is given by

fog=foh™log
:fohohilog
~fog
=id:Y =Y.

Thus f o g is homotopic to the identity of Y. To show that go f is homotopic
to the identity of X, we need to construct a homotopy X x I — X that lifts
a homotopy X x I — Y from fogo f to f. This homotopy is constructed
inductively on the skeleta of X, and like in the argument proving 7.12, one
finds that there are no obstructions in doing so because the homotopy fiber
of f is aspherical. We leave the details of this obstruction theory argument to
the reader. Thus f and g are homotopy inverse to each other, which proves
the theorem. O

The following is an immediate corollary.

Corollary 7.17. An aspherical CW - complex is contractible.

Proof. 1If X is an aspherical CW - complex, then the constant map to a point,
€ : X — pt induces an isomorphism on homotopy groups, and is therefore, by
the above theorem, a homotopy equivalence. O

The Whitehead theorem will now allow us to prove the following impor-
tant relationship between the homotopy type of a topological group and its
classifying space.

Theorem 7.18. Let G be a topological group with the homotopy type of a CW
complex., and BG its classiftying space. Then there is a homotopy equivalence
between G and the loop space,

G ~ QBG.

Proof. Tt was shown in chapter 4 that there is a model for a universal G -
bundle, p : EG — BG with EG a G - equivariant CW - complex. In particular,
EG is aspherical, and hence by the Whitehead theorem, it is contractible. Let

H:EGxI— EG
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be a contraction. That is, Hy : EG x {0} — EG is the constant map at the
basepoint ey € EG, , and H; : EG x {1} — EG is the identity. Composing
with the projection map,

b=poH:EGxI— BG

is a homotopy between the constant map to the basepoint &y : EG x {0} —
by € BG and the projection map &1 = p : EG x {1} — BG. Consider the
adjoint of @,

®: EG — P(BG) = {a: I — BG such that a(0) = by.}

defined by ®(e)(t) = ®(e,t) € BG. Then by definition, the following diagram

commutes: ~
EG —2 (BG)

r| K
BG = BG
where g(a) = a(1), for @« € P(BG). Thus ® is a map of fibrations that induces
a map on fibers
¢: G — QBG.

Comparing the exact sequences in homotopy groups of these two fibrations,
we see that ¢ induces an isomorphism in homotopy groups. A result of Milnor
[71] that we will not prove says that if X is a CW complex, then the loop
space 2X has the homotopy type of a CW - complex. Then the Whitehead
theorem implies that ¢ : G — QBG is a homotopy equivalence. O

7.4 Eilenberg - MacLane Spaces

In this section we prove a classification theorem for cohomology. Recall that
in chapter 4 we proved that there are spaces BG that classify principal G
- bundles over a space X, in the sense that homotopy classes of basepoint
preserving maps, [X, BG| are in bijective correspondence with isomorphism
classes of principal G - bundles. Similarly BO(n) and BU(n) classify real and
complex n - dimensional vector vector bundles in this same sense, and BO
and BU classify K -theory. In this section we show that there are classifying
spaces K (G, n) that classify n - dimensional cohomology with coefficients in G
in this same sense. These are Eilenberg - MacLane spaces. We have discussed
these spaces earlier in these notes, but in this section we prove their existence
and their classification properties.
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7.4.1 Obstruction theory and the existence of Eilenberg -
MacLane spaces

In chapter 4 we proved that for any topological group G there is a space BG
classifying G bundles. For G discrete, we saw that BG = K (G, 1), an Eilenberg
- MacLane space whose fundamental group is GG, and whose higher homotopy
groups are all zero. In this section we generalize this existence theorem as
follows.

Theorem 7.19. Let G be any abelian group and n an integer with n > 2.
Then there exists a space K(G,n) with

G, if k=n,

0, otherwise.

(K (G,n)) = {

This theorem will basically be proven using obstruction theory. For this we
will assume the following famous theorem of Hurewicz, which we will prove
later in this chapter. We first recall the Hurewicz homomorphism from homo-
topy to homology.

Let f : (D", S"1) — (X, A) represent an element [f] € m,(X, A). Let
on € Hp(D", 8" ') = Z be a preferred, fixed generator. Define h([f]) =
fu(on) € Hy(X, A). The following is straightforward, and we leave its verifi-
cation to the reader.

Lemma 7.20. The above construction gives a well defined homomorphism
he : mp(X, A) = Hy (X, A)

called the “Hurewicz homomorphism?”.
The following is the “Hurewicz theorem”.

Theorem 7.21. Let X be simply connected, and let A C X be a simply
connected subspace. Suppose that the pair (X, A) is (n — 1) - connected, for
n > 2. That 1s,

(X, A) =0 if k<n-—1.
Then the Hurewicz homomorphism h, : 7,(X, A) — H, (X, A) is an isomor-

phism.

We now prove the following basic building block type result concerning
how the homotopy groups change as we build a CW - complex cell by cell.
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Theorem 7.22. Let X be a simply connected, CW - complex and let
f:8" X
be a map. Let X' be the mapping cone of f. That is,
X'=Xu; D"

which denotes the union of X with a disk D" glued along the boundary
sphere S¥ = OD**! wia f. That is we identify t € S* with f(t) € X. Let

i X = X'

be the inclusion. Then
e s TR(X) = (X))

is surjective, with kernel equal to the cyclic subgroup generated by [f] € mx(X).

Proof. Let g : S7 — X' represent an element in m,(X’) with ¢ < k. By
the cellular approximation theorem, g is homotopic to a cellular map, and
therefore one whose image lies in the g - skeleton of X’. But for ¢ < k, the ¢
- skeleton of X' is the ¢ - skeleton of X. This implies that

et g (X) = g (X)

is surjective for ¢ < k. Now assume ¢ < k— 1, then if g : S — X C X’ is null
homotopic, any null homotopy, i.e extension to the disk G : DIt! — X’ can
be assumed to be cellular, and hence has image in X. This implies that for
g <k-—1, 1 mg(X) = me(X’) is an isomorphism. By the exact sequence in
homotopy groups of the pair (X’, X), this implies that the pair (X', X) is k -
connected. By the Hurewicz theorem that says that

Tep1 (X', X) =2 Hyy1 (X', X) = Hp1 (X Uy DFFLX)

which, by analyzing the cellular chain complex for computing H,(X') is Z if
and only if f : S¥ — X is zero in homology, and zero otherwise. In particular,
the generator v € mgy1(X’, X) is represented by the map of pairs given by
the inclusion

v (D SF) — (X Uy DML X))

and hence in the long exact sequence in homotopy groups of the pair (X’, X),
s T (X X) =2 (X)) — s me(X) =

we have 0.(y) = [f] € mx(X). Thus ¢y : mx(X) — 7 (X’) is surjective with
kernel generated by [f]. This proves the theorem. O
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We will now use this basic homotopy theory result to establish the existence
of Eilenberg - MacLane spaces.

Proof. of 7.19 Fix the group G and the integer n > 2. Let {7, : @ € A} be a
set of generators of G, where A denotes the indexing set for these generators.
Let {0 : B € B} be a corresponding set of relations. In other words G is
isomorphic to the free abelian group F4 generated by A, modulo the subgroup
Rp generated by {03 : 8 € B}.

Consider the wedge of spheres \/ , S™ indexed on the set .A. Then by the
Hurewicz theorem,

m(\/ S") = Ha(\/ S") = Fa.
A A

Now the group Rp is a subgroup of a free abelian group, and hence is itself
free abelian. Let \/; S™ be a wedge of spheres whose nt" - homotopy group
(which by the Hurewicz theorem is isomorphic to its homology, which is free
abelian) is Rp. Moreover there is a natural map

j:\/S”—)\/S”
B A

which, on the level of the homotopy group m, is the inclusion Rg C F 4. Let
X,+1 be the mapping cone of j:

XnJrl _ \/ g Uj U Dn+1
A B

where the disk D"*! corresponding to a generator in R is attached via the
map S™ — \/ 4 S™ giving the corresponding element in 7,(\/ 4 S") = Fa4.
Then by using 7.22 one cell at a time, we see that X, 41 is an n — 1 -
connected space and 7, (X,,) is generated by F4 modulo the subgroup Rg. In
other words,

7Tn(Xn+1) = G

Now inductively assume we have constructed an space X, with

0 ifg<mn,
Tg(Xntk) = G ifg=n and
0 ifn<qg<n+k-—1

Notice that we have begun the inductive argument with £ = 1, by the con-
struction of the space X,, 41 above. So again, assume we have constructed
X+, and we need to show how to construct X, ;541 with these properties.
Once we have done this, by induction we let & — oo, and clearly X, will be
a model for K(G,n).

Now suppose ™ = T4k (Xntx) is has a generating set {~, : u € C}, where C
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is the indexing set. Let F¢ be the free abelian group generated by the elements
in this generating set. Let \/, . S +F denote a wedge of spheres indexed by
this indexing set. Then, like above, by applying the Hurewicz theorem we see
that
mp(\/ S5tF) = Hy i (\/ S™F) = Fe.
C

ueC
Let
f: \/s"+k — Xtk
C

be a map which, when restricted to the sphere S,’}"’k represents the generator
Yo € T = Ttk (Xnar). We define X, ;11 to be the mapping cone of f:

Xntbt1 = Xnyr Uy U DR
uel

Then by 7.22 we have that my(X,,+x) — 7g(Xn+k+1) is an isomorphism for
qg<n+k,and
Ttk (Xntk) = Tk (Xntkt1)

is surjective, with kernel the subgroup generated by {7, : u € C}. But since
this subgroup generates m = 7,41 (Xn+x) we see that this homomorphism is
zero. Since it is surjective, that implies 7,4, (Xp4k+1) = 0. Hence X, 4441 has
the required properties on its homotopy groups, and so we have completed our
inductive argument. O

7.4.2 The Hopf - Whitney theorem and the classification
theorem for Eilenberg - MacLane spaces

We now know that the Eilenberg - MacLane spaces K (G, n) exist for every n
and every abelian group G, and when n = 1 for every group G. Furthermore,
by their construction in the proof of 7.19 they can be chosen to be CW
- complexes. In this section we prove their main property, i.e they classify
cohomology.

In order to state the classification theorem properly, we need to recall the
universal coefficient theorem, which says the following.

Theorem 7.23. (Universal Coefficient Theorem) Let G be an abelian group.
Then there is a split short exact sequence

0— Ext(H,—1(X);G) = H"(X;G) = Hom(H"(X),G) — 0.

Corollary 7.24. IfY is (n — 1) - connected, and m = m,(Y'), then

H"(Y;7m) = Hom(m,).
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Proof. Since Y is (n—1) connected, H,,—1(Y) = 0, so the universal coefficient
theorem says that H"(Y;n) & Hom(H,(Y), 7). But the Hurewicz theorem
says that the Hurewicz homomorphism h, : 7 = 7,(Y) — H,(Y) is an
isomorphism. The corollary follows by combining these two isomorphisms. [

For an (n —1) - connected space Y as above, let « € H™(Y'; ) be the class
corresponding to the identity map id € Hom(m, 7) under the isomorphism in
this corollary. This is called the fundamental class. Given any other space X,
we therefore have a set map

¢:[X,Y] = H"(X,m)

defined by ¢([f]) = f*(+) € H*(X; 7). The classification theorem for Eilenberg
- MacLane spaces is the following.

Theorem 7.25. For n > 2 and w any abelian group, let K(m,n) denote an
FEilenberg - MacLane space with m,(K(m,n)) = 7, and all other homotopy
groups zero. Let « € H"(K(mw,n);m) be the fundamental class. Then for any
CW - complex X, the map

¢:[X,K(m,n)] > H"(X;m)
[f] = £ ()

is a bijective correspondence.

We have the following immediate corollary, giving a uniqueness theorem
regarding Eilenberg - MacLane spaces.

Corollary 7.26. Let K(mw,n); and K(m,n)s be CW - complezes that are both
FEilenberg - MacLane spaces with the same homotopy groups. Then there is a
natural homotopy equivalence between K(mw,n); and K(mw,n)s.

Proof. Let f : K(w,n); — K(m,n)2 be a map whose homotopy class is the
inverse image of the fundamental class under the bijection

¢ [K(m,n)1, K(m,n)s] =, H™(K(mw,n)1;7) =2 Hom(m, ).

This means that f : K(m,n); — K(m,n)2 induces the identity map in
Hom(m,7), and in particular induces an isomorphism on m,. Since all other
homotopy groups are zero in both of these complexes, f induces an isomor-
phism in homotopy groups in all dimensions. Therefore by the Whitehead
theorem 7.16, f is a homotopy equivalence. O

We begin our proof of this classification theorem by proving a special
case, known as the Hopf - Whitney theorem. This predates knowledge of the
existence of Eilenberg - MacLane spaces.
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Theorem 7.27. (Hopf-Whitney theorem) Let Y be any (n — 1) - connected
space with m = 7, (Y). Let X be any n - dimensional CW complex. Then the
map

¢: [ X, Y] - H"(X;n)
[f] = ()

s a bijective correspondence.

Remark. This theorem is most often used in the context of manifolds, where
it implies that if M™ is any closed, orientable manifold the correspondence

[M™, 8" - H"(M™Z) 2 Z
is a bijection.

Exercise. Show that this correspondence can alternatively be described as
assigning to a smooth map f: M™ — S™ its degree, deg(f) € Z.

Proof. (Hopf - Whitney theorem) We first set some notation. Let Y be (n—1)
- connected, and have basepoint yo € Y. Let X (™) denote the m - skeleton
of the n - dimensional complex X. Let Cj(X) = Hy(X®, X*#=1) be the
cellular k& - chains in X. Alternatively, C;(X) can be thought of as the free
abelian group on the k - dimensional cells in the CW - decomposition of X.
Let Z*(X) and B*(X) denote the subgroups of cocycles and coboundaries
respectively. Let Ji be the indexing set for the set of k - cells in this CW -
structure. So that there are attaching maps

(077 \/ S;f — X(k)
JE€Jk
so that the (k + 1) - skeleton X **+1 is the mapping cone
X(k+1) _ X(k) Uak U .D;C—"_l.
J€Jk

We prove this theorem in several steps, each translating between cellular
cochain complexes or cohomology on the one hand, and homotopy classes of
maps on the other hand. The following is the first step.

Step 1. There is a bijective correspondence between the following set of
homotopy classes of maps of pairs, and the cochain complex with values in :

¢ (XM, X") (Y, 90)] = C™(X;7).
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Proof. A map of pairs f : (X, X(=1) — (Y,y) is the same thing as a
basepoint preserving map from the quotient,

fr XM/ x0= =\ §r 5.
J€Jn

So the homotopy class of f defines and is defined by an assignment to every
j € Jp, an element [f;] € m,(Y) = . But by extending linearly, this is the
same as a homomorphism from the free abelian group generated by J,, i.e
the chain group C,(X), to m. That is, this is the same thing as a cochain
[f] € C™(X;m). O

Step 2. The map ¢ : [X,Y] — H"(X; ) is surjective.

Proof. . Notice that since X is an n - dimensional CW - complex, all n - dimen-
sional cochains are cocycles, C"(X;7) = Z™(X ;). So in particular there is a
surjective homomorphism p : C"(X;7) = Z™"(X;7) — Z™(X;m)/B"(X;7) =
H™(X;m). A check of the definitions of the maps defined so far yields that the
following diagram commutes:

(X, X(=D) (Y, )] —2— C"(X;)

| |
X.Y] —— H"(Xim)

where p is the obvious restriction map. By the commutativity of this diagram,
since y is surjective and ¢ : [((X™, X(=1) (Y, y0)] — C™(X;7) is bijective,
then we must have that ¢ : [X,Y] — H™(X;n) is surjective, as claimed. [

In order to show that ¢ is injective, we will need to examine the coboundary
map
§:C" N (X;m) = C™(X;7)

from a homotopy point of view. To do this, recall that the boundary map
on the chain level, 9 : Ci(X) — Cy_1(X) is given by the connecting ho-
momorphism H,(X®) X1y — m,_(X*=D X #=2)) from the long exact
sequence in homology of the triple, (X X #=1) x(k=2)) This boundary
map can be realized homotopically as follows. Let ¢(X (kfl)) be the cone on
the subcomplex X *—1),

e(XFy = XF=D 5 1/(X*=D {1} U {ao) x 1),

which is obviously a contractible space. Consider the mapping cone of the
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inclusion X *~1) «— X®) X ®) (X *=1), By projecting the cone to a point,
there is a projection map

i XFUe(XED)y 5 x B x k-1 — \/ S]k
J€Jk
which is a homotopy equivalence. (Note. The fact that this map induces an
isomorphism in homology is straight forward by computing the homology ex-
act sequence of the pair (X*) U ¢(X*=1) X)) The fact that this map is a
homotopy equivalence is a basic point set topological property of CW - com-
plexes coming from the so - called “Homotopy Extension Property”. However

it can be proved directly, by hand, in this case. We leave its verification to the
reader.) Let

Ug - X(k) — \/ SJk
J€Jk

be the composition

k k k—1 Pr k k—1) _ k
X®) s XKy e(XED) sy X0/ xE=D —\/ Sk

Then the composition of uj with the attaching map

Q1 \/ S]]-“—>X(k)

JE€Jk41

(whose mapping cone defines the (k+ 1) - skeleton X (’H‘l)), is a map between
wedges of k - spheres,

. ko k41 (k) Uk k
di+1 '\/jeJk_H Sj — X B— \/jEJk Sj'

The following is immediate from the definitions.
Step 3. The induced map in homology,
(diyr)e s He( \/ SF) = Hi(\/ SF)

J€Jk+1 Jj€Jk
Ck+1(X) — Ok(X)
is the boundary homomorphism in the chain complex g1 : Cr1(X) —
Cr(X).
Now consider the map

[(X™), X"=D) (Y, )] —>Z C(X;m) = Z"(X;m) —— H"(X;m).

We then have the following corollary.

Step 4. A map f: X(")/X("_l) = \/jeJ” S} — Y has the property that

poo([f]) =0 H"(X;m)
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if and only if there is a map
focr: \/ Spov
JE€EI(n—-1)
so that f is homotopic to the composition

fn—1

\/JEJn S” \/JEJn 1 Sn Y.

Proof. Since ¢ : [(X™, X("=D) (Y,y0)] — C™(X;7) = Z"(X;7) is a bijec-
tion, po@([f]) = 0 if and only if ¢([f]) is in the image of the coboundary map.
The result then follows from step 3. O

Step 5. The composition

u

XM o/ S”—>\/ S7

JjE€In J€In—1"J

is null homotopic.

Proof. The map u,, was defined by the composition

XM ey XM ye(Xx™-t)y s /o, S

But notice that if we take the quotient X(”) U c(X("_l)/X(") we get the
suspension

XM yegxrty/xm = nxt-b,

Furthermore, the map between the wedges of the spheres, d,, : \/ jedn S —
V. jedn | S is directly seen to be the composition

dy, : \/ SF Xy c(X("_l) Proj. xr(n) c(X(" 1)/X(n) — ynx(n-1)

J€Jn
Eun 1 \/ Sn

JE€EIn—1

Thus the composition d,, o u,, : X — \/
as the composition

St =V S7 factors

JE€EJIn JE€JIn-1

XM oy X0 (X (1) 22y x () o x (1) /X (W) = px (=)
Eun 1 \/ Sn
JE€In—
But the composite of the first two terms in this composition,
XM <y X ye(X -1y L% x () (X (n-1) /XM

is clearly null homotopic, and hence so is d,, o u,. O
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We now complete the proof of the theorem by doing the following step.
Step. 6. The correspondence ¢ : [X,Y] — H™(X; ) is injective.

Proof. Let f, g: X — Y be maps with ¢([f]) = ¢([g]) € H"(X; ). Since Y -
is (n —1) - connected, given any map h: X — Y, the restrlctlon to its (n—1)
- skeleton is null homotopic. (Exercise. Check this!) Null homotopies define
maps

fLg: XUce(X)y 5y

given by f and g respectively on X, and by their respective null homotopies on
the cones, c(X("_l)). Using the homotopy equivalence p,, : X (") Uc(X(”_l)) ~
XM /XM= =\/._; S we then have maps

fig: XM/ x=b 4y

which, when composed with the projection X = X — X(”)/X(”_l) are
homotopic to f and g respectively. Now by the commutativity of the diagram
in step 2, since 6([]) = 6([g]), then 1o 6([f]) = o ¢([g]). Or equivalently,

pod([fl—1gl) =0

where we are using the fact that

[(X x (™ X(n 1) \/ = Djes,mn(Y)
JEIn

is a group, and maps to C™(X;7) is a group isomorphism.

Let v : X" /X®=1) Y represent [f] —[g] € Ve, S7:Y]. Then po
#(¢)) = 0. Then by step 4, there is a map ¥,_1 : V ST =Y so that
Yp—1 © dy, is homotopic to ¥. Thus the composition

JE€EJIn-1

X P x xn Yy

is homotopic to the composition

Yn—1

X = XM/xn=t=\/., S} oy ST 5 Y.

JE€EIn—

But by step 5, this compostion is null homotopic. Now since ¢ represents
[f] — [g], a null homotopy of the composition

X 2, xyxm-l) Yy
defines a homotopy between the compositions

X Uy x/xen Ly oand x P x/xeh T,y

The first of these maps is homotopic to f : X — Y, and the second is homo-
topic to g : X — Y. Hence f ~ g, which proves that ¢ is injective. O
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We now know that the correspondence ¢ : [X,Y] — H"(X; ) is surjective
(step 2) and injective (step 6). This completes the proof of this theorem. [J

We now proceed with the proof of the main classification theorem for
cohomology, using Eilenberg - MacLane spaces ( 7.25).

Proof. The Hopf Whitney theorem proves this theorem when X is an n -
dimensional CW - complex. We split the proof for general CW - complexes
into two cases.

Case 1. X is n + 1 - dimensional.

Consider the following commutative diagram

[X, K(m,n)) _¢ H"(X;7)

Pl lp (7.1)

(XM, K (m,n)] —22 HM(X™;7)

where the vertical maps p denote the obvious restriction maps, and ¢, de-
notes the restriction of the correspondence ¢ to the n - skeleton, which is an
isomorphism by the Hopf - Whitney theorem.

Now by considering the exact sequence for cohomology of the pair
(X, X)) = (XD X)) one sees that the restriction map p : H™(X, ) —
H™(X™ ) is injective. Using this together with the fact that ¢, is an iso-
morphism and the commutativity of this diagram, one sees that to show
that ¢ : [X, K(m,n)] — H"(X;7) is surjective, it suffices to show that for
v € H(X,n) with p(y) = ¢n([fn]), where f, : X — K(7,n), then f, can
be extended to a map f: X — K(m,n).

Using the same notation as was used in the proof of the Hopf - Whitney
theorem, since X = X+ we can write

X = X(n) Uan s U D(n+1)

J€JInt1

where a1 : VjeJn+1 S7 — X (™) is the attaching map. Thus the obstruction
to finding an extension f : X — K(m,n) of the map f, : X — K(m,n), is

the compostion

n  Qn n fn
Vier 8§ =55 X0 Loy K(mn),

Now since \/ J€dmin S} is n - dimensional, the Hopf - Whitney theorem says

that this map is determined by its image under ¢,

O([fn 0 ania]) € H*( ) SP;im).

J€JIn+1
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But this class is a;, 1 (¢([fn])), which by assumption is o}, 1(p(7)). But the
composition

H(X;7m) —2 HP(X™), 1) 2 fn(y Sns )

J€EIn+1 7J
are two successive terms in the long exact sequence in cohomology of the
pair (XD, X)) and is therefore zero. Thus the obstruction to finding
the extension f : X — K(m,n) is zero. As observed above this proves that
¢: [X,K(m,n)] = H"(X; ) is surjective.

We now show that ¢ is injective. So suppose ¢([f]) = ¢([g]) for f, g: X —
K (m,n). To prove that ¢ is injective we need to show that this implies that f
is homotopic to ¢. Let f,, and g, be the restrictions of f and g to X(™). That
is,

fo=p(f]) : X = K(7,n) and g, = p([g]) : X" — K(m,n)

Now by the commutativity of diagram 7.1 and the fact that ¢,, is an isomor-
phism, we have that f,, and g, are homotopic maps. Let

F,: X" x T K(m,n)

be a homotopy between them. That is, Fy = f,, : X x {0} — K(m,n) and
Fy = gn : X" x {1} = K (7, n). This homotopy defines a map on the (n+1)
-subcomplex of X x I defined to be

F:(Xx{0HUuX x {1HUX™ x I = K(m,n)

where F is defined to be f and g on X x {0} and X x {1} respectively, and F
on X x I. But since X is (n41) - dimensional, X x I is (n+2) - dimensional,
and this subcomplex is its (n + 1) - skeleton. So X x I is the union of this
complex with (n + 2) - dimensional disks, attached via maps from a wedge
of (n + 1) - dimensional spheres. Hence the obstruction to extending F' to a
map F : X x I — K(m,n) is a cochain in C"*2(X x I;m,.1(K(m,n)). But
this group is zero since m,41 (K (m,n)) = 0. Thus there is no obstruction to
extending F to a map F : X x I — K (m,n), which is a homotopy between f
and g. As observed before this proves that ¢ is injective. This completes the
proof of the theorem in this case.

General Case. Since, by case 1, we know the theorem for (n + 1) -
dimensional CW - complexes, we assume that the dimension of X is > n+ 2.
Now consider the following commutative diagram:

X, K(r,n)]  —%—=  H"(X;m)

el &

(XD, K (r,n)] 22 (XD 1)
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where, as earlier, the maps p denote the obvious restriction maps, and ¢, 11
denotes the restriction of ¢ to the (n + 1) skeleton, which we know is an
isomorphism, by the result of case 1.

Now in this case the exact sequence for the cohomology of the pair
(X, X("*1) yields that the restriction map p : H"(X;7) — H™(X"+D 1)
is an isomorphism. Therefore by the commutativity of this diagram, to prove
that ¢ : [X, K(m,n)] - H™(X;x) is an isomorphism, it suffices to show that
the restriction map

p: X, K(m,n)] — [XOFY K(r,n)

is a bijection. This is done by induction on the skeleta X() of X, with
K > n+ 1. To complete the inductive step, one needs to analyze the ob-
structions to extending maps X (%) — K(m,n) to XE+D or homotopies
X)) 5 T — K(m,n) to XE+D x I like what was done in the proof of case
1. However in these cases the obstructions will always lie is spaces of cochains
with coefficients in 7y (K (7,n)) with ¢ = Kor K + 1, and so ¢ > n + 1. But
then 7y (K (m,n)) = 0 and so these obstructions will always vanish. We leave
the details of carrying out this argument to the reader. O

7.5 Spectral Sequences

One of the great achievements of Algebraic Topology was the development of
spectral sequences. They were originally invented by Leray in the late 1940’s
and since that time have become fundamental calculational tools in many
areas of Geometry, Topology, and Algebra. One of the earliest and most im-
portant applications of spectral sequences was the work of Serre [84] for the
calculation of the homology of a fibration. We divide our discussion of spectral
sequences in these notes into three parts. In the first section we develop the
notion of a spectral sequence of a filtration. In the next section we discuss the
Leray - Serre spectral sequence for a fibration. In the final two sections we
discuss applications: we prove the Hurewicz theorem, calculate the cohomol-
ogy of the Lie groups U(n), and O(n), and of the loop spaces 25", and we
discuss Spin and Spingc - structures on manifolds. We refer the reader to [67]
for a more complete discussion of spectral sequences.

7.5.1 The spectral sequence of a filtration

A spectral sequence is the algebraic machinery for studying sequences of long
exact sequences that are interelated in a particular way. We begin by illus-
trating this with the example of a filtered complex.
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Let C, be a chain complex, and let A, C C, be a subcomplex. The short
exact sequence of chain complexes

0— A, —>C. — CJA, — 0
leads to a long exact sequence in homology:
— o — Hy1(Ch, A) — Hy(Ay) — Hy(Cy) — Hy(Cy, Ay) — Hgo1(Ay) — -+

This is useful in computing the homology of the big chain complex, H.(C\)
in terms of the homology of the subcomplex H,(A.) and the homology of the
quotient complex H,(Ci, A,). A spectral sequence is the machinery used to
study the more general situation when one has a filtration of a chain complex
C, by subcomplexes

0=Fy(C.) = Fi(Cy) = - = FR(C) = Fraa (Ch) = -+ = Cu = | Fi(Co).
k

Let D¥ be the subquotient complex D¥ = Fy(C.)/F)._1(C,) and so for
each k there is a long exact sequence in homology

— Hy1(DY) — Hy(Fi1(Cx)) — Hg(Fi(Cx)) — Hg(Dy) — -+

By putting these long exact sequences together, in principle one should
be able to use information about @ H,(D¥) in order to obtain information
about

H.(C.) = lim H.(Fy(C.)).
k

A spectral sequence is the bookkeeping device that allows one to do this.
To be more specific, consider the following diagram.
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0
Hq(Fl(C*)) qul(Fl(C*)) — qul(Di)

Hq(c*) qul(c*> (7 2)

The columns represent the homology filtration of H,(C.) and the three
maps 0, j, and i combine to give long exact seqences at every level.

Let o € Hy(C,). We say that o has algebraic filtration k, if « is in the
image of a class ay € Hy(Fi(Cy)) but is not in the image of Hy(Fj—1(Cy)).
In such a case we say that the image j(ax) € H,(D¥) is a representative of
«. Notice that this representative is not unique. In particular we can add any
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class in the image of
dy =jod: Hyp1 (D) — H,(DF)

to j(ax) and we would still have a representative of a € Hy(C) under the
above definition.

Conversely, let us consider when an arbitrary class 8 € H,(D¥) repre-
sents a class in Hy(C.). By the exact sequence this occurs if and only if
the image 9(8) = 0, for this is the obstruction to § being in the image of
j : Hy(Fp(C.)) — H,(DF¥). Furthermore if j(3) = j then § represents the
image ~

io-0i(f) € Hy(C.).
Now 9(8) = 0 if and only if it lifts all the way up the second vertical tower
in diagram 7.2. The first obstruction to this lifting, (i.e the obstruction to
lifting 0(B) to Hy—1(Fr—2(Cx)) is that the composition

di=jod: Hq(Df) — Hq—l(Dfil)

maps 3 to zero. That is elements of H,(C,) are represented by elements in
the subquotient
ker(dy)/Im(dy)

of Hy(D¥). We use the following notation to express this. We define
EI,S = r+s(DI)

and define
di=jod:E® — E{ 1.

r is said to be the algebraic filtration of elements in E{** and r + s is the
total degree of elements in E]*°. Since d o j = 0, we have that

dl o] dl - O
and we let
Ey® = Ker(dy : BY® — B~ 5°) [Im(dy - BT — E}*)

be the resulting homology group. We can then say that the class o € H,(Cy)
has as its representative, the class oy € Eg’q_k.

Now let us go back and consider further obstructions to an arbitrary class
S Eg’qfk representing a class in Hy(C,). Represent 8 as a cycle in Ey:
B € Ker(dy =jod € Hy(DF)). Again, 3 represents a class in H,(C.) if and
only if 9(8) = 0. Now since j o 9(8) = 0, 9(8) € Hy—1(Fr_1(C4)) lifts to a
class, say § € Hy_1F},_2(C.). Remember that the goal was to lift 9(3) all the
way up the vertical tower (so that it is zero). The obstruction to lifting it the
next stage, i.e to H,_1(Fj_3(C.)) is that j(3) € H, 1(D¥2) is zero. Now
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the fact that a dy cycle 8 has the property that 0(5) lifts to Hy—1Fr—2(C4))
allows to define a map

dy : E597F — ph2aitl
and more generally,
dy: Ey® — By~ 251!
by composing this lifting with
j i Hgpro1(Fr2(Ch)) — Hopr1(DL72).
That is, dy = joi~!od. It is straightforward to check that dy : Ey* —»

E5 2" is well defined, and that elements of H,(C,) are actually represented
by elements in the subquotient homology groups of E5":

Ey® = Ker(ds : Ey® — Ey 2" /Im(dy : By — EP)
Inductively, assume the subquotient homology groups E;-’S have been de-
fined for j < p — 1 and differentials
A nit] r—j,s+5—1
dj: E;" — E;
defined on representative classes in H,s(D?%) to be the composition
dj=jo(#’ ' =io-0i)tod

so that £ is the homology Ker(d;)/Im(d;). We then define

Ep® = Ker(dy—y: E)°) — E; V072 [Tm(d,_y « By IP-0o7PR2 5 Bre ),
Thus E}’,f’q—k is a subquotient of H,(D¥), represented by elements /3 so that
d(B) lifts to H,(Fy_,(C.)). That is, there is an element 3 € H,(Fy_,(C\)) so
that ~
*7H(B) = 9(B) € Hy—1(Fi—1(C.)).-

The obstruction to j lifting to H,_1(Fr_,_1(C4)) is j(8) € H,(DE™P). This
procedure yields a well defined map

. TS r—p,s+p—1
dy: E)° — B

given by j o (i?~1)71 0 9 on representative classes in H,(D¥). This completes
the inductive step. Notice that if we let

B = lig E)*
p

then E¥:7~F is a subquotient of Hq(D,,’f) consisting of precisely those classes
represented by elements 3 € H,(D¥) so that d(3) lifts all the way up the
vertical tower i.e 9(f) is in the image of ¢ for all p. This is equivalent to the
condition that 9(8) = 0 which as observed above is precisely the condition
necessary for 5 to represent a class in H,(C,). These observations can be made
more precise as follows.
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Theorem 7.28. Let I™* = I'mage(H,4s(F-(Cy)) — Hy15(Cy)). Then EL?
is isomorphic to the quotient group

ElS o IT,S/IT71,5+1.
[eS)

Thus the EL* determines H.(Cy) up to extensions. In particular, if all ho-
mology groups are taken with field coefficients we have

H(C)= @ FL,

r+s=q

In this case we say that {E;*,d,} is a spectral sequence starting at E}*® =
H, (D7), and converging to H,4(C,).

Often times a filtration of this type occurs when one has a topological
space X filtered by subspaces,

x=Xo—=>X] = = Xp = Xy == XL

An important example is the filtration of a CW - complex X by its skeleta,
X, = X*). We get a spectral sequence as above by applying the homology of
the chain complexes to this topological filtration. This spectral sequence con-
verges to H,(X) with By term E]® = H,, (X, X,_1). From the construction
of this spectral sequence one notices that chain complexes are irrelevant in this
case; indeed all one needs is the fact that each inclusion X 1 < X induces
a long exact sequence in homology.

Exercise. Show that in the case of the filtration of a CW - complex X by
its skeleta, that the F; -term of the corresponding spectral sequence is the
cellular chain complex, and the Fs - term is the homology of X,

s H.(X), ifs=0
Ey° = )
0 otherwise

Furthermore, show that this spectral sequence “collapses” at the Fs level, in
the sense that
Ep=Ey® forallp>2

and hence
r,s __ 1T,S
E%S =E5°.

Now if h.(—) is any generalized homology theory (that is, a functor that
obeys all the Eilenberg - Steenrod axioms but dimension) then the inclusions
of a filtration as above X;_1 < X} induce long exact sequences in h.(—),
and one gets, by a procedure completely analogous to the above, a spectral
sequence converging to h,(X) with E; term

E;’S = hrJrs(Xraerl)'
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Again, for the skeletal filtration of a CW complex, this spectral sequence is
called the Atiyah - Hirzebruch spectral sequence for the generalized homology
B

Exercise. Show that the Fy -term of the Atiyah - Hirzebruch spectal
sequence for the generalized homology theory h, is

E;s = hr-i-S(ST) ® HT(X)

Particularly important examples of such generalized homology theories
include stable homotopy ( = framed bordism ), other bordism theories, and
K - homology theory. Similar spectral sequences also exist for cohomology
theories. The reader is referred to [67] for a good general reference on spectral
sequences with many examples of those most relevant in Algebraic Topology.

7.5.2 The Leray - Serre spectral sequence for a fibration

The most important example of a spectral sequence from the point of view
of these notes is the Leray - Serre spectral sequence of a fibration. Given a
fibration F' — E — B, the goal is to understand how the homology of the
three spaces (fiber, total space, base space) are related. In the case of a trivial
fibration, F = Bx F — B, the answer to this question is given by the Kunneth
formula, which says, that when taken with field coefficients,

H.(B x F;k) = H,(B; k) @ Hy(F : k),

where k is the field.

When p : E — B is a nontrivial fibration, one needs a spectral sequence to
study the homology. The idea is to construct a filtration on a chain complex
C.(E) for computing the homology of the total space F, in terms of the
skeletal filtration of a C'W - decomposition of the base space B.

Assume for the moment that p : E — B is a fiber bundle with fiber F'. For
the purposes of our discussion we will assume that the base space B is simply
connected. Let B*) be the k - skeleton of B, and define

E(k)=p ' (BW) c E.
We then have a filtration of the total space E by subspaces
x> F0)—> F(l)— - Ek) <> Ek+1)— - = E.

To analyze the F; - term of the associated homology spectral spectral sequence
we need to compute the E; - term, E7"* = H,,s(E(r), E(r — 1)). To do this,
write the skeleta of B in the form

B =BCYu | Dj.
Jj€Jy
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Now since each cell D,. is contractible, the restriction of the fibration E to the
cells is trivial, and so

E(r)-E(r-1)= |J D" xF.
jeJr

Moreover the attaching maps are via the maps

a,: \/ S;T'x F— E(r—1)
jE€Jr

induced by the cellular attaching maps oy : VgeJk k=1 pk=1), Using the

Mayer - Vietoris sequence, one then computes that

E}* = Hyo(E(r), E(r—1)) = Huyo (| D" x F, | ] S77!
JjEJ, JjEJ,
=H,o(\/ " xF,F)
J€Jr
(\/ ) @ Hy(F)
JEJr

= C,(B; Hs(F)).

These calculations indicate the following result, due to Serre in his thesis
[84]. We refer the reader to that paper for details. It is one of the great pieces
of mathematics literature in the last 75 years.

Theorem 7.29. Let p: E — B be a fibration with fiber F'. Assume that F' is
connected and B is simply connected. Then there are chain complexes C.(E)
and C,(B) computing the homology of E and B respectively, and a filtation of
C.(E) leading to a spectral sequence converging to H.(E) with the following
properties:

1. B} = Cy(B) @ Hy(F)

2. EY* = H,(B; H,(F))

3. The differential d; has bidegree (—j,j — 1) :

B (] r—j,5+j—1
dj : E;" — B .
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4. The inclusion of the fiber into the total space induces a homomorphism
isx: Hy(F) = Hy(F)
which can be computed as follows:
iv: Hy(F)=EY" — E%" c H,(E)

where BY™ — E%™ is the projection map which exists because all the dif-
ferentials d; are zero on E;)"

5. The projection map induces a homomorphism
D« : Hy(E) — H,(B)
which can be computed as follows:
H,(E) = E%° c E° = H,(B)

where E™0 includes into Ey° as the subspace consisting of those classes
on which all differentials are zero. This is well defined because no class in
E;L’O can be a boundary for any j.

Remark. The theorem holds when the base space is not simply con-
nected also. However in that case the Fs -term is homology with “twisted
coefficients”. This has important applications in many situations, however we
will not consider this issue in these notes. Again, we refer the reader to Serre’s
thesis [84] or McCleary’s text [67] for details.

We will finish this chapter by describing several applications of this im-
portant spectal sequence. The first, due to Serre himself [84], is the use of
this spectral sequence to prove that even though fibrations do not, in general,
admit long exact sequences in homology, they do admit exact sequences in
homology through a range of dimensions depending on the connectivity of the
base space and fiber.

Theorem 7.30. Let p: E — B be a fibration with connected fiber F', where
B is simply connected and H;(B) = 0 for 0 < i < n, and H;(F) = 0 for
0 < i <m. Then there is an exact sequence

Hn+m71(F) Z_*> Hn+mfl(E) p_*>Hn+mfl(B) 5 Hn+mf2(F)
— - — H{(E) — 0.
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Proof. The E5 -term of the Serre spectral sequence is given by
Ey® = H,(B; Hy(F))

which, by hypothesis is zero for 0 < r <nor 0 < j < m. Let ¢ < n+ m.
Then this implies that the composition series for H,(E), given by the filtration
defining the spectral sequence, reduces to the short exact sequence

0— EX? — Hy(E) — EL° — 0.
Now in general, for these “edge terms”, we have

EL = kernel{d, : E?° — E)9"'} and

E%8 = coker{d, : EX® — EJ*'}.

But when ¢ < n +m, we have E¢* = EJ® = H,(B) and EQ9! = B! =
H,_1(F') because there can be no other differentials in this range. Thus if we
define

T:Hy(B) = Hy_1(F)

to be dy : EP° — EY97!, for ¢ < n 4 m, we then have that p. : Hy(E) —
H,(B) maps surjectively onto the kernel of 7, and if ¢ < n+m — 1, then the
kernel of p, is the cokernel of 7 : Hyy1(B) — Hy(F'). This establishes the
existence of the long exact sequence in homology in this range. O

Remark. The homomorphism 7 : H,(B) — Hy_1(F) for ¢ < n+m in
the proof of this theorem is called the “transgression” homomorphism.

7.5.3 Applications I: The Hurewicz theorem

As promised earlier in this chapter, we now use the Serre spectral sequence
to prove the Hurewicz theorem. The general theorem is a theorem comparing
relative homotopy groups with relative homology groups. We begin by proving
the theorem comparing homotopy groups and homology of a single space.

Theorem 7.31. Let X be an n — 1 - connected space, n > 2. That is, we
assume mg(X) = 0 for ¢ < n —1. Then Hy(X) =0 for ¢ < n—1 and the
previously defined “Hurewicz homomorphism”

h:m(X) = Hy(X)

is an isomorphism.
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Proof. We assume the reader is familiar with the analogue of the theorem
when n = 1, which says that for X connected, the first homology group
H,(X) is given by the abelianization of the fundamental group

h: 7T1(X)/[7T1,7T1] = Hl(X)

where [m,m] C m1(X) is the commutator subgroup. We use this preliminary
result to begin an induction argument to prove this theorem. Namely we
assume that the theorem is true for n — 1 replacing n in the statement of the
theorem. We now complete the inductive step. By our inductive hypotheses,
Hi(X)=0fori <n-—2and m,_1(X) & H,_1(X). But we are assuming
that 7,_1(X) = 0. Thus we need only show that h : 7,(X) — H,(X) is an
isomorphism.

Consider the path fibration p : PX — X with fiber the loop space QX.
Now 7;(Q2X) = m41(X), and so m;(2X) = 0 for ¢« < n — 2. So our inductive
assumption applied to the loop space says that

h: Wn_l(QX) — Hn_l(QX)

is an isomorphism. But 7,1 (22X ) = 7, (X). Also, by the Serre exact sequence
applied to this fibration, using the facts that

1. the total space PX is contractible, and

2. the fiber QX is n—2 - connected and the base space X is (n—1) - connected

we then conclude that the transgression,
7:Hy(X) = H,—1(2X)

is an isomorphism. Hence the Hurewicz map h : 7,1 (QX) — H,_1(QX) is
the same as the Hurewicz map h : m,(X) — H,(X), which is therefore an
isomorphism. O

We are now ready to prove the more general relative version of this theorem
7.21

Theorem 7.32. Let X be simply connected, and let A C X be a simply
connected subspace. Suppose that the pair (X, A) is (n — 1) - connected, for
n > 2. That is,

(X, A) =0 if k<n-—1.

Then the Hurewicz homomorphism h, : 7,(X, A) — H, (X, A) is an isomor-
phism.
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Proof. . Replace the inclusion
1:A— X.

by a homotopy equivalent fibration 7 : A — X as in 7.7. Let F, be the fiber.
Then m;(F,) = m+1(X,A), by comparing the long exact sequences of the
pair (X, A) to the long exact sequence in homotopy groups for the fibration
A — X. So by the Hurewicz theorem 7.31 we know that m;(F) = H;(F) =0
for i <n—2 and

h: anl(F) — anl(F)

is an isomorphism. But as mentioned, m,_1(F) 2 7,(X, A) and by compar-
ing the homology long exact sequence of the pair (X, A) to the Serre exact
sequence for the fibration F — A — B, one has that H, 1(F)=2 H,(X,A).
The theorem follows. O

As a corollary, we obtain the following strengthening of the Whitehead
theorem 7.16 which is quite useful in calculations.

Corollary 7.33. Suppose X and Y are simply connected CW - complezes
and f: X =Y a continuous map that induces an isomorphism in homology
groups,

foi Ho(X) —— Hy(Y) for allk >0

Then f: X —Y is a homotopy equivalence.

Proof. Replace f: X — Y by the inclusion into the mapping cylinder
f: X =Y

where Y =Y U ¢ X x I which is homotopy equivalent to Y, and f includes X
into Y as X x {1}.

Since X and Y are simply connected, we have that mo(X) = Hy(X) and
m(Y) = Ho(Y). Thus f. : ma(X) — 72(Y) is an isomorphism. Again, since X
and Y are simply connected, this implies that =, (Y,X)=0for g =1,2. Thus
we can apply the relative Hurewicz theorem. However since f. : Hp(X) =
Hy(Y) for all k> 0, we have that Hy,(Y,X) = 0 for all £ > 0. But then the
Hurewicz theorem implies that 7 (Y, X) = 0 for all k, which in turn implies
that fi : m(X) — 7, (Y) is an isomorphism for all k. The theorem follows
from the Whitehead theorem 7.16. O
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7.5.4 Applications II: H,.(QS™) and H*(U(n))

In this section we will use the Serre spectral sequence to compute the homology
of the loop space 2S™ and the cohomology ring of the Lie groups, H*(U(n)).

Theorem 7.34.

Z if q is a multiple of n — 1, i.e g = k(n — 1)
0 otherwise

H,y(QS™) = {

Proof. QS™ is the fiber of the path fibration p : PS™ — S™. Since the total
space of this fibration is contractible, the Serre spectral sequence converges to
0 in positive dimensions. That is,

ED =0

for all 7, s, except that E%? = Z. Now since the base space, S™ has nonzero
homology only in dimensions 0 and n (when it is Z), then

Ey® = H,(S™; Hs(2S™))

is zero unless 7 = 0 or n. In particular, since d, : Ep* — Eg’q*”q’l, we must
have that for ¢ < n, d, = 0. Thus E5® = EI* and the only possible nonzero
differential d,, occurs in dimensions

. n,s 0,s+n—1
dn: E° = E, .

It is helpful to picture this spectral sequence as in the following diagram,
where a dot in the (r,s) - entry denotes a copy of the integers in E»* =
H,.(S™; Hs(25™)).

Notice that if the generator o, o € E™° is in the kernel of d,,, then it
would represent a nonzero class in E:fl. But d,, 11 and all higher differentials

0 : : : 0
on B, must be zero, for dimensional reasons. That is, E,; = E°. But we

saw that E? = 0. Thus we must conclude that d,,(c,.) # 0. For the same
reasoning, (i.e the fact that E;lfl = 0) we must have that d,, (ko) # 0 for

all integers k. This means that the image of
dy : E}Y — Epm!

is Z C B9t = H,,_1(25™). On the other hand, we claim that d,, : E"° —
E2"=1 must be surjective. For if a € E9"~1 is not in the image of d,,, then
it represents a nonzero class in ngl_ ' = E%" 1. But as mentioned earlier
E%"=1 = 0. So d, is surjective as well. In fact we have proven that

dp: 7 =H,(8") = EM* — EO"~1 = 9" = H,_,(QS™)
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3(n-1)
2(n-1)

n-1

is an isomorphism. Hence H,,_1(Q2S5™) = Z, as claimed. Now notice this cal-
culation implies a calculation of E5"" ™', namely,

EP™t = H,(S™; Hp_1(Q8™) = bz.
Repeating the above argument shows that E3" ' = E,n,n — 1 and that
R
must be an isomorphism. This yields that
Z=Ey*" Y = Hy, 1) (QS™).

Repeating this argument shows that for every ¢, Z = E;’Q("_l) = gl

and that
dp : BT 5 B0, (g4 1) (n — 1) 2 Hgy1yn-1)(QS™)

is an isomorphism. And so Hy(,—1)(25™) = Z for all k.

We can also conclude that in dimensions j not a multiple of n — 1, then
H;(Q2S™) must be zero. This is true by the following argument. Assume the
contrary, so that there is a smallest j > 0 not a multiple of n — 1 with
H;(Qs™) = Eg’j # 0. But for dimensional reasons, this group cannot be in the
image of any differential, because the only Fj'® that can be nonzero with r > 0

is when r» = n. So the only possibility for a class a € Eg’j to represent a class
which is in the image of a differential is d,, : E"* — E%$T"=1.S0 j = s+n—1.
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But since j is the smallest positive integer not of the form a multiple of n — 1
with H;(QS™) nonzero, then for s < j, El® = H, (S™, Hs(QS™)) = Hs(Q2S™)

n
can only be nonzero if s is a multiple of (n—1), and therefore so is s+n—1 = j.

This contradiction implies that if j is not a multiple of n—1, then H;((QS™))
is zero. This completes our calculation of H, (£2.5™). O

We now use the cohomology version of the Serre spectral sequence to
compute the cohomology of the unitary groups. We first give the cohomological
analogue of 7.29. Again, the reader should consult [84] for details.

Theorem 7.35. Letp: E— B be a fibration with fiber F'. Assume that F is
connected and B is simply connected. Then there is a cohomology spectral se-
quence converging to H*(E), with Ey® = H"(B; H*(F')), having the following
properties.

1. The differential d; has bidegree (j,—j +1) :

. .8 r+j,5—j+1
d;: E}* - E| .

2. For each j, E]** s a bigraded ring. The ring multiplication maps

Ef’q ®E;7] N Ef“’ﬁ].

3. The differential d; : E}° — E;H’S*jﬂ. is an antiderivation in the sense
that it satisfies the product rule:

dj(ab) = dy(a) - b+ (—1)"a - dy (b)
where a € E;“)

4. The product in the ring E;1 is induced by the product in the ring E;, and
the product in Eoo is induced by the cup product in H*(E).

We apply this to the following calculation.

Theorem 7.36. There is an isomorphism of graded rings,
H*(U(n)) = Aoy, 05, ,020-1],

the graded exterior algebra on one generator oop_1 in every odd dimension
2k —1 for1 <k <n.
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Proof. We prove this by induction on n. For n = 1, U(1) = S! and we know
the assertion is correct. Now assume that H*(U(n — 1)) = Aloy, - 0an—3).
Consider the Serre cohomology spectral sequence for the fibration

Un—-1)cU(n)—Un)/Um—1)= 852"
Then the Fs - term is given by
Ey* = H*(S*" L H(U(n—1)) = H(S*" ") @ H*(U(n — 1))

and this isomorphism is an isomorphism of graded rings. But by our inductive
assumption we have that

H*(S™ Y@ H*(U(n —1)) 2 Aloan_1] @ Aoy, - - - 02n_3]

A[017J35 e aO—Q'rL—l]'

1%

Thus
E3* = Aoy,03,-++ ,09,-1]

as graded algebras. Now since all the nonzero classes in E;" have odd total
degree (where the total degree of a class a € Ey® is r+s), and all differentials
increase the total degree by one, we must have that all differentials in this
spectral sequence are zero. Thus

*, % *, %
Eoé :E2 g1\[01,0’3,"' 70’271,1].

We then conclude that H*(U(n)) == Alo1,03,- - ,02,—1] which completes
the inductive step in our proof. O

7.5.5 Applications III: H,(K(Q,n))

We will use the Serre spectral sequence to compute the homology of the ra-
tional Eilenberg-MacLane spaces, K(Q;n).

Theorem 7.37. The homology of the FEilenberg-MacLane spaces K(Q,n) is
given as follows:

Q, if q is a positive multiple of 2m ,
0 otherwise.

Q, ifg=2m+1,
0 otherwise.

ﬁq(K(Q»Qm +1);Z) = {

Proof. Consider the path-loop fibration, QK (Q,n) - PK(Q,n) — K(Q,n).
Notice that the based loop space, QK (Q,n) is an Eilenberg-MacLane space
of type K(Q,n — 1). We now prove the theorem by induction on n. For n = 0,
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the statement is obvious. Inductively assume the theorem is true for n — 1
and we want to prove it for n. We consider the Serre spectral sequence for
this fibration. Since the path space PK(Q,n) is contractible, the spectral
sequence must converge to zero in positive dimensions. For this to happen,
the spectral sequences must have the following form, depending on whether n
is even or odd. The argument is very similar to that which was carried out in
the calculation of H*(QS™) (Theorem 7.34). We leave the verification of these
descriptions as an exercise for the reader.

A,Luwm

2m -
H, (K@, 2
FIGURE 7.1

The Serre spectral sequence for the homology of the fibration K (Q,2m—1) —
PK(Q,2m) — K(Q,2m).
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bilma-\ﬂ)

(k@ ,m0; 2

FIGURE 7.2
The Serre spectral sequence for the homology of the fibration K(Q,2m) —
PK(Q,2m+1) - K(Q,2m + 1).

The result now follows from these spectral sequences.

7.5.6 Applications I'V: Spin and Spinc structures

In this section we describe the notions of Spin and Spinc structures on vec-
tor bundles. We then use the Serre spectral sequence to identify characteristic
class conditions for the existence of these structures. These structures are par-
ticularly important in geometry, geometric analysis, and geometric topology.

Recall from chapter 4 that an n - dimensional vector bundle ( over a space
X is orientable if and only if it has a SO(n) - structure, which exists if and only
if the classifying map f: : X — BO(n) has a homotopy lifting to BSO(n). In
chapter 4 we proved the following property as well.

Proposition 7.38. The n - dimensional bundle  is orientable if and only if
its first Stiefel - Whitney class is zero,

wi(¢) =0 € H'(X; Zy).

A Spin structure on ( is a refinement of an orientation. To define it we
need to further study the topology of SO(n).
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The group O(n) has two path components, i.e mo(O(n)) = Zy and SO(n)
is the path component of the identity map. In particular SO(n) is connected,
so mp(SO(n)) = 0. We have the following information about 7 (SO(n)).

Proposition 7.39. m1(SO(2)) = Z. For n > 3, we have
71'1(50(%)) = ZQ.

Proof. SO(2) is topologically a circle, so the first part of the theorem follows.
SO(3) is topologically the projective space

SO(3) = RP?

which has a double cover Zy — S® — RIP3. Since S® is simply connected, this
is the universal cover of RP3 and hence Zy = 71 (RP?) = 71 (SO(3)).

Now for n > 3, consider the fiber bundle SO(n) — SO(n+1) — SO(n +
1)/SO(n) = S™. By the long exact sequence in homotopy groups for this
fibration we see that m1(SO(n)) — m1(SO(n + 1)) is an isomorphism for
n > 3. The result follows by induction on n. O

Since 71 (SO(n)) = Zs, the universal cover of SO(n) is a double covering.
The group Spin(n) is defined to be this universal double cover:

Zs — Spin(n) — SO(n).

Exercise. Show that Spin(n) is a group and that the projection map
p: Spin(n) — SO(n) is a group homomorphism with kernel Zs.

Now the group Spin(n) has a natural Zy action, since it is the double cover
of SO(n). Define the group Spinc(n) using this Zs - action in the following
way.

Definition 7.8. The group Spinc(n) is defined to be
Spinc(n) = Spin(n) Xz, U(1).

where Zs acts on U(1) by z — —z for z € U(1) C C.

Notice that there is a principal U(1) - bundle,
U(1) — Spinc(n) = Spin(n) xz, U(1) — Spin(n)/Zs = SO(n).

Spinc - structures have been shown to be quite important in the Seiberg -
Witten theory approach to the study of smooth structures on four dimensional
manifolds [53].

The main theorem of this section is the following;:
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Theorem 7.40. Let ¢ be an oriented n - dimensional vector bundle over a
CW - complex X. Let wo(¢) € H*(X;Zs) be the second Stiefel - Whitney
class of . Then

1. ¢ has a Spin(n) structure if and only if wo(¢) = 0.

2. ¢ has a Spinc(n) - structure if and only if we(¢) € H*(X;Z2) comes
from an integral cohomology class. That is, if and only if there is a class
c € H?(X;7Z) which maps to wy(¢) under the projection map

H*(X;7) — H*(X;Zy).

Proof. The question of the existence of a Spin or Spinc structure is equivalent
to the existence of a homotopy lifting of the classifying map f. : X — BSO(n)
to BSpin(n) or BSpinc(n). To examine the obstructions to obtaining such
liftings we first make some observations about the homotopy type of BSO(n).

We know that BSO(n) — BO(n) is a double covering (the orientation
double cover of the universal bundle). Furthermore 7 (BO(n)) = mo(O(n)) =
Zs, so this is the universal cover of BO(n). In particular this says that BSO(n)
is simply connected and

is an isomorphism for i > 2.
Recall that for n odd, say n = 2m + 1, then there is an isomorphism of
groups
SO(2m+1) x Zs 2 O0(2m + 1).

Exercise. Prove this!

This establishes a homotopy equivalence
BSO(2m+1) x BZy = BO(2m + 1).

The following is then immediate from our knowledge of H*(BO(2m+1);Z,) =
ZQ [wl, s ,UJ2m+1] and H* (BZQ; ZQ) = ZQ [wl]

Lemma 7.41.
H*(BSO(2m -+ 1), ZQ) = ZQ[’LUQ, R ,w2m+1]
where w; € HY(BSO((2m + 1);Zy) is the ith Stiefel - Whitney class of the

universal oriented (2m—+1) - dimensional bundle classified by the natural map
BSO(2m+1) - BO(2m +1).
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Corollary 7.42. Forn >3, H>(BSO(n); Zs) = Zy, with nonzero class ws.

Proof. This follows from the lemma and the fact that for n > 3 the inclusion
BSO(n) — BSO(n + 1) induces an isomorphism in H?, which can be seen
by looking at the Serre exact sequence for the fibration S™ — BSO(n) —
BSO(n+1). O

This allows us to prove the following.

Lemma 7.43. The classifying space BSpin(n) is homotopy equivalent to the
homotopy fiber F,, of the map

wa : BSO(’R) — K(ZQ,2)
classifying the second Stiefel - Whitney class wy € H?(BSO(n); Zs).

Proof. The group Spin(n) is the universal cover of SO(n), and hence is simply
connected. This means that BSpin(n) is 2 - connected. By the Hurewicz
theorem this implies that H?(BSpin(n);Zs) = 0. Thus the composition

BSpin(n) —X— BSO(n) —2— K(Z,,2)

is null homotopic. Convert the map ws to a homotopy equivalent fibration,
Wy : BSO(n) — K(Z3,2). The map p defines a map (up to homotopy) 7 :
BSpin(n) — BSO(n), and the composition pows is still null homotopic. A null
homotopy ® : BSpin(n) x I — K(Zs3,2) between pows and the constant map
at the basepoint, lifts, due to the homotopy lifting property, to a homotopy
® : BSpin(n) x I — BSO(n) between p and a map § whose image lies entirely
in the fiber over the basepont, Fi,,,

D : BSpin(n) = Fy,.

We claim that p induces an isomorphism in homotopy groups. To see this, ob-
serve that the homomorphism p, : m4(BSpin(n)) — m,(BSO(n)) is equal to
the homomorphism mq_1(Spin(n)) — m4—1(SO(n)) which is an isomorphism
for ¢ > 3 because Spin(n) — SO(n) is the universal cover. But similarly
7q(Fu,) — mg(BSO(n)) is also an isomorphism for ¢ > 3 by the exact se-
quence in homotopy groups of the fibration F,, — BSO(n) w2 K(Z2,2),
since ws induces an isomorphism on my. BSpin(n) and F, are also both 2 -
connected. Thus they have the same homotopy groups, and we have a com-
mutative square for ¢ > 3,

mq(BSpin(n)) B LN Tg(Fusy)

p|= B

7q(BSO(n)) — 7qe(BSO(n)).
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Thus p : BSpin(n) — F,, induces an isomorphism in homotopy groups, and
by the Whitehead theorem is a homotopy equivalence. O

Notice that we are now able to complete the proof of the first part of the
theorem. If ¢ is any oriented, n - dimensional bundle with Spin(n) structure,
its classifying mapfe : X — BSO(n) lifts to a map f( : X — BSpin(n),
and hence by this lemma, w(¢) = ff(w2) = ff o p*(w2) = 0. Conversely, if
wz(¢) = 0, then the classifying map f. : X — BSO(n) has the property that
fz‘(wg) = (. This implies that the composition

x 2 BSO(n) —*2 K(Z,,2)

is null homotopic. A null homotopy lifts to give a homotopy between f; and a
map whose image lies in the homotopy fiber F,,,, which, by the above lemma
is homotopy equivalent to BSpin(n). Thus f; : X — BSO(n) has a homotopy
lift fC : X — BSpin(n), which implies that ¢ has a Spin(n) - structure.

We now turn our attention to Spingc - structures.

Consider the projection map
p: Spinc(n) = Spin(n) Xz, U(1) = U(1)/Z2 = U(1).

p is a group homomorpism with kernel Spin(n). p therefore induces a map on
classifying spaces, which we call c,

¢ : BSpinc(n) — BU(1) = K(Z,2)

which has homotopy fiber BSpin(n). But clearly we have the following homo-
topy commutative diagram

BSpin(n) —S— B(Spin(n) xy., U(1)) ——— BSpinc(n)

- ! 5

BSpin(n) —— B(Spin(n)/Zs) — BSO(n)
Therefore we have the following diagram between homotopy fibrations
BSpin(n) —— BSpinc(n) —— K(Z,2)
-| | b
BSpin(n) —— BSO(n) —2— K(Zy,2)
where p : K(Z,2) — K(Z2,2) is induced by the projection Z — Zs. As

we’ve done before we can assume that p : K(Z,2) — K(Z2,2) and wq :
BSO(n) — K(Zs,2) have been modified to be fibrations. Then this means
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that BSpinc(n) is homotopy equivalent to the pull - back along ws of the
fibration p : K(Z,2) — K(Z2,2):

BSpinc(n) ~ wi(K(Z,2)).

But this implies that the map f¢ : X — BSO(n) homotopy lifts to BSpinc(n)
if and only if there is a map u : X — K(Z,2) such that pou: X — K(Z2,2)
is homotopic to wy o fr : X — K(Z2,2). Interpreting these as cohomology
classes, this says that fe lifts to BSpinc(n) (i.e ¢ has a Sping(n) - structure)
if and only if there is a class u € H?(X;Z) so that the Zs reduction of u, p(u)
is equal to wa(¢) € H?(X;Zs). This is the statement of the theorem. O






8

Tubular Neighborhoods, more on
Transversality, and Intersection Theory

8.1 The tubular neighborhood theorem
We begin this chapter by proving another important, and basic result in dif-

ferential topology: the “Tubular Neighborhood Theorem”.

Theorem 8.1. Suppose M™ is an n-dimensional smooth manifold, and sup-
pose the N¥ € M™ is a k-dimensional submanifold. Then there exists an open
neighborhood 1 of N* in M™ that satisfies the following properties:

1. There is a neighborhood deformation retract
p:n— NF.

That is, p is a smooth map with the property that pot = idxr and top :
n — n is homotopic to id,. Here v : NF¥ < M™ is the inclusion.

2. Let m : v — NF be the normal bundle of N* in M™. Then there is a

diffeomorphism ® : n — v making the following diagram commute:

P
n — Vv

| |~

Nk —— NF¥

Remark. The open set 7 in this theorem is referred to as a “tubular neigh-
borhood” because, as the theorem states, it is diffeomorphic to the total space
of a vector bundle, v which locally looks like a “tube”, N¥ x R*~*.

Observe that the statement of this theorem can be made in another way,
which is often quite useful.

Theorem 8.2. (Tubular neighborhood theorem, equivalent formulation.) Sup-
pose e : N¥ — M™ is an embedding of smooth manifolds with normal bun-
dle v. Assume that N* is closed. Consider the inclusion of the zero section,

221
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¢ : N¥ < v. Then the embedding e extends to an embedding é : v — M™
which is a diffeomorphism onto an open subset of M*. By é “extending” e we
mean that the composition

NES LS M
is equal to the embedding e : N* < M™.

We leave it to the reader to check that this formulation is indeed equivalent
to Theorem 8.1. We begin the proof of Theorem 8.1 by first proving it in the
case where the ambient manifold is Euclidean spaces.

Theorem 8.3. Let e : N¥ < R™ be an embedding of a closed manifold N*.
Then N* has a “tubular neighborhood”.

Proof. Observe that it suffices to show that there is an open neighborhood V'
of the zero section N*¥ < v that supports an embedding into R™ that extends
e : N* — R™. This is because, by the vector bundle structure of v there is
clearly an embedding of v into any neighborhood of the zero section that fixes
the zero section.

Let m be the codimension, m = n — k. Consider the map to the Grass-
mannian,

g:NF = Gr,,(R")
defined by g(z) = v, C R™. That is, g(z) is the normal space to x in R™. More
precisely,
v = (Dye(TN¥))™ .
Notice that the normal bundle v — N* is the pullback, v = g*(7,,), where
Ym — Gr, (R™) is the canonical bundle. Specifically,

" (vm) = {(z,v) € NEXR" :ve Vg }.

Define a map ¢ : v — R™ by ¢(x,v) = x + v € R™. As above, identify v
with ¢* (7). Then notice that the tangent space to v at (x,0) is given by

T(£70)I/ =T, M ®v,.
Furthermore, one immediately sees that the derivative of ¢ at (z,0),
D(w,0)¢ : T(w,O)V — Tan

is the identity on on both T, M and on v,. Therefore D¢ has rank n at all
points on the zero section. It follows that ¢ is an immersion of a neighborhood
U of the zero section in v. Since the restriction of ¢ to the zero section itself
is the given by the identity of N* C R", it implies that the restriction of ¢ to
a perhaps smaller neighborhood V' of the zero section in v is an embedding.
O
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We now proceed with the proof of Theorem 8.1.

Proof. By Whitney’s embedding theorem 6.1 we can assume that M"™ C RN
for some sufficiently large N. Let W C RY be a tubular neighborhood of M™,
and r : W — M™ a retraction. Give M"™ a metric induced by the Euclidean
metric on R”. Notice we have an inclusion of vector bundles over N*,
ves TM" — TRY =N*xRN.
‘Nk ‘Nk
For x € N*, let U, = {(z,v) € vy : &+ v € W}. Then the set U = (J,c yr Us
can be viewed as a subset of N¥ x RY and can then be given the subspace

topology. Notice that by definition, U C v and is an open subspace, because
it is the inverse image of W under the map

v— RN

(z,v) = x +v.

The map
¢o:U— M"
¢z, v) =r(z+0)
is then easily checked to be a tubular neighborhood of e : N¥ < M™. O

The tubular neighborhood theorem is extremely important in differential
topology, and is used quite often. For example, it is crucial in knot theory,
where one studies embeddings of S! in R? C S2. Let K be such a knot. That
is, it is the image of such an embedding. Let n(K) be a tubular neighborhood
of K in S3. Then the fundamental group of the complement, S — n(K) is an
extremely important invariant of the isotopy class of the knot, and has been
the main tool in studying knot theory for a century. This group is most often
not abelian, but has abelianization = Z. This is seen using the fact that the
abelianiization of 71 (S% — K) is equal to the first homology, H;((S® — K), and
then using Alexander duality.

8.2 The genericity of transversality

In Chapter 3 we discussed the notions of regular values and transversality. In
this section we will return to these notions and prove that they are generic in
a sense that we will make precise. We will be following the discussion of these
results given in Bredon’s book [13] which is a very good reference for these
concepts.

Recall that if ¢ : M™ — N™ is smooth, then p € M is a critical point of ¢
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A

FIGURE 8.1
The trefoil knot

if the derivative D,¢ has rank strictly smaller than n. If p is critical, ¢(p) € N
is a critical value. If z € N is not a critical value, it is called a regular value.
So in particular, x € N is regular

o if m > n and D,¢ is surjective for all p € M with ¢(p) =z, or
e m < n and z is not in the image of ¢.

The following theorem is well known in Analysis and Topology, and its
proof is given in many texts, including the appendix of Bredon’s book [13], as
well as in Hirsch’s book [44].

Theorem 8.4. (Sard’s theorem) If ¢ : M™ — R™ is C°°, then the set of
critical values has measure zero in R™.

Before we state an important corollary to this theorem, which we will rely
on heavily, we recall some terms from measure theory.

Definition 8.1. A nowhere dense subspace of a topological space is one
whose set theoretic closure has empty interior. A subspace E C X is first
category if F is the countable union of subpaces that are nowhere dense. A
residual subspace is the complement of a first category subspace. That is,
it’s complement is the countable union of nowhere dense subspaces. A residual
subspace is sometimes called “everywhere dense”.

Corollary 8.5. (A. B Brown’s theorem) If ¢ : M™ — N™ is a C* map, then
the set of reqular values of ¢ is residual in N™.

Proof. If C is the set of critical points of ¢, and K C M™ is compact, then
¢(C N K) is a compact subspace of N™, and its interior is empty by Sard’s
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theorem. Therefore ¢(C N K) is nowhere dense. Since M™ is covered by a
countable union of such compace subspaces, ¢(C) is first category and thus
it’s complement is residual. O

We note that if m = 1, then Sard’s theorem says that there aren’t any
smooth, space-filling curves, unlike in the continuous setting.

We now apply Sard’s theorem to the setting of transversality theory. We
first show that zero sections of vector bundles can be perturbed to be trans-
verse to any map.

Theorem 8.6. Let £ — Y be a smooth vector bundle over a smooth, compact
manifold. Let X be a smooth manifold and f : X — & a smooth map. Then
there is a smooth cross section s :' Y — £ as close to the zero section as

desired, so that f hs(Y).

Proof. Since Y is compact, we know that there exists a smooth vector bundle
1n — Y such that & @ n is trivial. That is, there is an isomorphism of vector
bundles over Y,

U:é&dn =Y xR,

which we can take to be smooth. Let p : £ & n — R™ be the projection of ¥
onto the R™ factor. We then have a commutative diagram

freen — can

<] I
X —>f ¢
Here 7 is the projection, and f and 7’ are the obvious maps induced by f and
m, respectively.
Let z € R™ be a regular value of the composition

rreondeon R

By Sard’s theorem z can be chosen to be arbitrarily close to the origin. Since
z is regular, the composition of the derivatives

DpoDf :T,f*(¢®n) — R"

is surjective for any v € f*(£@®n) such that po f(v) = z. Using the trivialization
U:EBn =y x R", we may conclude that the image of Df must span the
complement of that tangent space to Y x {z} at (py f(v), 2), where py is the
projection of the trivialization ¥ onto the Y factor. This means that f is
transverse to the section s’ : Y — £ @1 given in terms of the trivialization ¥,
by s'(y) = (y, z). Define the section s : Y — £ by s(y) = w(s'(y). Notice that
the following diagram commutes:



226 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

freon —Lo con v

| (C
X — &€ - Y

We claim that f is transverse to s(Y"). To see this, let z € X, y € Y be such
that f(z) = s(y). Then

By the definition of the pullback bundle, (z,s'(y)) € f*(£ ® 1) has
f(z,5'(y)) = §'(y). Since f M s'(Y), the images of D, ¢ () f and Dys’ span
Tf(w,s’(y)):s’(y)(€ @ 7). Since 7 is a submersion, we may conclude that the
images of D, f and Dys span Tt(;)—s(,)§. That is, f th s(Y). Notice that by
Sard’s theorem, the section s may be taken to be arbitrarily close to the zero
section by choosing z € R™ sufficiently close to the 0 € R™. O

Corollary 8.7. Let f : M — W be a smooth map between smooth manifolds.
Assume that M is compact. Let N be another compact, smooth manifold and
suppose go : N — W is a smooth embedding. Then there is an arbitrarily
small isotopy of go to a smooth embedding g1 : N — W with the property that

fhagi(N).

Proof. Let v — N be the normal bundle of the embedding gy : N — W.
By the tubular neighborhood theorem (8.2) go extends to an embedding
g : v < W which is a diffeomorphism onto an open subspace (the tubu-
lar neighborhood). Notice that if we define M’ = f~1(g(v)), then M’ C M is
an open submanifold. We now apply the Theorem 8.6 to the restriction of f,
flyy M — v O

We will actually need another version of this corollary that says that
transversal intersections are generic with respect to perturbations of the map
f. But first we need the following:

Lemma 8.8. Let N be a compact smooth submanifold of a smooth manifold
W. Let T be a tubular neighborhood of N. It is equipped with a retraction
p:T — NsgIfs: N = T is any section (i.e pos = id) then there is a
diffeomorphism h : T — T that preserves fibers, extends continuously to the
identity on the boundary 0T, and takes s to the zero section. Moreover the
diffeomorphism h can be taken to be homotopic to the identity of T.
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Proof. By the tubular neighborhood theorem, it suffices to work in the vector
bundle setting. Let p : v — N be the normal bundle of N in W. Let s : N — v
be any section, and let z : N — v be the zero section. Define

H:v—v
H(v) = v — s(p(v)).

Notice that H is a map of fiber bundles in that it preserves fibers (i.e poH (v) =
p(v)). But notice also that H is not a map of vector bundles since it is not
linear on each fiber. Rather, H is affine on each fiber. In any case, H is clearly
a diffeomorphism.

Notice that H o s(x) = z(z). Moreover H is homotopic to the identity
through diffeomorphisms. To see this, define for ¢t € [0, 1] Hy(v) = v—ts(p(v)).
Notice that Hy is the identity, and H; = H. O

Corollary 8.9. Let M be a closed, smooth manifold and fo : M — W a
smooth map between smooth manifolds. Let N C W be a smooth, closed sub-
manifold and let T be any tubular neighborhood of N. Then there is a smooth
map f1: M — W with the following properties.

1. fih N,
2. f1 = fo outside of f~1(T),

3. f1 is homotopic to fo on all of M via a homotopy that is constant outside

of fo N (T).

Proof. By Theorem 8.6 we know there exists a section s of a tubular neighbor-
hood of N such that fy th s(IV). Composing fy with the homotopy h described
in the above lemma defines f;. This f; may not be smooth at the boundary
of the tubular neighborhood, but it can be smoothly approximated without
changing it near the intersection with NV, where f; is already smooth. O

Remarks. 1. This corollary says that one can perturb any map fy with as
small of a perturbation as one would like, to make it transverse to V.

2. There exist strengthenings of this result saying that the set {f : M —
W such that f h N} is “generic” (i.e a countable intersection of open, dense
subsets) in the space of all smooth maps C°° (M, W). Hirsch’s book [44] gives
a good exposition of this. For our purposes we only need that the space of
transverse maps is dense in the space of all smooth maps, which is what the
above results show.
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8.3 Applications to intersection theory

One immediate application of transversality theory says that one can pull low
dimensional submanifolds of a large dimensional manifolds apart, so that the
do not interesect. More precisely, we have the following.

Proposition 8.10. Let PP and Q? be closed submanifolds of M™ where p+q <
n. Then one can perturb either PP or Q9 by an arbitrarily small amount so
that they do not intersect.

More precisely, suppose M™ C RN . Let e : PP < M™ be an embedding
whose image is the submanifold in question. Then for any choice of € > 0,
there exists another embedding € : PP — M™, isotopic to e, so that for any
x € PP |le(z) — é(z)|| < € and E(PP)N QI =0.

Proof. This follows from Corollary 8.7 and the fact that from Theorem 3.7 we
see that the only transversal intersections of p-dimensional and g-dimensional
submanifolds of an n-dimensional manifold when p + ¢ < n, is the empty
intersection. O

Here is another easy consequence of transversality theory. It is a statement
about the homotopy groups of complements of submanifolds of Euclidean
space.

Proposition 8.11. Suppose M™ is a smooth, closed manifold, equipped with
an embedding e : M™ — R™. Then any smooth map of a sphere to the com-

plement,
f . Sk SR — MM

can be extended to a map of the closed disk, f : DR S R — M™ if k<
n—m—1.

Proof. f:S* — R™ is null homotopic, since R is contractible. So there exists
an extension fo : DF1 — R™. Perturb fo if necessary, to a map fl : DFHL
R™ that is homotopic to fg relative to its boundary, and such that fl h M™.
But since (k4 1) +m < n, this means that f;(D*+1) N M™ = §. In particular
this means that the original map f :~Sk — R™ — M™ is null homotopic, and
can therefore be extended to a map f : D¥1 — R" — M™, O

Another important application of transversality to intersection theory is
when the sum of the dimensions of the submanifolds equals the dimension of
the ambient manifold. So let PP and Q? be closed submanifolds of M"™, where
n = p+q. Then basic transversality theory says that one can perturb either PP
or Q7 so that they intersect transversally. (At this point the reader should be
able to make this statement precise.) In this setting the intersection PP N Q4
is a manifold of dimension p + ¢ —n = 0. By compactness PP N Q9 is a finite
number of points. When P?, 7, and M™ are all oriented, PP N Q7 will inherit
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an orientation, and so each of the points making it up will have an orientation.
This will just be a sign (1) and so one can count these points according to
sign to obtain the “intersection” number. We now make this more precise.

Consider the following commutative diagram of embeddings:

pr S M
UT Tu
Pr Qe T> Q1

When PP, Q9, and M™ are all oriented, the normal bundle of Q¢ — M™ has
an induced orientation. Furthermore it restricts to give the (oriented) normal

bundle of PPN Q? < PP. Since PP N Q7 is a finite set of points, {x1, -, 2},
its normal bundle in PP, being diffeomorphic to its tubular neighborhood,
is just a finite collection of disjoint disks, D; C PP, ¢ = 1,--- ,k each of

which is oriented. In particular each tangent space T,,D; is oriented. But
notice that T, D; = T,, PP, which has an orientation coming from the original
orientation of PP. If these two orientations agree we say that sgn(x;) = +1. If
these orientations disagree we say that sgn(z;) = —1. We can now make the
following definition.

Definition 8.2. Define the intersection number

k
[PPNQY = Z sgn(z;) € Z
i=1

It is important to know that the intersection number is well defined. Of
course we had to choose orientations and that can affect the ultimate sign of
the intersection number. But it is important to also know that the intersection
number does not depend on the particular perturbation (small isotopy) used
in order to achieve transversal intersections. Once we know that we will be
able to conclude the following:

Proposition 8.12. Let PP and Q9 be closed submanifolds of M™, where n =
p+q. Suppose these manifolds are all oriented. Then if the intersection number
[PP N QY] # 0, the neither PP nor Q7 can be isotoped so that the resulting
embeddings are disjoint. That is, PP and Q? cannot be “pulled off of each
other” in M™.

To show that the intersection number is well defined, and to generalize it
to study more complicated intersections, we will employ the use of Poincaré
duality to develop the intersection theory homologically.
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Poincaré Duality, Intersection theory, and
Linking numbers

Our goal in this chapter is to use Poincaré duality to do intersection theory
rigorously. A particular goal will be to prove that the intersection number of
two submanifolds, the sum of whose dimensions equals the dimension of the
ambient manifold, is well defined (see Definition 8.2). Along the way we relate
intersection theory with such constructions as the “shriek” or “umkehr” map,
the Pontrjagin-Thom “collapse map”, and the Thom isomorphism.

9.1 Poincaré Duality, the “shriek map”, and the Thom
isomorphism

Let M™ and N" be closed, oriented manifolds of dimensions m and n re-
spectively. Their orientations determine (and are determined by) choices of
fundamental classes [M™] € H,,,(M™;Z) and [N"] € H,(N";Z) that deter-
mine Poincaré duality isomorphisms

A[M™] : HY(M;Z) = Hy,_o(M;Z) and N[N"]: HY(N;Z) = H,_,(N;Z)
(9.1)
We refer to their inverse isomorphisms as

Dy : Ho(M;Z) = H™ " (M;Z) and Dy : H.(N;Z) = H" (N Z).
(9.2)

Given a map f : M™ — N", we of course have the induced homomor-
phisms in both homology and cohomology, which would exist even if M and N
were replaced by any topological spaces. However, given that they are closed,
oriented manifolds, the existence of Poincaré duality allows one to define a
“shriek” or “umkehr” map.

Definition 9.1. Define the homomorphism f': H1(M™;7) — H"~™+4(N"; 7)
to be the unique map making the following diagram commute:

231
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HI(M™Z) —L— fgr—m+a(Nm,7)

ﬂ[M""]l% glm[z\r"]
H,_q(M;Z) T) Hp—q(N;Z)

Now suppose that M™ is a closed, oriented m-dimnesional manifold and
N™ is a compact, oriented, n-dimensional manifold with boundary. Then a
map f: M — N defines a shriek map with values in relative cohomology,

o HI(M™,Z) — H "™ (N ON; 7). (9.3)

This is defined by using the relative version of Poincaré duality (”Poincaré -
Lefschetz duality”). We leave the details to the reader.

This relative version of the shriek map is important in many settings, but
particularly so when one has an oriented vector bundle over a closed, oriented
manifold

p:&— M™.

Assume the fiber dimension of this vector bundle is k. Give £ a Euclidean
structure, and as before, let D(§) and S(€) denote the associated unit disk
bundle and sphere bundle respectively. Notice that the orientation on £ as
well as the orientation on the base manifold M™ gives D(§) the structure of
a compact m + k-dimensional oriented manifold, whose boundary is 9D(&) =

S5(8)-
Now let ¢ : M™ — D(&) be the the zero section. Then as discussed above,
this defines a shriek map

¢': HYM™Z) — HT™(D(),0D(£); Z) = HT™ (D(£),S(€); Z)
= HT™M(T(¢); 2)

where T'(€) is the Thom space of the bundle &.
The following result relates this shriek map, which is defined via Poincaré
duality, with the Thom isomorphism.

Proposition 9.1. Given an oriented, k-dimensional vector bundle over a
closed, oriented manifold, p : £ — M™ the shriek map of the zero section

¢ HY(M™; Z) — HOM(D(),0D(6); Z) = HH(T(€); 2)
is equal to the Thom isomorphism
Uu : HY(M™;,Z) = HIF(T(€); Z).

Here v € H*(T(€);Z) is the Thom class.
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Proof. The shriek map ¢' is defined to be the composition,

¢ Hi v zy DMy gL (i Z) S B o(DIE): Z)

22O, gkta(p(g), aD(€)).

Here, as above, Dp) is the inverse to the Poincaré duality isomorphism
given by capping with the fundamental class. Since N[M] and Dp) are
both isomorphisms, and because (., is an isomorphism since the zero sec-
tion ¢ is a homotopy equivalence, we may conclude that the composition ¢'
is an isomorphism. Of course we know that cupping with the Thom class
Uu: HI(M™;Z) =N Hk(T(€);Z). is also an isomorphism. So we need only
show that they are the same isomorphism.

Notice that when ¢ = 0, HY{(M™;Z) = Z and so the two isomorphisms
¢! and Uu must agree in this dimension, at least up to sign. We leave it to
the reader to check that the signs in fact agree given the compatibility of the
orientation of D(£) with the orientation of the bundle p : £ — M™ and the
orientation of M.

In general dimensions, let 5 € H?(M). Since the zero section ¢ is a homo-
topy equivalence we may write § = (*(«) for a unique class o € H4(D();Z).

¢'(8) = Dpe)(6-(B N [M])
= Dp(e)(G(¢" () N [M])
= Dp(e)(an«[M]) by the naturality of the cap product.
(9.4)

Now the Thom isomorphism in homology is given by capping with

the Thom class Nu : H,(D(€),S(¢)) = H,_,(M). In particular [M] €
H,(M;Z) = 7 is equal to u N [D(£),0D()] where [D(£),0D(&)] €
Hp1x(D(£),0D(€); Z) is the (relative) fundamental class. Thus

¢'(8) = D(e)(a N ¢[M]) = Dpey(an 2. (un [D(€),dD(€)])
= Dpe)((¢*(a) Uu) N [D(€),0D(E)])
= ("(a)Uu since Dpe is inverse to
capping with the fundamental class
=pfUu.

O

As a result of this proposition we will be able to prove a result relating the
shriek map to so-called “Thom collapse map”, which is crucial in intersection
theory.

The Thom collapse map can be described as follows. Let e : N™ < M™ be
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a smooth embedding of closed, oriented, smooth manifolds. Let v be tubular
neighborhood of e(N™) in M™. Notice that the quotient space, M /(M —v) is
the one point compactification v U oo, which is in turn homeomorphic to the
Thom space T(v).

Definition 9.2. The “Thom collapse map” 7 : M™ — T(v) is the projection

T:M™ = M/(M—-v)=T(v).

Theorem 9.2. As above let e : N™ — M™ be a smooth embedding of closed,
oriented, smooth manifolds. Let v be tubular neighborhood of e(N™) in M™.
Let k =m — n be the codimension of the embedding. Then the composition in
cohomology

HI(N) —2y HIYR(T(v)) ——s HIHF(M)

R

is equal to the shriek map €' : HI(N) — HY*(M). Here u € H*(T(v)) is the
Thom class.

Proof. Notice that the disk bundle, D(v), is an oriented m = n+k-dimensional
manifold with boundary 0D (v) = S(v). Let [D(v), S(v)] € Hpn(D(v), S(v)) =
H,,(T(v)) be the relative fundamental class.

Observe first that 7,[M] = [D(v), S(v)] € Hp(D(v), S(v)). This is because
the diagrams

Hy(M)  —— = Hy(D(v),S(v))

l

H,,(M,M — ) — H,(D(v),D(v) — x)

IR

commute for every z € D(v) C M. Now the fundamental class [M] € H,,,(M)

is the unique class that maps to the generator of H,,(M,M — z) = Z de-

termined by the orientation. Therefore 7. ([M]) € Hp,(D(v), S(v)) is a class

that maps to the generator of H,(D(v), D(v) — z)) = Z determined by the

orientation. But this property characterizes [D(v), S(v)] € H,,(D(v), S(v)).
Secondly, observe that the following diagram commutes:

H*(D(v)/S(v)) +—— H*(D(v),S(v))
n[D(u)/S(v)]l zln[D(w,smun
Hpy o (D(0)/S(v) +—— Hpo(D(v))

~] e

Hoo(M)  ——  Hy (M),
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Here [D(v)/S(v)] is the image of the (relative) fundamental class [D(v), S(v)]
under the isomorphism H,,(D(v), S(nu)) = H,,(D(v)/S(v)). &: D(v) < M
is the extension of the embedding e to its tubular neighborhood.

By the naturality of the cap product this diagram expands to the following
commutative diagram.

H*(D(v),S(v)) —— H*(D(v),S(v)) Hp o (D(v))

T*l m[D(u)/so»)]l 7 i

ﬂ[D(:)»S(V)]

H*(M) Ho o(DW)/SW)  ——  Hyp u(M)
H* (M) — Hypp (M)

By the above proposition we can now add to the exterior of this diagram:

H**(N) NN S H ()

st | I«

=¢'
H'(D(v), S(v)) “L5) g (D))

T*l lé*
H*(M) —= Hpp oM

n{M]

Thus 7% o Uu = Djy 0 é, o (. o N[IN]. (Recall that the duality isomorphism
Dy = (N[M])~1.) But éo ¢ = e, so we have that

|

™ oUu= Dyproe,oN[N]=¢', by definition.
O

The following corollary gives a clear relation between the Thom collapse
map and Poincaré duality. In particular it says that the Thom class of a normal
bundle of an embedded submanifold is dual to the fundamental class of the
submanifold.

Corollary 9.3. Let M be a closed, oriented manifold, with oriented, closed

submanifold e : N — M of codimension k. Let v be a tubular neighborhood of

N, which we identify with the normal bundle. Let 7: M — M/M —v =2 T(v)

be the Thom collapse map, and let u € H*(T(v) be the Thom class. Then
7*(u) = D(N).

Said another way, 7 (u) N [M] = [N].
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Proof. By Theorem 9.2, 7*(u) = €'(1). But recall that e' : HO(N) — H*(M)
is defined to be the unique homomorphism that makes the following diagram
commute:

HON) —— H*M)

m[N]Jg

€x

Thus 7*(u) N [M] = €'(1) N [M] = e.([N]).

IR

n[M]

O

9.2 The intersection product

One can define the “intersection product” in the homology of a closed, oriented
manifold both geometrically, using transversality theory, and algebraically, us-
ing Poincaré duality and the cup product. Our goal in this section is to show
that these constructions define the same homological product. The intersec-
tion number, defined earlier (Definition 8.2), will be shown to be a special
example of this product, and the consequence of these results will show that
this number does not depend on the various geometric choices one makes in
defining it.

Definition 9.3. Let M™ be a closed, oriented m-dimensional manifold. The
intersection product is the pairing

HP(M) X Hn(M) - Hp-i-n—m(M)
axf—a-f

defined to be the unique homomorphism making the following diagram com-

mute: )
H:D(M) X Hn(M) — Hp+nfm(M)

n[M]xn[M]Tg zTn[M]
Hm—p(M) X Hm—n(M) - H2m—p—n(M).
That is, the intersection product is Poincaré dual to the cup product.

The following is the main result of this section.

Again, let M™ be a closed, oriented m-dimensional manifold. Suppose it
has two oriented, closed submanifolds PP of dimension p and N™ of dimen-
sion n that intersect transversally. (Otherwise perturb one of them so that the
interesection becomes transverse.) By abuse of notation we let [P] € H, (M)
and [N"™] € H, (M) be the homology classes given by the images of the fun-
damental classes of these submanfolds under the homomorphisms induced by
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their embeddings. We say that these submanifolds represent these homology
classes.

Theorem 9.4. Under these assumptions the homology class represented by
the intersection
[P n N] € Hernfm(M)

represents the intersection product of the classes represented by the submani-
folds PP and N™:
[PP]-[N"] =[PNN].

This theorem actually has a generalization, whose proof requires only small
adjustments to the proof of Theorem 9.4. We leave the details to the reader.

Theorem 9.5. Let M™, PP, and N™ be closed, oriented manifolds. Let f :
PP — M™ be a smooth map and g : N™ < M™ a smooth embedding. Assume
that f th g(N™). That is for everyx € P andy € N with f(x) = g(y) =2z € M,
then D f,(T,P) & Dg,(T,N) = T,M. Consider the submanifold f~(g(N)) C
P. Then this is a closed, oriented submanifold of dimension p+n—m and the
image of its fundamental class in homology f.[f~1(9(N))] € Hpin—m(M) is
Poincaré dual to the cup product Dy (f«[P]) U Das(g«([N]) € H>™=P="(M).

Before we prove Theorem 9.4 we make a couple remarks:

Remarks.

e Let’s generalize our notion of “representing” a homology class in closed
oriented manifold by a submanifold, to a homology class a € Hy (M) being
represented by a manifold if there exists a closed, oriented manifold Q¢ and
amap ¢ : Q — M with ¢.([Q]) = a. Then we will see in Chapter 12 below,
that not every integral homology class is represented by such a manifold.
However, as we will see below, a consequence of Thom’s calculation of
the unoriented cobordism ring is that in homology with Z/2-coefficients,
indeed every homology class is represented by a manifold. In the presence
of such representations, (in integral or Z/2 homology), this theorem says
that the Poincaré dual of the cup product is represented by (transver-
sal) intersections of manifolds. This gives a rather remarkable geometric
interpretation of the cup product.

e Historically, there is reason to believe that the development of cohomology
and the cup product was motivated by goal of representing intersections
of submanifolds. S. Lefshetz, who did seminal work in the development
of intersection theory in both algebraic geometry and algebraic topology,
was instrumental in developing the cup product in singular cohomology.

Proof of Theorem 9.4.
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Proof. Consider the following commutative diagram, where the maps are all
embeddings:

NeTN>M

UTePﬂN,N UTEP

PAN —S 5 P

€PNN,P

By examining this diagram one sees that when one restricts the normal bundle
of N in M to PN N, one gets the normal bundle of PN N in P:

(VeN ) |pan = Vepan,p-

Equivalently, the intersection of a tubular neighborhood of ey with P is a
tubular neighborhood of epny p. We represent these tubular neighborhoods
by n’s. We therefore have a commutative diagram involving Thom collapse
maps:

M =2 MM =) 2 T(vy)

EPT TT(GP)

P — P/(P - 77Pr‘1N7P) = T(VepmN,P)'

TPNN,P

Here T'(v) denotes the Thom space of the corresponding normal bundle, and
T(ep) denotes the map of Thom spaces induced by the embedding ep.
In particular this means that on the level of Thom classes,

T(ep)"(un) = upan.p € H" (T (Vepn.p))-

Now by Corollary 9.3
Than,p(Upanp) N[P] =[P N N] € Hppnm(P).
So therefore
Tpan,p(T(ep)" (un)) N[P] = [P N] € Hpynm(P),

and by the commutativity of the above diagram, this means

(7 (un)) N [P) = [P A N] € Hyppnm(P).
So we may conclude that

(ep)«(ep(T(un)) N [P]) = (ep)«[P N N| € Hypnm(M).
By the definition of the intersection product, this says that
[P]-[N] =[P N N] € Hypnm(M).
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An immediate consequence of this theorem is that the (homological) in-
tersection pairing gives an obstruction to separating two submanifolds. By
“separating”, we mean that there is an isotopy of one or both of the em-
beddings of the two submanifolds, so that the resulting submanifolds do not
intersect. That is, we have the following immediate corollary.

Corollary 9.6. Let M™ be a closed, oriented m-dimensional manifold. Sup-
pose it has two oriented, closed submanifolds PP of dimension p and N™ of
dimension n, such that the intersection product, [P]-[N] € Hpyn—m(M) is
nonzero. Then P and N cannot be separated in M.

Exercises.

(1). Let M™ be a C* closed manifold, and let N™ C M™ be a smooth
embedded submanifold, where N™ is also assumed to be compact with no
boundary. We say that N™ can be “moved off of itself” in M if a tubular
neighborhood 7 of N with retraction map p : n = N admits a section o :
N — 7 that is disjoint from N. That is, NNo(N)=0CnC M.

(a). Suppose the dimensions of the manifolds satisfy 2n < m. Prove that
N can be moved off of itself in M.

(b). To see that the dimension requirement above is necessary in general,
show that

RP' C RP?

cannot be moved off of itself. Hint: Compute the self intersection number (mod
2) of RP! C RP2.

(2). Write CP™ in projective coordinates. CP? = {[z,21,22] € C"F! —
{0}/C*}. That is CP"*! is the quotient of C"*! — {0} by the action, via
scalar multiplication, of the nonzero complex numbers C*.

There are two natural copies of CP! inside CP? given by {[20, 21,0]} and
by {[0, z1, z2]}. If we call one of these N and the other K,

Show that the intersection product [N] - [K] = 1 € Hy(CP?). Conclude
that each of these classes represent a generator of Hy(CP?).

(3). Let M™ be a closed oriented n-dimensional manifold, and let A : M —
M x M be the diagonal map. Let A, : Hy(M x M) — Hy_, (M) be the shriek

map in homology. Show that for any homology classes « and 8 of M, then
Oé'ﬁ: iAl(ﬂ X a).

9.2.1 Intersection theory via Differential Forms

We end this section by pointing out how to compute the intersection number
of two submanifolds of complementary dimension using differential forms.

Let M™ be a closed oriented manifold, with submanifolds Q¢ of dimen-
sion ¢ and PP of dimension p where p + ¢ = m. Let ng and np be tubular
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neighborhoods of these submanifolds. These can be viewed as open manifolds
of dimension n. The (DeRham) cohomology with compact supports, HZ,;(1¢q)
is equal to the cohomology of the one-point compactification, which is homeo-
morphic to the Thom space of the normal bundle. Therefore there is a Thom
class ug € HY . (nq), and similarly up € HZ,(np). The Thom collapse map
gives classes vg € HP(M) and vp € HI(M). By abuse of notation we let vg
and vp denote differential forms on M of dimension ¢ and p respectively that
represent these cohomology classes.

These “Thom forms” can be viewed a differential forms on M whose sup-
port lies in the relevant tubular neighborhood which yield the orientation
forms of the corresponding normal bundles.

The following is a reinterpretation of Theorem 9.4 in this setting, using
the DeRham theorem. We leave the job of filling in the details of its proof as
an exercise to the reader,

Theorem 9.7. In the setting described above,

@-1P1= [ vonve
— (uq Uup; [M])

Z/VQZZE/VP.
P Q

9.3 Degrees, Euler numbers, and Linking numbers

In this section we will discuss interesting applications of the results about
intersection theory developed in the last section.

9.3.1 The Degree of a map

Let f : N — M™ be a smooth map between closed, oriented, connected
smooth manifolds of the same dimension (= n). The degree of f is an oriented
(signed) count of the number of elements in the preimage of a generic point.
More specifically we make the following definition:

Definition 9.4. The degree of f, written Deg(f) is defined to be the inter-
section number of f : N — M"™ and a regular value x € M™, viewed as a
zero-dimensional submanifold. That is, Deg(f) = f.[N"] - [x] € Z.
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Notice that the intersection number, as defined in Definition 8.2, in this
setting is given by

k
f«[N] - [z] = Z sgn(z;) € Z, where the sum is taken over all points in f~*(z) € N
i=1

=[f"Yx)] € Hy(N™) =7Z by Theorem 9.5.
Now by Theorem 9.5,

FH(@)] = fuIN] - [2] = f*(Dala]) N [N]
= Dyslz] N f[N].

Since the fundamental class [M] € H,, (M) = Z is a generator, we may inter-
pret this as the following corollary to Theorem 9.5

Corollary 9.8. Write f.[N] = d[M] € H,(M). Then d = Deg(f).

This corollary allows for easier calcuations of degree, and also shows that
the notion of degree does not depend on the choice of regular value x € M.
Moreover it allows the extension of the notion of degree to any continuous
(not necessarily smooth) map.

9.3.2 The Euler class and self intersections

Recall from Definition 5.5 that if £ — N is an oriented vector bundle of fiber
dimension k, the Fuler class

X(€) € H*(N)

is defined to be the image of the Thom class under the composition
o
H*(T(€)) = H*(D(¢),5(¢)) = H*(D(€)) =— H"(N)

where ( : N — D(&) C £ is the zero section.

In the setting when N is a n-dimensional, closed, oriented manifold, we
can relate the Euler class to the self intersection of the zero section.

First, we explain what we mean by “self intersection”. If e : N™ < M™ is
an embedding of N into a compact, connected, oriented manifold M™ (with or
without boundary), then we can perturb (i.e find an isotopy) of the embedding
e to an embedding é : N™ < M™ so that e(N) th é(/V). By Theorem 9.4, the
resulting intersection, e(N)Né(N) represents the class [N]-[N] € Hop_p (M).
This class is called the “self intersection class”. In particular, if m = 2n, this is
a zero dimensional homology class, and therefore an integer, which represents
a (signed) count of the number of points in the intersection e(N) N é(N) .

In the setting of a k-dimensional, oriented, smooth vector bundle p : £ —
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N™ we may view the disk bundle D(£) as an (n + k)-dimensional, oriented,
compact manifold with boundary, and the zero section ¢ : N < D(£) as an
embedding. We then have the following result.

Theorem 9.9. The self intersection class of the zero section
[C(N)] - [C(N)] € Hn—(D(C)) = Hpi,(N)
is Poincaré dual to the Fuler class. That is,
X(&) N [N] = [C(N)] - [C(N)]-

In particular, when k = n, the evaluation of the Euler class on the fundamental
class (x(&€); [N]) is equal to the self intersection number of the zero section.

Before we prove this theorem we observe the following corollary.

Corollary 9.10. If a smooth vector bundle p : £ — N™ over a closed, oriented
manifold has a nowhere zero section, then the Euler class x(§) is zero.

Proof. Notice that any section o : N — £ is a homotopy equivalence, and is
homotopic, as a map of spaces, to the zero section (. Such a homotopy can be
taken to be (z,t) — (1 — t)o(x). Therefore the homology classes represented
by these sections, [0(N)] and [((n)] are equal. If o(z) is never zero, then
o(N)N{(N) = 0. Therefore by Theorem 9.4

0=1[¢(n)] - [o(N)] = [¢(n)] - [C(n)].
By Theorem 9.9, the Euler class x(§) = 0. O

We now prove Theorem 9.9.

Proof. By Proposition 9.1 the following diagram commutes:

HY(N) —— HItE(D(€),S(€))

IR

m[N]lg %lﬁ[D(i),S(E)]
H,_4(N) — H,,_(D(£)).

*

We now insert this into a larger diagram:

H*(D(€),S(€)) x H¥(D(€), 8(€)) —— H?M(D(€),5()) +—— HF(N)

R

1R

m[D(&»S(&)]xm[D@),sm]Jz lﬂ[D(E)-,S(ﬁ)] zlmm

HA(D©) x Ha(DE)  ——  HanD(E) < Hui(N)
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Notice that the left hand square defines the intersection product in
H.(D(€)). Now by Theorem 9.9, the product of the Thom classes u x u in the
upper left corner of this diagram, maps to (. ([IN]) X («([N]) in the lower left
corner. But this class in turn maps to the intersection product (. ([N])- ¢« ([N])
in the lower middle of the diagram (H,,_x(D(§))).

Furthermore, by definition, the Euler class x(¢) € H*(N) in the upper
right corner of the diagram, maps to u Uu € H?*(D(¢), S(¢)), and so

(X(§) Uu) N [D(E), S(&)] = C(IN]) - G([N]) € Hni(D(§))-
By the commutativity of the right hand square we conclude that

G(x(€) N [N]) = C([N]) - G([N]) € Hn—i(D(£)).
This is the statement of the theorem. O

We now turn our attention to the case when the bundle we are considering
is the tangent bundle, p : TN — N. A section of the tangent bundle is a vector
field on N. Applying Corollary 9.10 to this situation gives us the following;:

Proposition 9.11. If a smooth, closed, orientable manifold N has a nowhere
zero vector field, then the Euler class of its tangent bundle, x(TN), which we
denote by x(N), is zero.

We end this subsection with a well known result which relates the Euler
class of a manifold (i.e of its tangent bundle), with its Euler characteristic.

Theorem 9.12. Let N be a closed, oriented, n-dimensional smooth manifold.
Then the evaluation of its Fuler class on the fundamental class is the Fuler
characteristic of the manifold:

(X(N),[N]) =) _(=1)'rank H;(N).
i=0
Proof. The proof of this theorem involves a few steps. First, consider the
diagonal embedding,
A:N— N XxN.

We first observe that the normal bundle v(A) of this embedding is the tangent
bundle TN. We leave the verification of this fact to the reader. In order not
to confuse notation we now adopt the “exponential” notation for the Thom
space of a bundle. That is if £ — X is a vector bundle, we now use the notation
X¢ to denote its Thom space.

Let 7: N x N — NY(A) = NT¥ be the Thom collapse map. We now com-
pute this Thom collapse map in cohomology. To do this, notice that Poincaré
duality defines a nonsingular pairing

(,): H*(N;k) x H*(N;k) = k
(o, B) = («UB)([N])
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Let {«;} be a basis for H*(N; k). Since this pairing is nondegenerate, there
is a corresponding dual basis {¢}. That is, (o U a;)([N]) = §; 5, the Kro-
necker delta. In particular notice that if o; € H9(N; k), then of € H""9(N; k).

Lemma 9.13. Letu € H"(NTN; k) be the Thom class of the Tangent bundle.
Then
m(u) = > (~DI*laj x a; € H"(N x N; k),

where || denotes the degree of a.

Proof. We take the following computation from Bredon [13], proof of Theorem
12.4.
By the Kunneth theorem we can write

_ .. * .
u) = g Cij O X
%,

for some coefficients c; j. Notice that we need only add over those terms where
|af| + o] = n. Since |af| = n — |a;], we assume |oj| = |ay|. For the following
calculation take basis elements o; and a; of degree p. We compute ((a; x a})U
7*(u))([N x NJ) in two different ways.
((a; x af) Ut™(uw))([N x NJ) = (a; x o) (T N[N x NJ)
= (a; x af)(A«([N]), by Corollary 9.3
= A% (e x aj)([N])
= (a; Uaj)([N])
= (*1)’7(" P (o Uas)([N])
— (—1)‘”("_1’)51-7]-

On the other hand

(@i x a7) U™ (w))([N x N])
((a; x af) Zcrsa x ag)) ([N x NJ)

=(-1)"" pCi,j((Oéi Uaj) x (o Uaj)([N] x [N])

since one gets zero for o, a; # ., a,, all of degree p

= (=) PO S ((@q U af ) ([IN]) (05 U ag)([N]))
- (_1)p(n—p)—pcij.

So we conclude that ¢; ; = (—1)P6; ;. O
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To complete the proof of Theorem 9.12, we make the following observation
about the relation of the Thom collapse map and the Euler class. Let ¢ : N —
M be a codimension k embedding of oriented manifolds, with normal bundle
Ve, and let 7 : M — N"e is the Thom collapse map. The following comes from
a quick check of definitions, which we leave for the reader.

Lemma 9.14. If u € H*(NV¢) be the Thom class. Then the Euler class of
the normal bundle v, can be described by

x(ve) = e*1*(u) € H*(N).

Applying this lemma to the diagonal embedding A : N — N x N, we have
that A*(7*(u)) = x(N). Applying Lemma 9.3.2 with rational coefficients we
have that

X(N)([N]) = A*(7*(u))([N]) = Z(—l)'aﬂ(af U a;)([NV])
= Z(*l)lai|<af70¢i>
= Z(—1)|C¥i|

= Euler characteristic of N
O

Notice that as an application of this theorem and of Proposition 9.11 we
get the following classical result:

Proposition 9.15. If a closed, oriented manifold N has nonzero Euler char-
acteristic, then every vector field on N must contain a zero.

In particular every vector field on an even dimensional sphere must contain
a zero. This famous result, when applied to S? is often referred to as the “Hairy
billiard ball” theorem.

9.3.3 Linking Numbers

We now discuss one more application of intersection theory. This is the clas-
sical notion of linking numbers.

In the general setting, suppose we have embeddings of closed, oriented
manifolds in Euclidean space,

M™ K N Rn+m+1
C

o]

N™.
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We will assume that these manifolds intersect transversally, which in these
dimensions means that they have disjoint images. Consider the composition

Uy :M™ x N™ — RV _ Lo} — gntm
Ki(z) — Ks(y)
K1 (x) — Ka(y)|

Giving S™*™ the orientation coming from viewing it as the boundary of
the ball D"*™*! inside R"™™*! we can make the following definition.

(z,y) — (Ki(z) — Ka(y)) —

Definition 9.5. Define the linking number, Lk(K1, K3) to be the degree
Lk(Ky, K2) = Deg(¥ar,n)-

This is an algebraic-topological definition based on the homological prop-
erties of the map W, . However this notion has important geometric signifi-
cance as well, as we will see in considering the classical case when we have the
link of two disjointly embedded circles in S3. We have the following diagram
of embeddings:

For p € S2, let
I(p) = {(q1,¢2) € K1 X K3 : g2 — q1 = A\p, where A\ > 0}.

Notice that for p € S?, I(p) = \I/I_&K2 (p).

Observation. Assume that p = (0,0,1) is a regular value of Vg, g,. (If it is
not, compose W, f, with a rotation of S? so that this condition is satisfied.)
Project K1 U K5 onto R? = (x1,x2)— plane in R3, keeping track of the over
and under-crossings:

We claim that there is one element of I(p) for every place that K5 crosses
over Kj. To see this, observe that if (g1,q2) € K7 x K3 is in I(p), then the
projections of ¢; and ¢, on R? agree. This means that the first two coordinates
of ¢; and of ¢ agree. Now since g2 — ga = Ap = (0,0, A) with A > 0, we must
have that the third coordinate (the “z-coordinate”) of g is larger than the
third coordinate of z;. That is, Ky crosses over K; at this point.

By Definition 9.5 of the linking number as the degree of ¥, k,, we can
calculate this invariant either homologically, or, as seen after the discussion
of the definition of degree (Definition 9.4) as the signed count of the points in
the preimage of a regular value of Vg, g,. That is, it is a signed count of the
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points of 1(0,01). If (¢1,g2) € 1(0,0,1), then the sign sgn(q1, ¢2) is determined
by comparing the orientations of the curves, and the standard orientation of
the plane. In the above example of the Hopf link, (0,0, 1) consists of a single
point, and the local orientations of the curves Ky an K5 at this point looks
like the following. Therefore the linking number of the Hopf link is

Lk(K,, Ky) = —1.
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We now turn our attention to the following, more complicated link (figure
9.3.3).
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Notice that there are two places where Ky crosses over K;p, and thus
1(0,0,1) has consists of two points.

The crossing on the left has sgn = —1 and the crossing on the right has
sgn = +1. This means that the linking number,

LE(K;,K3) =0,

even though evidently the two embedded circles cannot be unlinked. This
shows that while the linking number is a useful, computable invariant, it is
not a complete invariant of a link of two embedded circles in R3.
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Stable Homotopy

Throughout this chapter all spaces will equipped with basepoints, and will be
assumed to be of the homotopy type of (based) CW-complexes.

Given a based space X, let ¥ X denote its (reduced) suspension, and let

¥ Fk(X> —>7Tk+1(ZX)

be the suspension homomorphism in homotopy groups. It is defined as follows:
If o : S¥ — X is a basepoint preserving map representing an element of 7;,(X),
then define its suspension

Sa: S =09k = g1 A g8 8% g1 A X = DX, (10.1)

The roots of stable homotopy theory go back to the following classical
theorem of Freudenthal:

Theorem 10.1. ( “Freudenthal Suspension Theorem” [33]) Let X be an n-
connected based space, then the suspension homomorphism

(X)) = mep (BX)
is an isomorphism if k < 2n and an epimorphism if k = 2n + 1.

Many textbooks contain proofs of this theorem. A traditional reference is
[101]. Below we will sketch a proof of this theorem using the Serre spectral
sequence.

The Freudenthal Suspension Theorem naturally leads to the notion of the
“stable range” for homotopy groups, i.e twice the connectivity of a space, in
which homotopy data is preserved by suspension. An important example of
this is the excision property. It is well known that homotopy groups, viewed as
a functor from the category of pairs of based topological spaces to the category
of groups, does not satisfy excision. For example, the fact that homology does
satisfy excision implies that

H(XVY)S H(X)® H(Y)

and more generally it provides the tremendously important calculational tool
of the Mayer-Vietoris sequence. But notice that the analogous homomorphism

251
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at the level of homotopy groups, is not, in general, an isomorphism. For exam-
ple, 71 (St Vv St) is the free group on two generators, which is not commutative.
On the other hand, 1 (S') @ m(S!) & Z ®Z, which certainly is commutative.

Nonetheless, as we will see later in this chapter, the Freudenthal theorem
implies that the homotopy groups functor does satisfy excision in the stable
range. This leads to the following definition.

Definition 10.1. . Let X be a based space. Define its k''*-stable homotopy
group T (Z) to be
(X)) = lim 74, (X" X).
n—oo

where the colimit is taken over the suspension homomorphisms,

Y g1 (Z"THX)) = T (27 X).

Notice that by the Freudenthal Suspension Theorem, the limit in the defi-
nition of stable homotopy groups is achieved at a finite stage. More specifically,
T(X) & Tptq(B9X) for ¢ > k — 2¢(X), where ¢(X) is the connectivity of X
(i.e the maximal nonnegative integer such that 7,.(X) = 0 for r < ¢(X)).

Exercise Verify this claim. That is, show that 75 (X) = mp4(29X) for ¢ >
k — 2¢(X), where ¢(X) is the connectivity of X.

Stable homotopy groups are an invariant of the collection of spaces,
{X*¥ X}, together with maps between the spaces in this collection X(X*X) —
YA+ X, More generally, a collection of spaces {X,,} together with maps
€m : 12X — X1 is called a spectrum. Spectra are the objects of study
of stable homotopy theory, and they were originally introduced and studied
by Lima [57] and G. Whitehead [100]. We will introduce them and discuss some
of their properties in this chapter. An important classical feature of spectra is
that described by work of Brown [15] and Whitehead [100], where they clas-
sify “generalized (co)homology theories”. These are theories that satisfy all
the Eilenberg-Steenrod except “dimension” (but including excision).We will
discuss this classification in this chapter and discuss many important examples
such as stable homotopy groups and K-theory. We mention Bott periodicity,
one of the great theorems of the twentieth century, but put off it’s proof un-
til an addendum when we can use Morse theory, as Bott did in his original
proof. We then discuss and apply the Atiyah-Hirzebruch spectra sequence for
computing generalized (co)homology.

Another important, and more modern aspect of the study of spectra are
their categorical aspects. We introduce symmetric spectra, describe ring spec-
tra and module spectra, and then describe the Thom spectrum, viewed as
a functor from the category of “spaces over BO” to the category of sym-
metric spectra. We discuss various products and generalized orientations of
manifolds and then we have a discussion of Spanier-Whitehead duality and
Atiyah duality for manifolds. We end this chapter with a discussion of the
special properties of Eilenberg-MacLane spectra and the Steenrod algebras of
cohomology operations.
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10.0.1 Sketch of proof of the Freudenthal suspension theo-
rem

We end this introductory section with a sketch of a proof of the Freudenthal
suspension theorem. As you will see we rely on the Hurewicz theorem and the
Serre spectral sequence.

Let X be an n-connected space of the homotopy type of a CW complex.
If n = 0 then the theorem is trivial since both X and ¥ X are path connected,
and XX is simply connected. So we assume n > 1.

In our proof we will be considering loop spaces, 2Y, where Y has the homo-
topy type of a based CW complex. We first recall that there is an adjunction
isomorphism,

mq(QY) = w1 (Y).

This isomorphism is given as follows: Let o : S9 — QY represent an element
of my(QY). So for every x € S?, a(z) : S' — Y is a basepoint preserving loop.
We may then consider the adjoint

a: St =8IAS Y
alz ANt)=ax)(t) €Y

Exercises.
1. Show that the correspondence

m(QY) = mg41(Y)

a—

defines an isomorphism.
2. Consider the adjoint map

jiX 5 O%X
T —jp: St STAX

defined by j.(t) = t A . Show that the induced composition
Tg(X) L 7 (QBX) =5 7011 (X))

is equal to the suspension homomorphism ¥ : m4(X) — my41(2XX) defined
above (10.1).

Lemma 10.2. Let X be an n-connected space. The map j : X — QXX
induces an isomorphism in homology,

Ju: Hy(X) = H (Q2X)

for g < 2n.
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Proof. For a based space Y let PY be the space of basepoint preserving paths.
Such paths are maps v : [0,1] — Y such that v(0) = yo, where yo € YV is the
basepoint. Consider the fibration

OXX - PYX S ¥2X

defined by e(y) = v(1). We will consider the Serre spectral sequence for this
fibration. Notice that the base space XX is simply connected and the total
space PXX is contractible. Therefore the F, term of this spectral sequence
must be identically zero, with the exception that E%° = Z. This means that
for every nonzero, positive dimensional class z in the Fs term that is an infinite
cycle, i.e d.(z) = 0 for all 7, then there must exist an element y € E, for some
q, with d4(y) = .

Consider the Es-term. Recall that EY? = H,(XX; Hy(QXX)). Since X is
n-connected, X is (n 4 1)-connected, so EY? =0 for 0 < p < n. Also, since
QXX is n-connected, we also have that E5? =0 for 0 < ¢ < n.

Consider the differentials of the form

. n+q,0 n+q—m,m—1
dy : EPF00 5 B

for ¢ < n + 1. We claim that these differentials are all zero except when
m = n+ ¢, in which case
dngq  ERTE0 — BT
Hiyq(3X) = Hppqg—1(2XX)
is an isomorphism. To see this notice that E™t%C is a subquotient of
H,,(XX) and E%F=mm=1 g a subquotient of Hy,tq—m (XX; Hype1(QXX).
When m < n, H,,—1(2XX) = 0 since QXX is n-connected. If n +¢q —1 >
m > n then Hyqqom(EX) = 0sincen+¢g—m < ¢ <n+1and X is
(n + 1)-connected.
Since the spectral sequence converges to the zero E.-term (except E%0 =
Z), we therefore must have that
dngq  ERTE0 — BT
Hiyq(3X) = Hppg—1(3X)

must be an isomorphism for 0 < g < n+ 1. We leave it for the reader to check
that the composition

=~} dniq
Hyyyq-1(X) = Hypo(SX) =% H, ((Q5X)

is the homology homomorphism induced by the map j: X — QXX. O

We now complete the proof of the Freudenthal suspension theorem.
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Proof. We continue to assume that X is n-connected. We now further consider
the map j : X — QXX. As defined in Chapter 7 (Definition 7.5), we may
consider the homotopy fiber of this map

Fj={(z,a) € X x (Q2X)! such that «(0)=j(z) and «a(l)=1yo}
where yg € QXX is the basepoint. Since the sequence
F; > X5 axx

is, up to homotopy, a fibration sequence we may consider its Serre spectral
sequence. Recall we are assuming that X (and therefore QX X) is n-connected,
with n > 1. Therefore the long exact sequence in homotopy groups ends with

(X)L m(QEX) 25 1 (F)) — 0.

Since X and QXX are both simply connected, the Hurewicz theorem says that
m(X) = Hy(X) and m(NEX) = Hy(QXX). But j. : Ho(X) — Ha(QXX)
is an isomorphism by the above lemma. Thus j, : m2(X) — 7 (QXX) is an
isomorphism, and so we may conclude that m (F;) = 0.

Now by examining the Serre spectral sequence for the homotopy fibra-

tion sequence F; — X 2y QXX we see that since, by the above lemma,
Js + Hp(X) — H,(QXX) is an isomorphism for p < 2n + 1, then along the
horizontal axis of this spectral sequence we have that

H,(QEX) = B3 = R0 = H,(X)

for p < 2n + 1. Now along the vertical axis we have H,(F;) = E9? which is
equal to E%Y for ¢ < 2n because in this range there are no possible nonzero
differentials. By the convergence of the spectral sequence to H,(X), and the
fact that every element of H,(X) is represented in this spectral sequence by
an element on the horizontal axis EXC (in this range), we must conclude that
EY* must be zero for ¢ < 2n. That is,

Hq(Fj) =0

for ¢ < 2n. Since, as observed above, m1(F;) = 0, then by the Hurewicz
theorem we may conclude that my(F;) = 0 for ¢ < 2n. By the long exact
sequence in homotopy groups for a fibration, this says that

Jx 1 g X — me(QXX)

is an isomorphism for ¢ < 2n and surjective for ¢ = 2n + 1. Equivalently, the
suspension homomorphism, 7, X — m441(2XX) is an isomorphism for ¢ < 2n
and is surjective for ¢ = 2n + 1. O
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10.1 Spectra

The basic definition of a spectrum is the following.

Definition 10.2. (/57], [100]) A spectrum is a sequence of (based) spaces
{X,, n € Z} together with maps €, : ¥X,, — X,,+1. These maps are known
as “structure maps”. These structure maps can equivalently be given as maps
€n @ X, = QX 41, where, as above, QY denotes the based loop space of a
based space Y. The relation between these types of structure maps is given
by the adjunction between a map f : ¥X — Y and the map f : X — QY
defined by f(z)(t) = f(tAx) €Y.

In some settings one is only required to have spaces X,, for n > 0. This fits
with the situation above, since we can simply define for n < 0, X,, = point.

Examples.
1. The sphere spectrum S is defined by
S, = S",

and €, : ¥S,, = ¥8" = Sl — gn+l = § ., is the identity map. We
will see that the sphere spectrum plays a crucial role in stable homotopy
theory, analogous of the role the integers play in the theory of rings and
modules.

2. The archetypical example of a spectrum is the suspension spectrum of a
space, X. We denote the suspension spectrum by 3*°X. Its definition is
(E*X),=X"X
and
e D(E"X) =2l o
is the identity map for each n. Notice that the sphere spectrum S is a

suspension spectrum, S = %59,

3. An Eilenberg-MacLane spectrum HG for an abelian group G is a collection
of other important examples. A spectrum HG is an Eilenberg-MacLane
spectrum of type HG, if HG,, is an Eilenberg-MacLane space of type
K(G,n), and the structure maps €, : YXHG,, — HG,,+1 are maps whose
homotopy class in

[XK(G,n), K(G,n+1)] = H""(SK(G,n); G)
= H"(K(G,n);G)
= Hom(Hy(K(G,n)); G)
>~ Hom(G, Q)

corresponds to the identity homomorphism.
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4. Let U = lim,,—, o, U(n) be the colimit of the unitary groups as described in
Chapter 4. A famous theorem of R. Bott [11] known as “Bott Periodicity”
says that there is a homotopy equivalence,

B:7 x BU = QU. (10.2)

Furthermore, as we saw in Theorem 7.18, for any topological group G,
there is a homotopy equivalence v : G =5 QBG. So in particular we have
an equivalence v : U = QBU = Q(Z x BU). (We take the basepoint of
Z x BU to be the basepoint of BU in {0} x BU C Z x BU.)

One can then define the complex K-theory spectrum KU by

KU, = Z x BU if n is even
U ifnisodd

The structure maps in the K-theory spectrum are given by the homotopy
equivalences

éom = B:Z x BU = QU
Eomg1 =7 : U = Q(Z x BU)
This spectrum is sometimes referred to as the “Bott spectrum” or the
“Bott periodicity” spectrum. Notice in particular that the spectrum KU

has the feature that the adjoints of the structure maps , &, : KU, —»
Q(KU,,+1) are homotopy equivalences for every n € Z.

Definition 10.3. Given a spectrum X, we define its homotopy groups by
T, (X) = limy 00 Tr4q(Xy). This colimit is defined via maps

by (er)«
Teta(Xq) = Thqr1(EXg) = Thigr1 (Xg1)-

Its homology groups are defined similarlly:

Hk(X) = lim Hk+q(Xq).

q—o0

Notice that a spectrum may have nonzero negatively graded homotopy
groups and homology groups. For example, 7_3(X) = lim,_, o mq—3X, which
may not be zero.

Exercise. Show that for k any integer (positive, negative, or zero),

Z if k is even

KU) =
m(KU) {0 if k is odd

Hint. Use the fact that 7, (QY) = w41 (Y) for any based space Y.
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One important feature of spectra is that they can be suspended, or desus-
pended an arbitrary number of times. If X is a spectrum, then for k € Z define
the k-fold suspension. Y*X by letting

(X)) = Xonsks (10.3)

and the structure maps for ©¥bx are defined in terms of the structure maps
of X.

Exercise. Show that there are suspension isomorphisms

1%

mq(X)
Hy(X)

Terk(ZFX)  and
Hy 1 (2FX) (10.4)

1

10.1.1 Morphisms

If we think categorically, we now have objects in a category of spectra. But
what about morphisms? Naively, one might expect a morphism between two
spectra X and Y should be a collection of maps f, : X,, — Y,, that respect
the structure maps. That is, the following diagrams should commute:

X, —I, vy,

Xps1 — Y.
fn+1

Certainly such collections of maps {f,} will constitute a morphism (or map)
of spectra, but here is an important example of what such a definition would
exclude.

Consider the Hopf map 7 : S® — S2. We can suspend the Hopf map an
arbitrary number of times to produce maps

xn2p . gttt 5 gn

for all n > 2. In terms of the spaces making up sphere spectra we have maps
Mt (BS)n — Sy
s S gn

for n > 2 that preserve the structure maps. But notice that no such maps
exist for n = 0 or 1, because there is no map S? — S whose suspension is
the Hopf map 71 : S2 — S2. But surely we want the collection of maps defined
by suspending 7 to define a map between spectra,

n:3S —S.
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More generally, we would like to have a definition of morphisms between spec-
tra such that every element of the stable homotopy groups of any spectrum
X, a € 75 (X) is represented by a map of spectra

a:X"S -+ X

for any n € Z.

To produce such an appropriate definition of morphism of spectra, we use
the notion of an “w - spectrum”.

Definition 10.4. An “w - spectrum” is a spectrum Y such that the adjoints
of the structure maps
€n - Yn — QYn+1

are homeomorphisms.

This might seem like a very restrictive definition, but we observe that
each spectrum in the sense of Definition 10.2 naturally has an associated w-
spectrum.

Definition 10.5. Let X be a spectrum. Define its associated w-spectrum X¢
by
XY = lim QX 5.

k—o0

n
The maps used in this limit are

Q

k—1_
k—1 €ntk—1 k—1 k
QP 1K) —— 5 QRO g = QX

The structure maps for the w-spectrum X“ are given by

e YXY =% lim QX p — lim 20X, = lim BQ(Q9X,,1144)
k—o0 k— o0

q—o0

ev .
— lim QX =Xv ..
4—roo n+1+q n+1

In this description q was substituted for k — 1 and ev : XQY — Y is the
evaluation map, ev(t N 0) =6(t) € Y.

Exercise. Check that X*“ is indeed an w-spectrum, and that there are natural
isomorphisms
WkX i) Wk(Xw) and HkX i> Hk(Xw)

for any spectrum X.

We may now define what we mean by a map or morphism between spectra.
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Definition 10.6. Let X and Y be spectra, as in Definition 10.2. We define a
map of spectra ¢ : X — Y to be a collection of maps between the spaces making
up their associated w-spectra,

bp s XY = lim Q¥X, . — lim QY =YY
k—o0 k—o00

that preserve the structure maps
TXw 20, myw

w w
€n l J{En

w , w
n+1 3{n'
Ont+1

Remark. Since morphisms between spectra are made up out of maps between
spaces in their corresponding w-spectra, some texts refer to an object satisfying
Definition 10.2 as a “prespectrum” and reserve the term “spectrum” to an
object that we call an w-spectrum.

Exercise. Let X be a spectrum. Show that every element of its homotopy
groups a € T, X represents, and is represented by a map of spectra

a: XS - X

10.2 Generalized (co)homology and Brown’s Repre-
sentability Theorem

One of the most important applications of spectra over the many years since
their original definition, has been to generalized (co)homology theories. Such
a theory is a functor from the category of pairs of spaces to the category
of graded abelian groups that satisfy all the Eilenberg-Steenrod axioms with
the possible exception of the dimension axiom. The Brown Representability
theorem states that any such generalized cohomology theory is represented by
a spectrum, and conversely, any spectrum represents a generalized cohomology
theory. Considering the homological perspective, Whitehead [100] showed how
spectra give rise to generalized homology theories as well, and he studied
manifold orientations and Poincaré duality in the setting of these generalized
theories. In this section we describe these major advances in homotopy theory.

10.2.1 Brown’s Representability Theorem

We begin by describing Brown’s representability theorem [15] [16]. We actually
describe a variant of Brown’s theorem proved by Adams in [4].



Stable Homotopy 261

Let CW be the category whose objects are finite CW-complexes with base-
points, and whose morphisms are basepoint preserving maps. Let G be the
category of abelian groups and homomorphisms. We consider contravariant
functors

H:CW —G.

For ease of notation, if f : X — Y is a basepoint preserving map between
finite CW complexes, we denote the homomorphism induced by applying H
to this map by
ffiHY) = H(X).
We consider three interesting axioms on such contravariant functors. The
first is the homotopy axiom.

Homotopy Axiom. If f,g : X — Y are basepoint preserving maps
between finite CWW-complexes that are homotopic via a basepoint preserving
homotopy, then

ff=9" HY) = H(X).

For our next axiom let X and Y € CW, and let X VY be their wedge.
Let tx : X =< XVY and vy : Y < X VY be the natural inclusions. A
contravariant functor H : CW — G defines a homomorphism

e X 15t HX VYY) = H(X) x H(Y).

Wedge Axiom. % x5 : H(XVY) — H(X) x H(Y) is an isomorphism.

In order to state the third axiom, consider the following diagram, in which
the homomorphisms are induced by the obvious inclusion maps.

HXUY) ———  H(X)

d*l l“

HY) —— HXNY)

Mayer-Vietoris Axiom. . Suppose € H(X) and y € H(Y) are such
that a*(x) = b*(y). Then there exists an element z € H(X UY) such that
c¢*(z) =z and d*(2) = y.

The following is the variant of Brown’s representability theorem, proved
in this form by Adams, that will be most useful to us.

Theorem 10.3. [15/[16][4] Let H : CW — G be a contravariant functor
satisfying the Homotopy Aziom, the Wedge Aziom, and the Mayer-Vietoris
Aziom. Then H is “representable”. That is, there is a based (not necessarily
finite) CW-complex B and a natural bijection of sets

T:[X,B] = H(X)

defined for all finite, based CW complexes X .
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Comment. By “natural bijection” we mean that if f : X — Y is a
morphism in CW (i.e a basepoint preserving map), then the following diagram
commutes:

S

[Y,B] —— H(Y)

r| I

X, B] —Z 5 H(X).

1R

S

1R

We will now sketch a proof of Brown’s theorem. We will actually describe
the proof of something stronger. Namely we will show that the “representing
space” B is a “weak, group-like H-space”, to be properly defined below, but
it implies that B has a product map, B x B — B which gives the set of
homotopy classes of maps [X, B] a group structure. We will then show that
the set bijection

T:[X,B] = H(X)
is actually an isomorphism of groups.

The first step is to consider an extension of a contravariant functor H :
CW — G to all CW-complexes (i.e not necessarily finite), as described Adams
[4]. He defined a contravariant functor

HX) = fm ()

where the inverse limit runs over all finite subcomplexes X, C X. (All of our
subcomplexes are assumed to contain the basepoint.). Of course if X is a finite
CW-complex, H(X) = H(X). In order to understand the properties of the

extended functor H, Adams introduced the notion of “weak homotopy”.

Definition 10.7. Two basepoint preserving maps between based CW -
complexes f,g : X — Y are “weakly homotopic”, written f ~., g if fh is
homotopic to gh for every map h : K — X where K is a based finite CW -
complex and h is basepoint preserving.

The following result is an easy exercise that we leave to the reader.

Lemma 10.4. . Let H : CW — G be a contravariant functor satisfying the
Homotopy, Wedge, and Mayer-Vietoris azioms. Then if f,g : X — Y are
basepoint preserving maps between (not necessarily finite) CW -complezes that
are weakly homotopic, then

ff=g" HY) = H(X).

Here is a rather straightforward result that the reader can verify or look
up in Brown’s papers [15][16].
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Lemma 10.5. Let H : CW — G satisfy the Homotopy, Wedge, and Mayer-
Vietoris axzioms. Let '
KL L5 LU e(K)
be a cofibration sequence of finite complexes. Then the sequence
H(K) <= H(L) ¢~ H(L Uy o(K))
15 exact.
For the next result we assume that K is a finite complex, containing sub-

complexes L and M. We continue to assume that H : CWW — G is a contravari-
ant functor satisfying the Homotopy, Wedge, and Mayer-Vietoris axioms.

Lemma 10.6. Let v : L — LUM and 19 : M — LU M be the inclusion
maps. Then there is an exact sequence

* *
Ly ><l,2

H(L) x H(M) H(LU M) « H(S(LNM) <= H(S(LV M)

which is natural with respect to maps K,L,M — K', L', M'. Furthermore the
homomorphism g* is induced by a map of spaces, g : 2(LNM) — S(LV M).

Proof. Consider the obvious map
LVM—LUM
and the resulting cofibration sequence
LVM —-LUM - (LUM)Uc¢(LVM) - X(LVM)—---
Notice that the third term is homotopy equivalent to 3(L N M). The lemma

now follows from Lemma 10.5. O

Exercise. Prove the assertion made in this proof that (LUM)Uc(LV M) is
homotopy equivalent to (L N M).

The next two results are immediate, and we leave their verifications to
the reader. In both cases we continue to assume that H : CW — G is a
contravariant functor satisfying the Homotopy, Wedge, and Mayer-Vietoris
axioms.

Lemma 10.7. H satisfies the Wedge axiom.

Lemma 10.8. Let X be a CW-complex and {X,} a directed set of subcom-
plexes whose union is X. Then the natural map

H(X) = lim H(X,)

is an isomorphism.
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The following is quite a reasonable result, whose proof is in Adams’s paper
[4]. We refer the reader to that paper for the argument.

Proposition 10.9. Let X be a based CW -complex with subcomplexes U,V C
X, each containing the basepoint. Suppose furthermore that U NV is a finite
complex. Let H : CW — G be a contravariant functor satisfying the Homotopy,
Wedge, and Mayer-Vietoris azioms. Then the square

HUNV)=HUNV) «——  H(U)

I I

H(V) —— HUUY)

satisfies the Mayer-Vietoris axiom.

We now apply these results to prove Brown’s representability theorem.
For the remainder of this section we continue to assume that H : CW — G is
a contravariant functor satisfying the Homotopy, Wedge, and Mayer-Vietoris
axioms.

Let Y be a CW complex (not necessarily finite) and let y € H(Y). Given
any CW-complex X, let [X,Y],, denote the set of weak homotopy clases of
basepoint preserving maps, as defined in Definition 10.7. Consider the natural
transformation

T:[X,Y]w = H(Y)

given by .
*(f) = ().

Notice that 7' is well-defined by Lemma 10.4 and is natural for all CW-
complexes X. By restricting to finite complexes one as a natural transforma-
tion

T:[K, Y] = H(Y).
Let NatTrans(A, B) be the set of natural transformations between functors

A and B. The following lemma is not difficult, and is Adams’s interpretation
([4], Lemma 4.1) of a result of Brown ([15], p. 478).

Lemma 10.10. The above construction gives bijective correspondences

H(Y) = NatTrans([X,Y]w, H(X))
>~ NatTrans([K, Y], H(K)).

Furthermore these correspondences are natural with respect to maps of Y.

The following is the basic constructive idea in forming the representing
space for a functor H.
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Lemma 10.11. Let Y, be a CW-complex provided with an element y, €
H(Y,). Then there exists a complex Y11 with an element y,+1 € H(Yni1)
and an embedding i : Y, — Y,11 satisfying the following properties:

1. "Ypnt1 = Yn

2. If K is any finite CW -complex and f,g : K — Y, are maps such that
F*(yn) = g*(yn), then i o f is homotopic to i o g as maps K — Y, 11.

Proof. (Sketch) For each finite complex K and pair of homotopy classes of
maps f : K — Y, and g : K — Y, such that f*(y,) = ¢*(yn) choose
representatives for f and g. Furthermore we let K range over representatives
of all homotopy classes of finite complexes. Thus we have chosen a countable
set of indices A and maps f,, 9o : Ko — Yy, for a € A. One then forms

Yo =Y, U | J (I x Kqa)/I x point)
acA

where. “point” refers to the basepoint in K, and the reduced cylinder I X
K,)/I x point is attached to Y,, by the map f, and one end and g, at the
other end. (This construction is called a “mapping cylinder”.).

The embedding i : Y,, — Y41 is the obvious inclusion map. Clearly
i 0 fo is homotopic to i o g, for each a € A. It remains to define the class
Yn+1 € 7:l(Yn+1 such that i*y,4+1 = y, . This is straightforward using the
axioms established for #, and we refer the reader to Adams [4] or Brown [15]
for details. O

We are now ready to prove the following slight generalization of Brown’s
representability theorem (Theorem 10.3 above).

Theorem 10.12. Let Yy be a CW -complex equipped with a class yo € 7:[(Y0).
Then there exists a CW -complex'Y together with an embedding i : Yo — Y and
an element y € H(Y') such that i*(y) = yo, and such that the corresponding

natural transformation
T:[K,)Y] - H(K)

is a bijection of sets for all finite complexes K.
Remarks. 1. Theorem 10.3 is a special case of Theorem 10.12 reflecting

the case Yy = point.
2. Y is called a representing complex for the functor .

Proof. Let K run over a countable set of representatives of finite complexes
as in the proof of Lemma 10.11. For each K let h run over H(K). Form

E:%VVK
K,h
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Using the fact that H satisfies the Wedge Axiom, let y; € H(Y1) be the
element that restricts to yo in H(Yp), and to h on the (K, k)" summand of
the wedge. This then implies that the natural transformation

T1 : [K,Yl] — H(K)

corresponding to y; € 7:l(Y1) is surjective for every K.
Now construct complexes

and elements y, € H(Y,), as in Lemma 10.11. Let Y = |J, Y, and let y €

H(Y) be the element that restricts to y, € H(Y,) for every n. (This uses
Lemma 10.8.) The corresponding natural transformation

T:[K,Y] — H(K)

is still surjective. But notice that it is also injective. To see this, let f,g : K —
Y be any two maps such that f*(y) = ¢*(y). Then since K is a finite complex
f and g both must map into Y,, for some n. This means f*(y,) = ¢*(y») and
f is homotopic to ¢ in Y, 11 by Lemma 10.11. This completes the proof of
Theorem 10.12. O

The following extension of Theorem 10.3 is straightforward, and we refer
the reader to the paper by Adams [4] for details.

Theorem 10.13. 1. There is one and only one transformation
T:[X,Y]w = H(X)

defined and natural for all CW -complexes X, that reduces to T when X
18 finite.

2. The natural transformation T is a bijection of sets for any CW -complex
X.

Lemma 10.10 together with the Brown Representability Theorem 10.12
allows us to prove the following quite easily. (See [4], Addendum 1.5.)

Proposition 10.14. Let X be any CW complex (not necessarily finite), and
let Y be a representing complex for the contravariant functor H : CW — G
satisfying the Homotopy, Wedge, and Mayer-Vietoris axioms. Let

U: K, X] - [K,Y]

be a natural transformation of sets defined for finite CW complexes K. Then
there is a map f: X — Y inducing U, and is unique up to weak homotopy.
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Proof. We first show that such a map f: X — Y exists. Consider the com-
position
K, x] 5% (K,v] 5 H(K),

where T' is the natural “representing transformation” defined in Theorem
10.12. By Lemma 10.10 this composition corresponds to an element o € ’;‘—AL(X)7
while T itself corresponds to an element 5 € H(Y). By Theorem 10.13 there
isamap f: X — Y, which is well-defined up to weak homotopy, such that
f*(B) = a. By the naturality statement in Lemma 10.10 this means that
Tfe:[K,X]— H(K) is equal to T o U. Since T is a bijection, f, =U.

To check the uniqueness statement, suppose f, = g« : [K, X| — [K,Y] for
every finite complex K. By definition this means that f is weakly homotopic
to g. O

We next show that the natural transformation 7" : [X,Y] — H(Y) defined
in Theorem 10.13 is an isomorphism of groups. In order to show this we need to
show that the representing space Y has a multiplicative structure that endows
[X,Y] with a group structure with respect to which T is a homomorphism of
groups.

Consider the product structure
H(X) x H(X) L H(X)

given by the group structure of H(X). Here X can be any CW complex. By
Theorem 10.13 this defines a product

o

(X, X Y]y — [X,Y]w ¥ [X,Y]w 2 [X, Y]

for any CW-complex. By letting X =Y XY, wecanlet v : Y XY — Y
represent the image of the identity in [Y x Y, Y x Y], under this composition.
v:Y xY — Y is well-defined up to weak homotopy. By construction, this
product induces the product structure on [X,Y],, for any CW-complex and
therefore on [K,Y] = H(K) for any finite CW-complex K. Also by construc-
tion, the natural transformation

T:[X,Y]w — H(X)

respects this product structure, and therefore by Theorem 10.13 is an isomor-
phism of groups.

10.2.2 Generalized (co)homology theories

We now apply the Brown representability theorem to classify generalized co-
homology theories. We refer the reader to [15] for details.



268 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

Definition 10.8. Let CWsy be the category of pairs (X, A) of finite CW -
complezes. A (generalized) cohomology theory E is a collection of contravari-
ant functors E9 : CWs — G and a collection of natural homomorphisms
87 1 B1(A) — EITYX, A) defined for each pair (X,A) € CWhs, satisfying
the following Filenberg-Steenrod azioms:
e Homotopy: If f,g : (X,A) — (Y,B) are homotopic, f* = g*
E1(Y,B) — E1(X,A). (Here, as above, we are using the superscript * to

denote the homomorphism of groups induced by the contravariant functor
E applied to the map (morphism) in CWs.)

e Exactness: Let ¢ : (X,0) — (X,A) and j : A — X be the natural
inclusion maps. Then the following sequence is exact.

s BN Y pax, A) D Bix) L BaA) -

e Excision: If (X7, X7 N X5) and (X2, X1 N X5) are CW-pairs in CW, the
map
Eq(Xl U XQ,XQ) — Eq(Xl,X]_ ng)

induced by the inclusion map is an isomorphism for all g.

We now describe Brown’s theorem stating that all generalized cohomology
theories determine, and are determined by a spectrum.

Let E = {(Eq,€q : ZEq = Eq+1)} be an w-spectrum. (Recall that this
means that the adjoint mappings €, : £, — QFE 41 are homeomorphisms.). For
a finite CW-complex X, with subcomplex A C X, let E9(X, A) = [X/A, E,].
Here, as above, we mean based homotopy classes of basepoint preserving maps.

Note. If A is not a subcomplex of X, but one rather simply has a map
t: A — X one can replace the quotient X/A by the mapping cone X U, c(A).
When A is the emptyset, we use the notation X/A to mean the space X U pt,
where the basepoint is the disjoint point. In this case the set

(X/0,E,) = [X Upt, By

where the last set can simply be viewed as the set of homotopy classes of
unbased maps from X to E,. Let S : X/A ~ XU, c(A) — ¥ A be the map that

~

collapses X C XU, c(A) to apoint. Let o : [AUpt, QE,11] — [E(AUpt), E411]

be the usual adjunction isomorphism. We can then define
5" [AUpt, By] = [X/A, Eyia]

by letting 6(f) : X/A — E411 be the composition

X/A S s(Aupt) 25 vB, < By
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In this composition f; : AUpt — E, is equal to f on A and sends the disjoint
basepoint to the basepoint of F,.

Notice that the set [X, E,] has a natural group structure since this set is
equal to [X,QFE,11]. Indeed it is naturally an abelian group. (Consider the
following exercise.)

Exercise. 1. Show that if X and Y are any based spaces, [X,QY] has a
natural group structure.

Hint. Recall how one defines the group structure on the fundamental
group m1(Y), to show that QY has a product that defines a group structure
“up to homotopy”.

2. Show that the set [X, Q?Z] is an abelian group. Here Q?(Z) = Q(Q(2)).

Hint. Recall how one shows that the second homotopy group ma(Z) is
abelian.

The following is now a straightforward exercise.

Theorem 10.15. For E = {(Eq,eq : XEq — Eqt1)} an w-spectrum, the
contravariant functor (E1(X, A),9) as defined above, forms a generalized co-
homology theory. That is, it satisfies Definition 10.8 above.

Exercise. Prove Theorem 10.15.

‘We now consider the converse.

Theorem 10.16. (Brown [15]) Let E = {(E%,§9)} be a generalized cohomol-
ogy theory as defined above. Then there is an w-spectrum E = {(Eq, €4)} and
natural equivalences 7, : [(X/A, E,] — E1(X, A) defined for all pairs of finite
CW -complezes (X, A). Furthermore we have the relation 697y = 744107 for
each q € Z.

Proof. Consider the contravariant functors

E1:CW = ¢
X — Eq(X,JJo)

where zy € X is the basepoint. Since E satisfies the Eilenberg-MacLane ax-
ioms as given in Definition 10.8, clearly E9 satisfies the Homotopy Axiom.
Furthermore, standard arguments show that since F satisfies exactness and
excision, each EY satisfies the Wedge and Mayer-Vietoris axioms. Therefore
by the Brown Representability Theorem 10.3, there is a representing space F,
for the functor E9. That is, there is a natural equivalence

741 X, E,] = EYX) = BY(X, z).

We now show that the collection {E,} fit together to define a spectrum. We
first prove a suspension isomorphism in the following lemma.
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Lemma 10.17. There is a natural isomorphism

§9: E1(X) = ETTY(2X).
Proof. . Consider the triple (¢(X), X, zo). Here ¢(X) is the cone, ¢(X) =
X xI/X x {1} Uzg x I where I = [0,1] is the unit interval. X is viewed as a
subspace of ¢(X) as X x {0}. By excision and exactness one has that

Ei(¢(X), X) = BY(EX, x0) = E1(XX)

By substituting this in to the exact sequence of a triple we have an exact
sequence

o BYe(X), m0) — E9(X,20) 25 B (e(X), X) = - -

Since the cone ¢(X) is contractible and the cohomology theory E satisfies
the Homotopy Axiom, E"(¢(X),x0) = 0 for every r. Therefore this sequence
becomes .

e 0 BYX) S BTN EX) 50— -

Thus the connecting homomorphisms 69 : E4(X) — E9t1(£X) is an iso-
morphism. O

We now continue our proof of Theorem 10.16.

The natural suspension isomorphism given by the above lemma can be
interpreted as a natural isomorphism

o o

§9: [X,E,] = [SX, Eg1] = [X,QE 1]

By Proposition 10.14 above, the natural transformation §¢ is realized by a
map we call ¢, : B4 — E 41 which is uniquely defined up to weak homotopy.
Notice furthermore that these maps are weak homotopy equivalences, since
for any finite complex K the map

07=(€q)x
K, Eg) 22 (K QE,, ]

is an isomorphism. So the collection {(Eq, €;)} defines a spectrum which rep-
resents the cohomology theory F. Notice that we might think of this spectrum
as a “weak homotopy w-spectrum”, since the adjoints of the structure maps
€ : By — QE,11 are weak homotopy equivalences, where in the definition
of an actual w-spectrum, these maps are required to be homeomorphisms. In
any case we can now replace this spectrum by its associated w-spectrum as in
Definition 10.5 which we call E. This completes the proof. O

An analogous statement for “generalized homology theories”, which is to
say that covariant functors {E,,d,} : CWao — G that satisfy the covariant
analogues of the Eilenberg-Steenrod axioms 10.8, was proven by G. Whitehead
[100]. In order to state his theorem we first introduce the following definition.
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Definition 10.9. Let X be a space with basepoint, and E = {Ey, e} be a
spectrum. The smash product spectrum X AE has as its k" space,

(X/\E)k:X/\Ek

with structure maps 1 N e, : 5(X A E) = X ANXE AL 'S FEii.

Exercise. Show that for any based space X, the spectrum S A X is weakly
homotopy equivalent to the suspension spectrum, »°°X. That is to say, there
is a morphism of spectra, ¢ : SA X — ¥°°X that induces an isomorphism on
homotopy groups.

G. Whitehead [100] proved the following analogue of Theorem 10.16 about
about the representability of generalized homology theories.

Theorem 10.18. (Whitehead [100]) Let E. = {(E4,d,)} be a generalized ho-
mology theory. That is, it is a collection of covariant functors Eq : CWy — G
and a collection of natural homomorphisms 64 : Ey(X,A) — Eq_1(A) de-
fined for each pair (X, A) € CWs, satisfying the covariant analogues of the
Eilenberg-Steenrod azioms: Homotopy, Exactness, and Excision (see Defini-
tion 10.8). Then there is an w-spectrum E = {(Eq,€q)} and natural equiva-
lences
Tq : Tg((X/A) ANE) = Eq(X, A)

defined for all pairs of finite CW -complezes (X, A). Furthermore we have the
relation 047y = Tg+104 for each q € Z.

Examples.

1. Let S be the sphere spectrum. Since, by the above exercise, for any
space X, X AS ~ XX, we have that the generalized homology theory rep-
resented by S is stable homotopy groups. The generalized cohomology theory
represented by S is known as stable cohomotopy. Notice that

Sk (X) _ h_I)n[Z”X, S"J'_k],
n
and may in particular be nonzero for k < 0.

2. Let G be an abelian group and HG the corresponding Eilenberg-
MacLane spectrum. The cohomology theory this spectrum represents is ordi-
nary cohomology with coefficients in G. It gives the well-known result of Hopf
stating that

X, K(G,m)] = H™(X; ),

In homology, Whitehead’s theorem gives that HG,(X) & H,.(X;G) which is
the very non-intuitive result that

Hi (X3 G) = mp(Xy ANHG) = lim 0 (X A K(G, k4 1)),
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where X, = X/() is X with a disjoint basepoint.

3. Let KU be the complex K-theory spectrum as defined above. Recall
that KU, = Z x BU if q is even, and KU, = U if ¢ is odd. As mentioned
above, Bott periodicity implies that KU is an w-spectrum. The associated
cohomology theory it represents is referred to as complex K-theory, denoted
by K*(X). Notice that

K°%X) = [X,Z x BU|

and as studied above, is the Grothendieck group completion of the abelian
monoid Vect®(X) of complex vector bundles over X. The periodic nature of
this spectrum tells us that

K9(X) K°(X)=[X,,Z x BU] if qis even, and
T KNX) 2 [X,, U] if ¢ is odd.

Generalized (co)homology theories are required to satisfy all the Eilenberg-
Steenrod axioms, except the Dimension Axiom. Recall that the Dimension
Axiom says that the (co)homology of a point is zero except in dimension zero.
For a generalized theory, this need not be the case. As we see above,

E.(point) = m.(point, ANE) = 1,(S° AE) = 7. (E),
and this group is often nonzero in many dimensions.

Exercise. Show that m,(E) = 0 for all ¢ # 0 if and only if E is an Eilenberg-
MacLane spectrum.

With the classification of generalized (co)homology theories by spectra, we
can now understand the notions of (co)homology of a spectrum, as well as of
a space.

Definition 10.10. Let E be an w-spectrum representing a generalized coho-
mology theory E* and generalized homology theory E, . Let X be any connective
spectrum (i.e a spectrum with m4(X) = 0 for g < 0). We defined the generalized
homology groups

E,(X) = 1(EAX).

We similarly define the generalized cohomology groups by
EY(X) = [X,Elq

where by this notation we mean weak homotopy classes of maps from X to
YIE.
Exercise. Show that if X is a finite CW-complex and E is a spectrum rep-

resenting (co)homology theories E, and E*, then

E.(X) = E.(£%(X.)) and E*(X) = E*(S%(X.)).
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10.2.3 Application: The finiteness of the positive dimen-
sional stable homotopy groups of spheres.

A famous theorem of Serre [84] is that the stable homotopy groups of spheres
are finite in positive dimensions:

Theorem 10.19. (Serre) [84]
lim 41 (S%) = 7,(S)
k

are finite abelian groups for q > 0.

As an application of the theory of spectra and generalized homology theo-
ries, we sketch a proof of Serre’s theorem, modulo one result that Serre proved
along the way.

Lemma 10.20. (Serre)[84] 7 (S) is a finitely generated abelian group for
every k.

Let Sg be the spectrum that represents the generalized homology theory,
given by “rational stable homotopy”, (X, A) — 7$(X, A) ® Q.

Exercise. Show that the homotopy groups of this representing spectrum are
the rational stable homotopy groups of spheres.

ﬂ's(SQ) = W*(S) ® Q.
We now observe that the homology of Sg is quite simple.

Lemma 10.21.

0 otherwise.
Proof.
H*(SQ; Z) = W*(S@ A\ HZ)
= (S)«(HZ)
=m(HZ)®Q
So the result follows. O

Now consider the rational Hurewicz map, viewed as a map of generalized
homology theories:

h:m(—)®Q — H.(—;Q).

This is induced by a map of representing spectra,
h:Sqg — HQ.

The following is immediate from the lemma.
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Proposition 10.22. The map of spectra h : Sg — HQ is an equivalence.
Therefore there is an isomorphism

he; T (E) © Q = H.(E; Q)
for any spectrum E.
Applying this proposition to the sphere spectrum S, we have that

Q ifg=0
0 otherwise

m(S) @ Q = H,.(S;Q) = {

In particular this means that 7,(S) ® Q = 0 for ¢ > 0. By Lemma 10.20, this
implies that m4(S) is a finite abelian group for g > 0.

10.3 The Atiyah-Hirzebruch spectral sequence

The Atiyah - Hirzebruch spectral sequence provides one with a computational
technique for computing the generalized (co)homology of a CW complex X in
terms of its ordinary (co)homology and the homotopy groups of the spectrum
representing the generalized theory. It is based on filtering X by its skeletal
filtration.

10.3.1 The spectral sequence

Let X be a finite, n-dimensional based CW complex, with basepoint xg € X.
Let h* be a generalized cohomology theory represented by a spectrum E. Let
h* be the reduced theory,

h*(X) = h* (X, x0) = ker (h*(X) — h*(x0)).
Consider the skeletal filtration of X:
zo=X'1cX'cXxtc..-cX"=X. (10.5)
Let F,h?(X) = ker (h?(X) — hP(X™)). We then have a filtration on h?(X):

0= F,hP(X) C F, 1hP(X) C --- C Foh?(X) C F_1hP(X) = hP(X). (10.6)

The Atiyah Hirzebruch spectral sequence (AHSS) will have as its E;-term
the homology of the subquotients of the skeletal filtration

EP"TP = p(XP, XPT) 2 p (X, XPT,
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It will converge to h*(X) in the sense that the E.-term is given by the
subquotients of the above filtration,

BRI P = Fyi(X)/Fyet (X)),

To understand the basic idea, first notice that the subquotient of the skeletal
filtration X?/XP~1 is a wedge of (p—1)-dimensional spheres, and these spheres
form a basis of the cellular chain group C,(X). We call that basis £,. That is,

XP/xr~t~\/ P
Bp
We therefore have

WX/ XPTY) = h(SP) =P R (S0) (10.7)
ﬁp ﬁp
= D h"P(pt) = Hom(Cy(X), h" P (pt))
By

= CP(X P (pt)) = CP(X: 7y (E)).

These cochain groups form the Fy-term of the Atiyah - Hirzebruch spectral
sequence. Here is the statement of the theorem asserting the existence of this
spectral sequence.

Theorem 10.23. (Atiyah and Hirzebruch [8]). Let X be a finite CW -complex
and h* a generalized cohomology theory represented by a spectrum E. Then
there is a spectral sequence converging to h*(X), satisfying the following prop-
erties:

1. EP? = CP(X;hi(pt)) = CP(X;m4(E)). These are the cellular cochains of
X.

2. EDT = HP(X;hi(pt)).

3. d, : BP9 — Eptra-r+l

4o BLS = By (W (X) [ Fy (X)),

We remark that there is a similar spectral sequence converging to the
generalized homology.

10.3.2 The spectral sequence of an exact couple and the con-
struction of the AHSS

The construction of the Atiyah-Hirzebruch spectral sequence (AHSS) is ex-
plained well in Adam’s well-known book [5]. Here we indicate its construction
as an example of a spectral sequence arising from an exact couple. We begin
by describing this general construction, and then show how it can be used to
construct the AHSS with the properties described in Theorem 10.23.
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Definition 10.11. An exact couple is a triangle of abelian groups or chain
complezxes and homomorphisms between them that are exact.

D —* D

N

In other words, kera = Image~y, kervy = Image;, and ker; =
Image a.
One might think of F; as the first term of a spectral sequence. If one lets

di=provy: By — E;

then one can define By = H,(E1,d;), Do = Imagea, and By = B1oa™!:
Dy — FEs, and then one can check that

D2 —> D2

N

is an exact couple as well (called the derived exact couple). We then think
of F5 as the second term of the spectral sequence. Continuing in this fashion
produces all the terms in a spectral sequence.

Applying the reduced generalized cohomology to the skeletal filtration of
a finite CW complex h*(X) leads to an exact couple in the following way.

We let D1 = @, hp+q(Xp) and By = @, hp+q(Xp/Xp =~
C?(X;hi(pt)). For each p one has a long exact sequence in generalized co-
homology,

. & hp+Q(Xp7Xp—1> N hPTa(XP) N hp+q(Xp—1) ﬁ_1> hp+q+1(Xp7Xp_1) 2

One can easily check that this defines an exact couple, with the spaces and
maps being the direct sum of all long exact sequences associated to the vari-
ous skeletal pairs (X?, XP~1). The resulting spectral sequence is the Atiyah-
Hirzebruch spectral sequence.

To compute the Fs-term of this spectral sequence we need to compute the
homology H.(E1,d;) where

dy = By oy : @PrrrUXT/XPY) — @ prtett(xrH X7 (10.8)
p,q p:q

P cr(x;hi(pt)) — @ CPHHX; A (pt).

p,q p,q
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Exercise. Prove that di : @, ,CP(X;h!(pt)) — @D, , CPHL(X; hi(pt)) as
defined above is the coboundary map in the cellular cochain complex and
therefore the Fs-term in the Atiyah-Hirzebruch spectral sequence is

EY = HP(X; h(pt)).

The remaining properties of the Atiyah-Hirzebruch spectral sequence as
described in Theorem 10.23 are proved in a rather straightforward way. See
[5] for a clear treatment. We now apply the AHSS to compute the K-theory
of some important, familiar spaces.

10.3.3 Some K-theory calculations with the AHSS

In this subsection we will use the Atiyah-Hirzebruch spectral sequence to
calculate the (complex) K-theory of certain important manifolds. We begin
with the calculation of the K-theory of closed orientable surfaces.

Proposition 10.24. Let 3, be a closed, orientable surface of genus g. Then
K°%,) = 7% and K'(%,)=7%.

Note. By Bott periodicity this result determines the K-cohomology of ¥,
in all dimensions. Namely,

Ki(s,) = Z2 if q is even
971722 if ¢ is odd.

Proof. The cohomology of X, is nonzero in only three dimensions:
HY (Y Z) 27, HY (X4, Z) 2 2%, and H*(X,;Z) = Z. Therefore the Ey-term
of the Atiyah-Hirzebruch spectral sequence has only the following nonzero
groups:

EQ*M e~y By iyl EREM oy

for each m. Again, all other groups in the Es-term are zero. Since d,. : EP4 —
Ep*Tra=r+1 one immediately sees that all differentials must be zero. Therefore
the spectral sequence “collapses”, i.e EY? = EP:9 and the result follows. [

Proposition 10.25. The K-theory of CP™ is given by
K°(Cpr) =zt KY(CP") =0,
Proof. The Es- term of the AHSS is given by

BB — HP(CP™; K9 (pt)) 7 ifp anfi q are both even and 0 <p <n
0 otherwise.
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If we call the total degree of an element of E?'? p 4 ¢, then we see that
the only nonzero terms in this spectral sequence have even total degree. Yet
the differentials change the total degree of an element by +1. Therefore the
differentials are all zero and the spectral sequence collapses at the Es-term.

Now
@ Egaq — gntl
p+q=0
so the result follows. O
Exercises. .

1. What is K¢(CP™) for all ¢? Hint. Use Bott periodicity.
2. Show that if X is any space with H?(X;Z) = 0 for ¢ odd, then the
AHSS collapses at the Fs-term, which is to say

BT = HP(X; K%(pt))

_ JHP(X;Z) if p and g are both even (10.9)
|0 otherwise. '

10.4 Symmetric spectra, ring spectra and module spec-
tra

The graded abelian group E,(point) = 7,(E) is called the coefficients of the
generalized homology theory E. Now motivated by structures in ordinary
(co)homology, one might expect to find structures such as a evaluation map
of a generalized cohomology theory on its corresponding generalized homol-
ogy theory, taking values in the coeflicients, or perhaps a cup product in the
generalized cohomology. Notice that even in ordinary (Eilenberg-MacLane)
(co)homology, H*(X; G) has these structures only if G is a ring. In a general-
ized theory we will need the representing spectrum E to be a “ring spectrum”,
which means there is a monoid structure

EAE — E.

Of course we don’t have a definition of the smash product of spectra yet. So
far we only know how to take the smash product of a space with a spectrum.
Defining an associative smash product has the effect of giving the category of
spectra a “monoidal structure”. For the purposes of defining structures at the
level of generalized (co)homology such as cup product, having a ring struc-
ture “up to homotopy” suffices, and that was all that existed from the time
of Whitehead’s seminal paper [100] until the 1990’s. Defining such a structure
that is actually associative, instead of just associative up to homotopy, is quite
a technical challenge. It was first accomplished by Hovey, Shipley, and Smith
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n [48]. Such a structure allows one to talk about “ring spectra”, “module
spectra”, and roughly speaking, to do homological algebra in the category of
spectra. In this section we describe a monoidal structure on the category of
spectra, define the notion of a “ring spectrum”, and discuss several applica-
tions. In the next chapter this structure will prove quite useful in studying
cobordisms of manifolds in the setting of a generalized (co)homology theories.

Our goal in this subsection is to show that a category of spectra exists
which is in some sense equivalent to the one described above, and that has
a monoidal structure defined by smash product of spectra. We begin with a
definition of type of categorical monoidal structure we are looking for.

Definition 10.12. A monoidal category is a category C equipped with a
monoidal structure. A monoidal structure consists of the following:

e a bifunctor ® : C x C — C called the tensor product or monoidal product,
e an object I called the unit object or identity object,

e three natural isomorphisms subject to certain coherence conditions ex-
pressing the fact that the tensor operation

— is associative: there is a natural (in each of three arguments A, B,
() isomorphism « called the associator, with components

aapc: A® (BRC)=2(A®B)®C

— has I as left and right identity: there are two natural isomorphisms A
and p called the left and right unitor respectively, with components
AI®@A=ZAand py: AT = A

e The coherence conditions for these natural transformations are:

— for all A, B,C, and D in C, the following diagram commutes

(A® (B® (C ® D)) ~22992%, (A B)® (C ® D) —222%2, ((A® B)® C) ® D
1A®OCB,C,DJ( T(XA,B,C®1D
A (B (C)® D) _ (A (B®C))®D

QA,BRC,D

— for all A and B in C, the following diagram commutes

X&A,I,B

A®(I®B) 1% (Ael)® B
IA®ABl l/’A@IB

A® B —_— A® B
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A strict monoidal category is one for which the natural isomorphisms
a, A, and p are identities. It turns out that every monoidal category is
monoidally equivalent to a strict monoidal category.

Examples:

1. Vecty, the category of finite dimensional vector spaces over a field k, with
morphisms being k-linear transformations. The monoidal structure is ten-
sor product (over k) of vector spaces. The unit is the one-dimensional
vector space k.

2. Gap, category of Abelian groups and group homomorphisms. The monoidal
structure is tensor product of abelian groups, and the unit is the group
of integers Z. More generally, the category R — mod of modules over a
commutative ring R is a monoidal category, with tensor product (over R)
the monoidal structure, and with the unit being R itself.

3. Set, the category of finite sets and set maps. The monoidal structure is
cartesian product, and the one-element set is the unit.

4. Cat, the category of small categories (i.e categories where the objects and
morphisms both form sets) is a monoidal category, where the monoidal
structure is the cartesian product of categories. The category with one
object and whose only morphism is the identity morphism is the unit.

A symmetric monoidal category is a monoidal category where the monoidal

structure ® is commutative up to coherent isomorphism. Here is a strict def-
inition.
Definition 10.13. A symmetric monoidal category is a monoidal category
(C,®,I) such that, for every pair A, B of objects in C, there is an isomorphism
saB: A®B — B® A that is natural in both A and B and such that the
following coherence diagrams commute:

o The unit coherence: \
Aol 21y oA

oa | |

e The associativity coherence:

(A®B)oC 22%% (B A) o C
aA,B,C‘J{ JVOCB,A,C
A®(B®C) B (A% C)

5A,B®CJV JV15®SA,C

(B®C)® A —— BR(C®A)

QB,C,A
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o The inverse law:

Exercises.

1. Show that all of the categories in the above examples of monoidal cat-
egories in fact are symmetric monoidal.

2. Find an example of a monoidal category that is not symmetric monoidal.

Our goal in this subsection is to show that there is a category of spec-
tra that has a symmetric monoidal structure, where the monoidal structure
is a representation of smash product of spectra. Such symmetric monoidal
categories of spectra were found in the late 1990’s and early 2000’s (see, for
example [48], [31], [59]), and thankfully, they were al eventually shown to be
equivalent in an appropriate sense. Here we describe the notion of symmetric
spectra of [48]. Actually in [48] the authors work in the setting of simplicial
sets, but here we work in the setting of topological spaces.

Definition 10.14. . A symmetric spectrum X is a sequence of spaces { X,,n >
0} together with structure maps €, : ¥X,, — X,t1, and actions of the sym-
metric groups X, X X, — X, so that if we think of SP as the smash product

SP =8N A8t
with the action of ¥, given by permutation of coordinates, then the composition

1/\€1+q

1Ne _ 1Ne,— €,
SPAX, —25 SPTUA X4y T SUA X1y S X

is (B, x Xy)-equivariant. Here (X, x ¥,) acts on X,1, as it is naturally a
subgroup of Xp,14 consisting of those permutations of p + q letters that fix the
first p letters and the last q letters as sets.

A map (morphism) of symmetric spectra f : X = Y is a sequence of maps
fn: X5 = Y, that is Xy, equivariant, and which respect the structure maps.
That is the following diagrams commute:

Exn e—ﬂ> Xn+1

EfnJ/ lfn-{—l

SY, — Yo

In order to complete the definition of the category of symmetric spectra,
which we call Sp*, we observe that the collection of morphisms between two
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symmetric spectra, M apsz (X,Y) is itself a symmetric spectrum. For this we
define .
MapSP™ (X, Y), C H Map(X;,Yiir)
i

to be the subspace of all collections of ¥;-equivariant maps {¢; : X; = Yin},
as 1 varies, that respect the structure maps. That is, the following diagrams
commute:

oK, L wv,

Xit1 f—> Yititn
i+1

Notice that M apSpE (X,Y)g is just the space of all maps of symmetric spectra.

We leave it to the reader to check that the collection of spaces

{M apsP2 (X,Y),} support natural symmetric group actions and structure
maps to define a symmetric spectrum structure.

This definition defines a category of symmetric spectra that we call Sp*.

Note: By replacing the symmetric groups %,, by the orthogonal groups O(n)
in the above definition one gets the notion of an orthogonal spectrum, and
the category of such, Sp©®. Like symmetric spectra, orthogonal spectra have
been very useful in homotopy theory. However for the purposes of these notes
we emphasize symmetric spectra.

As mentioned above, one of the main reasons to consider symmetric or
orthogonal spectra, is that the categories of such are symmetric monoidal,
where the monoidal structure is an operation that defines smash product of
such spectra. We now define the smash product of two symmetric spectra, X
and Y.

Definition 10.15. The smash product of two symmetric spectra X and Y is
the symmetric spectrum X A'Y defined by

XAY)n=\/ Zu, Aspxs, (KpAYy)/ ~
ptg=n

where Xy, denotes the symmetric group %, with an additional disjoint base-
point, and the quotient relation identifies the images, for every r, of the two
maps

«: E(p+q+r)+ AN (Sp N Xq AN YT) — E(p+q+r)+ /\Z‘JXZPJFT (Xq N Yp_;,_r)
and

B Xptqrr), NP AXGAYR) — Bippgin), Aspigxs, Xprg AYy)
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where a(0,t,x,y) = (0 0 7y p, x, ty) and B(o,t,x,y) = (o, tx,y). Here (t,z) —
tx is shorthand for the structure map

SP A Xq — Xp_;,_q

and Ty, € Yptqtr 15 the permutation that moves the first block of q letters
past the second block of p letters and leaves the last block of r letters alone.

The action of the symmetric group ¥, on (XAY),, is induced by the action
on the left hand coordinate of ¥, Ns,xx, (Xp A Yg).

Exercise.
Define the structure maps €, : S(XAY),, = (X AY),+1 and verify that
X AY is indeed a symmetric spectrum.

Note. The construction in this definition of identifying the images of the two
maps « and (§ is known in category theory as the “coequalizer” of o and f.

The following, proved in [48] is not too difficult to prove, but is extremely
important.

Theorem 10.26. (Hovey, Shipley, and Smith [48], corollary 2.2.4) The
smash product X AN'Y is a symmetric monoidal structure on the category of
symmetric spectra, sz.

Exercise. . Verify that the unit in this symmetric monoidal structure is the
sphere spectrum S, where S, is the k-fold smash product

SE=SF=8"A---AS!

and the action of the symmetric group ¥y is given by permuting the coordi-
nates.

It is important to understand when a morphism of symmetric spectra
f:X =Y, is in an appropriate sense, an (homotopy) equivalence. The appro-
priate notion of equivalence is important because one would like to consider
the associated “homotopy category”, where one takes the same objects (sym-
metric spectra) and one “inverts” the equivalences. That is, in the homotopy
category one formally adds inverse morphisms to every equivalence. This is a
construction due to Quillen [80] and can be done whenever one has what is
called a “model” structure on a category. A model category is one that has
three distinguished types of morphisms, called “fibrations”, “cofibrations”,
and “weak equivalences”, satisfying several axioms. The associated homotopy
category is defined by “localizing” with respect to the weak equivalences. This
is a fascinating and important area of study, and there are several good texts
on the subject. We refer the reader to [80], [47], and [66]. They are excellent
references for this topic.

A model structure for the category of symmetric spectra, Sp>, was de-
scribed and studied in detail in [48]. It turns out that there is a subtlety when
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defining the notion of (stable) equivalence in the category Sp>. Following the
notion of weak equivalence of spaces or of (ordinary) spectra, one might be
inclined to declare that a morphism of symmetric spectra f : X — Y is a
stable equivalence if it is a weak homotopy equivalence as a map of ordinary
spectra; that is, if it induces an isomorphism of homotopy groups. However as
is pointed out clearly in [48], this will not work. Namely our goal is to find a
good notion of stable equivalence of symmetric spectra that has the property
that when one takes the associated homotopy category, one obtains a category
equivalent to taking the homotopy category of the category of ordinary spec-
tra. So in particular, when one wants to do calculations depending only on
the homotopy type of spectra and maps between them, it would not matter if
one was using symmetric spectra or ordinary spectra. The above naive notion
of weak equivalence simply won’t satisfy this property, as pointed out in [48].
Essentially, the way the authors of [48] found to deal with this issue was to
declare that a map of symmetric spectra f : X — Y is a stable equivalence
if the induced map E*f of cohomology groups is an isomorphism for every
generalized cohomology theory E*. We refer the reader to [48] for details of
these issues. The main upshot for our purposes is that there is now a sym-
metric monoidal category of spectra, with unit the sphere spectrum, whose
associated homotopy theory is equivalent to what one would expect from the
naive notions of spectra that go all the way back to Lima and Whitehead in
the 1950’s and early 1960’s.

With the existence of a symmetric monoidal structure, one can begin doing
“algebra” in our category of spectra. For example, a ring spectrum (with unit)
X is one that is equipped with a pairing

p:XAX =X

together with a unit maps 1 : S — X that satisfy the usual associativity
conditions. In other words, a “ring spectrum” is a monoid in the category
of spectra. For example, the sphere spectrum S has the pairing given by the
equality

SAS=S

which makes S a commutative ring spectrum. Another important class of
examples comes from the suspension spectrum of a group (with a disjoint
basepoint), £°°(G4). This is because

The group multiplication defines the ring structure.

If X is a space with a group action G x X — X, then its suspension spec-
trum X°°(X ) becomes a module spectrum over the ring spectrum £°(G.).
Here a (right) module spectrum M over a ring spectrum X is a symmetric
spectrum that is equipped with a pairing map

MAX =M
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that satisfies the usual associativity conditions. As one can see, once one has
the structure of a symmetric monoidal category, one can start doing algebra
in the category!

Now observe that one does not really need a group structure on G for
3°(G4) to have a ring structure. Indeed G just needs to be a monoid. An
important class of such examples comes from the based loop space QX where
X is any based space. In order that QX be a (strict) monoid, we take QX to
refer to the space of “Moore loops”. This is the space of pairs (r, ), where
r >0 and a: [0,7] = X is a map that sends the endpoints 0 and r to the
basepoint xg € X. The multiplication in QX is given by juxtaposition:

(r,a)-(s,8)=(r+s,a-8):[0,r+s] =X

where

_Ja(t) if 0<t<r
a.ﬁ(t)_{ﬂ(t—r) if r<t<r+s

The study of the spectrum X*°(QX,) as a ring spectrum was initiated
by Waldhausen [95]. It was shown how the study of the category of modules
over X*°(2X) leads to an understanding of various automorphism groups
of X if X is a manifold (eg diffeomorphism groups, homeomorphism groups,
PL homeomorphism groups, etc.). It has lead to the study of what is now
known as “Waldhausen K-theory” which has been a major area of research
in algebraic and differential topology since the 1970’s. The reader is referred
to [95], [96] to learn more.

The Eilenberg MacLane spectrum HR where R is any ring, is also a ring
spectrum. The ring structure is induced up to homotopy by the pairings

K(R,q) x K(R,s) = K(R,q + s)

which represents the cohomology class given by the cross product ¢q x ¢ €
H(K(R,q) x K(R,s); R) given by the cross product of the fundamental
classes 1, € HY(K(R,q); R) and s € H*(K(R, s); R).

In a similar fashion, if P is a right module over a ring R, HP has the
structure of a right module spectrum over the ring spectrum HR.

In these notes we will not further pursue the homological algebra that is
possible in the category of spectra. But understanding this structure is a very
active area of research and it has had many applcations.

From here on out, when we refer to “spectra”’, we will mean symmetric
spectra, and we will most often leave out the reference to the category Sp=.
So for example when we write Map(X,Y) we will mean the mapping spectrum

MapSP™ (X, Y).
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10.5 Generalized cup and cap products

In this section we will study product structures on generalized cohomology
theories represented by ring spectra. Our goal will be to apply them to the
study of generalized orientations and duality structures on manifolds.

Let R be a ring, then a basic construction in algebraic topology is the cup
product in the cohomology H*(X; R). If R is a commutative ring, then this
product inherits a graded-commutative structure. Recall that the ingredients
involved in this construction are the diagonal map

A X =X xX

and the ring multiplication p : R x R — R. More specifically the cup product
is defined by

U: HY(X;R) x H*(X; R) 2 H (X x X;R) 2> H7"*(X; R)

where the first map in this composition is the “cross product”. This cross prod-
uct is induced on the level of the representing Elienberg-MacLane spaces via
the map K(R,q) x K(R,s) — K (R, q+ s) which represents the cross product
class 1y X 15 € HT"5(K(R,q) x K(R,s); R). Furthermore these classes define
(up to homotopy) the ring spectrum structure on the representing Eilenberg-
MacLane spectrum HR.

This suggests that whenever we have a generalized cohomology theory
E* represented by a ring spectrum E, then one can use that ring structure to
define a “cross product” map, and a “cup product” structure in the generalized
cohomology theory. This is indeed the case.

Definition 10.16. Let E* be a generalized cohomology theory represented by a
ring spectrum E. Let X andY be spaces, and consider generalized cohomology
classes a € F1(X), and g € E*(Y). Let

bo 1 °(X4) = SE  and ¢p: X°(Y,) — O°F

be maps of spectra representing o« and [ respectively. The “cross product”
axf e E1S(X xY) is defined to be the cohomology class represented by the
composition

Baxs : EX((X X V)4) = B%(X,) AD(Yy) 2229 sup A $oR

= YIS (EAE) & DIHE

Here p: EANE — E is the ring multiplication.
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Definition 10.17. Let E* be a generalized cohomology theory represented by a
ring spectrum E. Let X be a space and a € E4(X) and 8 € E*(X) generalized
cohomology classes. The cup product « U 8 € E9T5(X) is defined to be the
class represented by the composition

Baus : DX(X4) 2 N%((X x X)) 228 et

where ¢ox 5 the map representing the cross product as above.

Exercise. Verify that with the above definition, the generalized cohomology
E*(X) has the structure of a graded ring. If E is a commutative ring spectrum,
then verify that this ring structure on E*(X) is graded commutative, like it
is for ordinary cohomology with coeflicients in a commutative ring.

Notice that a key ingredient in the construction of these generalized cup
products is the diagonal map A : X — X x X which induces a map on the
level of spectra A : 3°(X,) — X°(X ) A £*°(X;). This map is called a
coproduct, and this structure is often referred to as a “coalgebra” structure
on the suspension spectrum Y°°(X ). In general not all connective spectra X
have this structure, and so their generalized cohomologies, E*(X) do not have
cup products.

One might form a more general, “twisted” form of this construction in
the following way. Suppose p : ( — X is a vector bundle over a finite CW
complex. The diagonal map on A : X — X x X defines maps on the level of
vector bundles

AS
¢ —%» (xX

| [

X T> X x X7
and similarly Ag (> X x (.
Notice that the Thom space of { x X is given by
T((xX)=T¢(ANX+

and similarly T(X x () = X1 ATC.
The diagonal maps then induce maps on the Thom spaces for which, by
abuse of notation, we use the same notation,

A, T¢—-TCAX, and A :T¢— X ATC.

Now let E be a commutative ring spectrum representing the generalized
cohomology theory E*.
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Exercises.
1. Define a cross product map

EI1(X>(T¢)) x E*(X) — ET5(X°(T¢ A X1)).
2. Using the map of Thom spaces A%,j show that there is an induced pairing
EY(E®(T¢)) x B*(X) & BT (S%(T¢))

that gives E*(X°°(T(¢)) the structure of right module over the graded ring
E*(X). Similarly E*(3°°(T()) is a left module over E*(X) using the map
AS.

3. Show that if ¢ is the trivial zero dimensional bundle over X, i.e {( =
X =4 x , then T'( = X and the above module structures are the cup
product structure in E*(X).

There are other constructions from ordinary cohomology theory that also
have analogues in generalized cohomology. The evaluation map of cohomol-
ogy on homology, and more generally, the cap product maps are important
examples.

As above let E be a ring spectrum representing the generalized cohomology
theory E* and the generalized homology theory E,. Let X be a space (of
the homotopy type of a CW-complex) and consider classes 0 € E,(X) =
Tq(X+AE) and o € EY(X) = [X, £9E], which we take to mean weak homotopy
classes of maps.

Definition 10.18. Let 9y : ST — X4 AE and ¢o : T°(Xy) — XLIE be
maps representing the classes 6 € E4(X) and o € E9(X), respectively, The
evaluation class (o, 8) € moE is defined to be the class represented by the

composition
57 %% X, AE 220 SOE AR, 4 YR

where : EANE — E is the ring multiplication.

Exercise. Show that the evaluation pairing defines a ring homomorphism

E*(X) — Hom(E.(X), mo(E)).

Like in ordinary (co)homology theory, this evaluation pairing extends to
define a “cap product” in generalized cohomology theories represented by ring
spectra.

Definition 10.19. Let E and X be as above. Suppose § € E4(X) is repre-
sented by g : ST — Xy AE, and B € E"(X) is represented by ¢g : 1°(X ) —
YTE. We define the cap product 6 N5 € Eq_(X) = mg—r (X4 AE) to be the
class represented by the composition

Yo : ST L% X AE A0 X, AXLAE 220 X ASTEAE Y X, AYTE.
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Note. This cap product pairing is a map N : Ey(X) x E"(X) — E,—.(X).
We leave it to the reader that this definition also applies to give slightly more

general pairings (compare 1.6)

E (X, A xE"(X) 5 B, (X,A) and E,(X,A)x E"(X,A) 5 E,_.(X).

10.6 Thom spectra

Our next goal is to apply generalized cohomology theory to the study of man-
ifolds, and in particular to prove a generalized form of Poincaré duality with
respect to a generalized cohomology theory E*. As we recall, the notion of
orientations played a crucial role in Poincaré for usual (co)homology. So we
need to study the notion of orientations with respect to generalized cohomol-
ogy theories. For this we will begin by generalizing the notion of Thom spaces,
to “Thom spectra”.

Let ( — X be a k-dimensional vector bundle over a finite C'W-complex.
As before, let T'¢ be it’s Thom space. Let €™ — X be an m-dimensional trivial
bundle, €™ = X x R™. Observe, as we have earlier, that

Te™ = (X x D*)/(X x SF~1)y = 2™ (X,).
Consider the Whitney sum bundle { ¢ ™ — X.
Exercise. Prove that there is a natural homeomorphism,

T( @ €e™) = ST

Given the result of this exercise we can think of the suspension spectrum
¥°(T¢) as having its m*"-space equal to T(¢ @ €™) = T(¢ x R™).

Exercise. Show that the natural symmetric spectrum structure on the sus-
pension spectrum can be described in terms of the symmetric groups 3,
acting on R™ by permuting the coordinates.

The above observation tells us that we have a natural equivalence of spec-
tra,
SmER(TC) = S¥(T(C & ™).

Suppose the k-dimensional bundle ( is classified by a map
fc X — BO(k)

Then the above observations say that ™Y (7T() is the suspension spectrum
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of the Thom space of the (k 4+ m)-dimensional vector bundle ¢ @ €™ which is
represented by the composition

fewen : X 15 BO(K) — BO(k +m).

By allowing m to be negative in the above discussion, we are motivated to
define the following.

Definition 10.20. As above, let { — X be a k dimensional vector bundle
over a finite CW -complex X, classified by a map

fe: X = BO(k).

The Thom spectrum, which we denote using the exponential notation X¢, is
defined to be the k-fold desuspension of the suspension spectrum of the Thom
space,

X6 =n7kwe(10).

We say that XS is the Thom spectrum of the virtual zero-dimensional bundle
¢ — €* classified by the map

Qﬁc : X — BO
defined to be the composition ¢¢ : X ELN BO(k) — BO.

Let us consider Thom spectra from a different perspective. Suppose X is
a finite CW-complex, and we are given a map

f:X — BO.

The question we would like to now address is the following:

Question. . Can we define a Thom spectrum X7/ associated to the map
f: X — BO?

Notice that if we were given a factorization of f through a finite BO(k),

i.e amap fr : X — BO(k) such that the composition X ELN BO(k) — BO
is homotopic to f, then, of course, fj classifies a k-dimensional vector bundle
Cfy» and we can define the Thom spectrum X7 to be the Thom spectrum of
this factorization,

X = X% = 27F5(T(¢y,). (10.10)

But is this spectrum, or at least its homotopy type, independent of the choice
of factorization?

To address this, suppose fq : X — BO(q) is another factorization of f.
(The integer g may or not be the same as k.)
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Proposition 10.27. The spectra X« = STRYR(T(y,)) and XS =
E*QE“(T(qu)) are (weakly) homotopy equivalent.

Proof. Since the two compositions

X %% BO(k) = BO and X 1% BO(q) — BO

are both homotopic to f : X — BO, they are therefore homotopic to each
other. Let X(™) be any finite subcomplex of X. Then there must be a finite
N larger than both k£ and ¢ such that the compositions

Y xm B BO®k) —» BO(N) and N - XM 1% BO(g) — BO(N)

are homotopic. Therefore they classify isomorphic N-dimensional vector bun-
dles over X(™) and so have homotopy equivalent Thom spaces. Notice that
the bundle classified by f,gv is equal to (y, @ eN=F whereas the bundle clas-

sified by fév is equal to ¢ 7, ® eV=49. We therefore have a bundle isomorphism

over X (™)
(@ Ee (e

On the level of Thom spaces we have a homotopy equivalence
T ® " F) = T((f, @ N7
SVRT(Cp,) = ENTIT ().
We therefore have an equivalence of spectra,

(X)) = £FE(T((p,)) = B VENRER(T(() = T VSRR R, )

= NNERENIT((; ) = BTNENTIEOT(( )

= BTISPT((y ) = (X ™)

O

Since this equivalence is true for any subcomplex X ™ of X, we can con-
clude that X and X% have the same weak homotopy type.

The following exercise is proved in a similar manner.

Exercise. Let f : X — BO and g : Y — BO be maps where X and Y
are finite CW complexes. Suppose there is a map ¢ : X — Y such that the
following diagram commutes:

X — Y
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Show that there is an induced map on the level of Thom spectra
To: X Y9

that is well defined up to weak homotopy.

At this point we have associated to every map f : X — BO, where X
is a finite CW-complex, a Thom spectrum X7, which is well-defined up to
homotopy. And to every “map over BO”, that is a map ¢ : X — Y respecting
maps f: X — BO and g : Y — BO as in the exercise, we have associated
a map of Thom spectra, T¢ : X/ — X9 which again, is well-defined up to
homotopy. This suggests that there might be a functoriality result where we
can remove the “up-to-homotopy” restriction. Indeed there is such a result,
and it is fairly recent. In order to describe it, we first consider Thom spectra
for maps f : X — BO where X is a CW-complex that is not necessarily finite.
Consider the skeletal filtration of X:

X0 XU oy xD oy xR ey oy X
We first observe the following;:

Theorem 10.28. Any map f: X — BO is homotopic to one which takes the
k' -skeleton X*) to BO(k). That is, there is a commutative diagram

x(0) = ... x® = x(k+1) - ...z

X
f(O)J, fUC)J, lf(kJrl) lf

BO(0) BO(k) —— BO(k+1) — - BO

s (SN s

Proof. This follows from obstruction theory and in particular Theorem 7.11
and Proposition 7.14.
O

Consider a skeletal filtration preserving map f : X — BO as in the state-
ment of this theorem. Let ¢((¥) — X(*) be the k-dimensional vector bundle
classified by f*) : X*) — BO(k). Consider the composition

(k) S©
X® L5 BO(k) < BO(k +1).

This classifies the (k + 1)-dimensional bundle ¢¥) @ €' over X*). The Thom
space of this bundle is the suspension

T((W e e') =nT(C™).
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Now by the commutativity of the diagram in this theorem we have maps of
vector bundles,
R gl —— ¢ktD

| |

x®  _y x(k+1)
—
and hence we have a map of Thom spaces that we call
er : DT (CH) = T(¢*+D),

We can then make the following definition:

Definition 10.21. . Given the above situation we define the spectrum

X ={T(c™); e :2T(C®) = TR+,

Exercises.

1. Show that the weak homotopy type of X/ is well defined. That is, it
does not depend on the choices of homotoping f : X — BO into a skeletal
filtration preserving map, as in the statement of Theorem 10.28.

2. Give the Thom spectrum X7 the structure of a symmetric spectrum.

3. Suppose X is a finite CW-complex and f : X — BO is given by a
factorization X % BO(k) — BO, and that the map fj classifies the k-
dimensional vector bundle

=D¢
Show that the definition of the Thom spectrum given above (10.10)
XT =x7Fe(T(ch)
agrees, up to homotopy, with Definition 10.21.

4. Suppose f: X — BO and g : Y — BO are maps from (not-necessarily-
finite) CW complexes. Suppose furthermore that

p: X =Y
is a map making the following diagram commute:

X —% ., v

7| s
BO —— BO.
Define an induced map of Thom spectra T'¢ : Xf — Y9 that extends the

definition given in the previous exercise set when X and Y are assumed to be
finite.

Examples.
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1. Consider the identity map id : BO — BO. Then the construction above
defines a Thom spectrum BO for which we use the standard notation
bmo. If MO(n) denotes the Thom space of the universal bundle over
BO(n), then as a spectrum MO is made up of the spaces MO(n) to-
gether with the structure maps €, : XM O(n) - MO(n+ 1), defined as in
Definition 10.21.

2. The inclusion of the unitary group into the orthogonal group U(n) —
O(2n) defines a map on classifying spaces v, : BU(n) — BO(2n). On the
level of bundles it takes an n-dimensional complex vector bundle, forgets
its complex structure and views it as a 2n-dimensional real vector bundle.
The maps 7, fit together to define a map

~: BU — BO.

It has a corresponding Thom spectrum which we denote by MU.

The Thom spectra MO and MU were originally introduced by R. Thom
in [94] and play an essential role in cobordism theory which we will see in the
next chapter.

We now consider certain multiplicative properties of Thom spectra. First
suppose that (¥ — X and €7 — Y are k and ¢ dimensional vector bundles,
respectively, where the base spaces are CW complexes. Let f- : X — BO(k)
and ge : Y — BO(q) be classifying maps for these bundles. One can consider
the external product bundle

P xegr 5 X xY.

As we’ve observed before, this (k 4 ¢)-dimensional vector bundle is classified
by the composition map

X x Y 2% Bo(k) x BO(q) X% BO(k + q)

where py. 4 @ BO(k) x BO(q) — BO(k + q) is the “Whitney sum” pairing
induced by the “block addition” homomorphism

O(k) x O(q) = O(k + q)

given by sending a k x k matrix A and a g x ¢ matrix B to the (k+¢) X (k+q)
matrix that has A in the upper left & x k block, B in the lower right ¢ x ¢
block, and zero’s elsewhere.

The following is simply a parameterized form of the fact that
(D* x D?)/o(D* x D) = D¥/oD* A D9/0D1.

We leave its proof to the reader.
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Proposition 10.29. The Thom space of (¥ x &9 is given by
T(¢h % €7) = T(¢*) AT(€9).

The pairing maps px 4 : BO(k) x BO(q) — BO(k + ¢) fit together to give
a pairing
41 : BO x BO — BO (10.11)

This can be verified directly, which we encourage the reader to do. This
pairing also follows as a consequence of (real) Bott periodicity. Recall that
(complex) Bott periodicity says that

Z x BU ~ QU and, of course U ~ QBU = Q(Z x BU)
which implies the two-fold periodicity
7 x BU ~ Q*(Z x BU).

In the case of BO, in [11] Bott proved that there is an eight-fold periodicity
7 x BO ~ Q%(Z x BO). (10.12)

Indeed Bott showed that
Z x BO ~Q(U/O) (10.13)

where U/O = lim U(n)/O(n). Here O(n) C U(n) is the subspace of all
unitary matrices with the property that all of their entries are real (i.e have
zero imaginary parts).

Using Moore loops, the loop space (U/O) has the structure of an asso-
ciative monoid. This gives a homotopy theoretic model of Z x BO with the
structure of an associative monoid. We call this product

w: (Z x BO) x (Z x BO) — Z x BO.
It restricts on components to give pairings
Em.n - ({m} x BO) x ({n} x BO) — {m+n} x BO.

In particular it defines a monoid structure on BO = {0} x BO — Z x BO.
This monoid structure corresponds, up to homotopy, with the Whitney sum
pairings ug 4 : BO(k) x BO(q) — BO(k + q) described above, and hence the
(abuse of) notation. BU has a similar monoid structure. We refer the reader
to [63] for a much more complete discussion of these structures.

Corollary 10.30. . If f : X — BO and g : Y — BO are maps from CW -
complezes to BO, consider the composition,

f9:XxY 2% Bo x BO % BO.
Then there is an equivalence of Thom spectra

(X x V)9~ X A X9,
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We now define a category Cpp of “spaces over BO”. The objects of Cpp are
maps from CW-complexes, f : X — BO, and a morphisms between objects
f:X — BO and g : Y — BO are maps ¢ : X — Y making the following

diagram commute.

X 2, v

fl lg
BO — BO.

Since BO is a monoid, the category Cpo inherits a monoidal structure. In
particular the product of two objects f : X — BO and g : Y — BO is the
composition

Fxg:XxY % BOx BO % BO.

We leave it to the reader to check that Cpo satisfies the properties of being a
monoidal category. (This is true of the category Cys of spaces over any monoid

Notice that a monoid in the category Cpo is an object f : X — BO
together with a monoid structure on X, v : X x X — X that lives above BO.
That is, the following diagram commutes:

XxX —“— X

fol lf

BO x BO —— BO
m

If f: X — BO is a monoid in Cpp, which we refer to as a “monoid over

BO”, then the commutativity of this diagram and Corollary 10.30 implies the
following.

Proposition 10.31. If f : X — BO is a monoid over BO with monoid
product v : X x X — X, then there is a map of spectra Tv which is well-
defined up to homotopy,

Tv: Xf A XT — X7,

Furthermore this map is associative up to homotopy, and there exists a “unit
map” u:S — X' so that the compositions

X' =x/As 2 XFAXF Y and

XF=saxlt 2L xFaxf 2 and

are homotopic to the identity map. In other words, X' is a “ring spectrum up
to homotopy.”
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Note. The unit map u : S — X/ is the map of Thom spectra induced by the
inclusion of the basepoint (i.e the unit of the monoid), zg — X.

This proposition suggests that there might be a functor Th : Cgo — Sp~
that assigns to a space over BO, f : X — BO, its associated Thom spectrum,
X/ Furthermore this functor should preserves products. That is, it should
send a monoid over BO to a ring spectrum. This proposition says that this
can be done “up to homotopy”. But in recent years it has been proven that one
indeed can define a “Thom fumctor” that preserves this monoidal structure.
Equivalent forms of the following result were proved in [56], [1], and [10].

Theorem 10.32. [56/, [1], [10] There is a monoidal functor
Th:Cgo — sz

that takes an object f : X — BO to its Thom spectrum X7.
The following is a more descriptive way of stating this result.

Corollary 10.33. If f : X — BO is a monoid over BO, it’s Thom spectrum
X7 is a ring spectrum. If Y — BO is another monoid over BO and ¢ : X =Y
is a morphism in Cgo that preserves the monoid structures, then the induced
map on the level of Thom spectra,

Te: X -y

is a map of ring spectra.

Examples
MQ, the Thom spectrum of the identity map id : BO — BO, is a ring
spectrum, as is the Thom spectrum MU of the canonical map BU — BO.

Note. These spectra are essential to the study of cobordisms of manifolds,
as we will see in the next chapter. We will also see that their ring spectrum
structures are crucial for being able to do cobordism calculations.

10.7 The ring structure of H.(BO;Z/2), H.(BU;Z),
H.(MO; Z/2), and H,(MU;Z)
In the previous section we observed that as a result of Bott periodicity, BO

and BU are infinite loop spaces. This in particular means they have homotopy
commutative product maps

BO x BO - BO and BU x BU — BU.
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This implies that the homologies H.(BO;Z/2) and H.(BU;Z) are graded
commutative rings.

We also saw that the Thom spectra MO and MO have the induced struc-
ture of homotopy commutative ring spectra. This implies that their homologies
H,(MO;Z/2) and H,(MU;Z) also are graded commutative rings. The goal of
this section is to compute these rings.

We begin with a calculation of H,(BO;Z/2).

Theorem 10.34. There is an isomorphism of graded algebras,

H.(BO;Z/2) = Z/2[H.(RP*;Z/2)] = Z/2]a1, a2, - - - , where|a;| = 1]

Proof. For ease of notation we leave off the coefficients in (co)homology. All
coefficients will be Z/2.

Recall that the “Splitting Principle” (Theorem 5.20) says that the product
map

w: BO(1)*™ — BO(m)

induces a monomorphism in cohomology, p* : H*(BO(m)) — H*(BO(1))®™,
or equivalently, the map in homology, i, : Hi.(BO(1))®™ — H,(BO(m)) is
surjective.

Using the facts that BO(1) = RP* and that ¢, : H,(BO(m)) — H,(BO)
is an isomorphism through dimension m (see Theorem 5.15), we can conclude
that

s : Ho (RP)®™ — H, (BO)

is surjective through dimension m. Since u, induces the product structure in
H,(BO), this says that in the algebra structure, every element in H,(BO)
can be written as a linear combination of monomials of length < m for ¢ < m.
Since H,(BO) is a commutative algebra, this says that u, induces a surjective
map of algebras,
tn = Z)2[H,(RP>®)] — H,(BO).

Now since Z/2[H,(RP>®)] = Z/2[a;,i > 1 : |a;] = i] and from Theorem
5.15 we know that the cohomology, H*(BO) = Z/2[w;, i > 1, : |w;| = 1],
we can conclude that as Z/2 vector spaces, Z/2[H,(RP>)] and H,(BO) have
the same rank in each dimension. Therefore u., being a surjective map of
algebras over Z/2 that have the same rank in every dimension, must be an
isomorphism. O

Exercise. Show, using an argument like above, that

H.(BU;Z) = Z[H.(CP®;Z)] = Z[u;, i > 1 : |u| = 2i].

We now discuss the homology of the corresponding Thom spectra,
H.MO;Z/2) and H,(MU;Z).
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We continue with the notational convention that if we do not put coeffi-
cients in (co)homology, we mean coefficients in Z/2. Recall the Thom isomor-
phism,

Uuy, : H*(BO(k)) = H*™*(MO(k)).
Now consider the image of the Thom class ux € H*(MO(k)) in H*~1(MO(k—
1)) under the composition

HY(MO(R)) 2= H¥(SMO®k — 1)) =5 B (MO(k — 1))

where €,_1 : XMO(k — 1) — MO(k) is the structure map of the spectrum
MQO, and the second map in this composition is the suspension isomorphism.
Since the structure map e, is the map induced on Thom spaces by the map
BO(k—1) — BO(k), then the Thom classes are preserved. That is, the image
of uy, under this composition is ug_1. Therefore the Thom classes fit together
to define a zero dimensional cohomology class in the spectrum,

u € H(MO),

and so the Thom isomorphism can be viewed as an isomorphism between the
cohomology of the base space BO and that of the spectrum MQO:

Uu : H*(BO) = H*(MO). (10.14)

Notice that when viewed in this way the Thom isomorphism does not shift
degrees.

Now recall that the dual of the cup product with the Thom class in coho-
mology, is taking the cap product with the Thom class,

My : Ho (MO(k)) = H,_x(BO(K)).

On the spectrum level the dual of the Thom isomorphism 10.14 can therefore
be written

Nu : H,(MO) = H,(BO). (10.15)

Again, from this perspective there is no dimension shift.

Lemma 10.35. Taking the cap product with the Thom class
Mu : H,(MO) = H,(BO)
is an isomorphism of graded rings.

Proof. Since we know that Nu is an isomorphism, we need only show that it
preserves the product structure.

As discussed earlier, the product structure on H,(BO) is induced by the
product maps my,, : BO(k) x BO(r) — BO(k +r) and the product structure
on H,(MQO) is induced by the ring spectrum structure on MO, which in turn
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is induced by the maps of Thom spaces piy,, : MO(k) AMO(r) - MO(k+1)
induced by the maps m : BO(k) x BO(r) — BO(k + r). In particular this
means that the homomorphisms pj , preserve Thom classes. That is,

fig (U sr) = up @ up € H*(MO(K) A MO(r)) = H*(MO(k)) @ H*(MO(r)).

Because of the relationship between cup and cap product, this means that for
every a € Hy(MO(k)) and 8 € Hs(MO(r)), then

Uty O (pieyr ) (@ @ B) = i ((uk N ) @ (ur @ B).
Translated to the spectrum level, this is exactly the statement that Nu :

H,.(MO) = H, (BO) is a ring homomorphism. O

Let MO(k) be the spectrum Y ~*¥*(MO(k)). Note that there are maps
of spectra. MO(1) —» MO(2) — ---MO(k) — --- MO. Moreover, using these
spectra, the Thom isomorphisms do not shift degrees:

Uuy, : H*(BO(k)) = H*(MO(k)).
From this lemma and Theorem 10.34 we can conclude the following.
Theorem 10.36. There is an isomorphism of graded algebras,

H,.(MO) = Z/2[H.(MO(1))] = Z/2[e1, ez, - - , where |e;| = i].

Exercise. Adapt the above arguments to prove the following:

Theorem 10.37. There is an isomorphism of graded algebras,

H,(MU; Z) & Z,/2[H,(MU(1); Z)] = Zt1, ta, - - - , where |t;] = 2i].

10.8 Generalized orientations, the generalized Thom
isomorphism, and the generalized Poincaré and
Alexander duality theorems

As we saw in Chapter 1, orientations are a crucial property for studying
Poincaré duality for manifolds. For a commutative ring R we described the
notion of R-orientability of a manifold (Definition 1.4), and in particular we
proved that if a manifold is Z-orientable, then it is R-orientable for any com-
mutative ring R. We also proved that if a closed topological manifold is R-
orientable, it satisfies Poincaré duality with respect to (co)homology with
R-coefficients.
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In this subsection we verify the analogues of these results with respect to
generalized (co)homology theories. In particular we define the notion of ori-
entability of a manifold with respect to a generalized (co)homology theory,
when the representing spectrum for that theory is a ring spectrum. We prove
that if a manifold is orientable with respect to stable (co)homotopy, the gen-
eralized theories represented by the sphere spectrum S, then the manifold is
orientable with respect to any generalized (co)homology theory E represented
by a ring spectrum. We then prove the appropriate version of Poincaré dual-
ity for E-oriented manifolds. All of these results were originally proved by G.
Whitehead in [100].

10.8.1 Orientations
Recall from Chapter 1, Definition 1.2, that if M™ is a (topological) manifold,
a local orientation of M™ at x € M™ is a choice of generator of
H,(M",M" —{z}) 2 H,(U,,U, — x)
= Hn(R",R" —{0})
H, (5™, point)
Z

1%

1

Here U, is an open neighborhood (chart) of z, homeomorphic to R™.

Now let E, be a generalized homology theory represented by a ring spec-
trum E. To make an analogous definition of local E,-orientation, we need to
consider

E, (5", point) = m,(S" ANE)

>~ 10(S° AR) = mp(E) by the suspension homomorphism.

Now since E is a ring spectrum, 7. (E) is a graded ring, and m(E) is a
(nongraded) subring. This leads us to the following more general definition.

Definition 10.22. Let E, be a generalized homology theory represented by a
ring spectrum E, and let M™ be a topological manifold. Then an E.-local orien-
tation (equivalently referred to as an E-local orientation) of M™ at x € M™ is
a choice of unit (generator) in the ring E,(M™, M™—{z}) = E,(S™, point) =
) (E)

Now recall from the observation after the statement of Theorem 1.3 in
Chapter 1 that if M™ is a closed, connected manifold, it has a global orien-
tation if an only if there is a “fundamental class” [M™] € H,(M™;Z) whose
image in H,(M™, M™ — {x}) defines a local orientation for every x € M™ (i.e
is a generator of H,(M"™, M™ — {x}) for every x € M™). This leads to the
following definition.
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Definition 10.23. Let E, be a generalized homology theory represented by a
connective ring spectrum E (remember that means that my(E) = 0 for ¢ <0),
and let M™ be a closed topological manifold. Then M™ is E.-orientable (or
equivalently, E-orientable) if there is a class [M™]g € E,(M™) so that the
restriction to E,(M™ M™ — {z}) = 7o(E) defines a local E.-orientation for
every x € M™ (i.e is a unit of E,(M"™, M™ — {x}) = mo(E)).

We note that this condition can be described more homotopy theoretically
in the following way. A class [M"]|g € E,(M™) is represented by a map

Car i S™ = M7 AR

For x € M", let U, be an open neighborhood homeomorphic to R™ as above,
and consider the projection map

Py M" — M"/M"™ -U, =2 D"/OD™ = S"
where D™ is the closed n-dimensional disk. Now consider the composition

P S™ M MY AR 2 (M /M™ — U,) AR 22 S AE.
This composition represents a class in 7, (S™ AE) = 7o(E). So the condition
of E-orientability is that there is a class [M"|g € E,(M™) represented by a
map (ps : S™ — M} AE so that the induced map pS : S™ — S™ AE represents
a unit in the ring 7 (E) for every x € M™.

Using the language we used for ordinary homology, a class [M"]|g €
E,(M™) satisfying the above property is called an E,-fundamental class (or
E-fundamental class) of M™. It is also often referred to as an F,-orientation
class of M™.

Exercises.

1. Show that if a closed manifold M™ is S-orientable, then it is E-orientable
for any ring spectrum E. In particular it is orientable with respect to integral
homology.

2. Show that the sphere S™ is S-orientable for every n.

3. Let HZ be the integral Eilenberg-MacLane spectrum. Let v : S — HZ
be the unit. Notice that u induces a map in generalized homology theories,
called the “stable Hurewicz homomorphism”,

uy 7y (X) = Ho(X;Z).

Now let M™ be a closed, connected, S-oriented n-dimensional manifold. Show
that the stable Hurewicz homomorphism in dimension n,

Uy sy (M™) — Hp(M™; Z)

is surjective.
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4. Continuing to assume that M™ is a closed, connected, S-oriented n-
dimensional manifold, let [M™"]s € 75 (M™) be a S-fundamental class, repre-
sented by a map of spectra

(Mg : 228" — £°°(M™T).

Let o € M" be a basepoint, with an open neighborhood U, homeomorphic
to R™. Let M™ be M™ punctured at xg. That is, M™ is the complement

M"™ =M™ —U,,.
Show that there is a weak homotopy equivalence of suspension spectra
¢ XO((S"V M™) = (M™Y.
Hint. Use the result of the previous exercise.

We observe that the notion of FE,-orientability can also be described via
an orientation covering space as was done for orientation with respect to an
ordinary homology theory in chapter one. Namely, one can construct F,-
orientation covering space over any connected (not necessarily compact) n-
manifold M™

p:Org, (M™) — M"

where the fiber over a point « € M™ is the set of units in the ring E,,(M™, M™—
{z}) = mo(E). Details of the construction are left to the reader.

A global E,-orientation is then a section of the covering space Org, (M™).
Because its proof only relied on the Eilenberg-Steenrod axioms, we immedi-
ately have the following generalization of Theorem 1.3.

Theorem 10.38. Let M™ be an n-manifold and A C M™ a compact subspace.
Let E, be a generalized homology theory represented by a connective ring spec-
trum E. Then if « : A — Org (M™) is a section of the orientation covering
space over A, then there exists a unique homology class ay € E, (M, M — A)
whose image in E, (M, M — ) is a(x) for every z € A.

In particular if M™ is closed, then by taking A = (@, this gives the equiv-
alence of having a section of Org, (M™) and the existence of a fundamental
class ag = [M"]g € E,(M™).

10.8.2 Poincaré and Alexander duality, and the Thom iso-
morphism for generalized (co)homology

Our goal is to use the notion of F,-orientation and derive, like we did in chap-
ter 1 for ordinary (co)homology, Poincaré duality for generalized (co)homology
theories. Throughout this subsection we continue to assume that F, is a gen-
eralized homology theory represented by a ring spectrum, [E.
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Our first step is to understand the notion of generalized cohomology with
compact supports. When we defined ordinary cohomology with compact sup-
ports in Chapter 1, we used cochains. For generalized cohomology we make
use of mapping spectra.

Recall from Definition 10.14 that for symmetric spectra X and Y we have
an associated morphism spectra Map(X,Y). In the setting when X is the
suspension spectrum of a space X, this has a particularly easy definition.
Namely Map(X,Y),, = Map(X,Y,,) with the obvious structure maps. (These
mapping spaces consist of basepoint preserving maps.) Now given our ring
spectrum E, notice that the generalized cohomology group is given by

E"(X) = [X,,%"E] (10.16)

mo(Map(X,, 5"E))
=T—n (Map(X+7 E))

For this reason we will choose to define generalized cohomology with
compact supports using mapping spectra. In particular let M™ be an n-
dimensional manifold, not necessarily compact. Let K C M"™ be a com-
pact subspace. Notice that if Y is some other space, the mapping space
Map(M™/M™— K,Y) can be interpreted as the space of basepoint preserving
maps from M™ to Y that map the complement of K to the basepoint of Y.
Notice furthermore that if K; and K, are compact subspaces of M"™ with
K C Ks, then (M™ — K3) C (M™ — K;) we have an induced map, which is
an inclusion,

Map(M"/(M"™ — K1),Y) = Map(M"/(M"™ — K3),Y).

Definition 10.24. We define the space of compactly supported maps,
Map*(M™,Y) to be the colimit, which can be viewed as the union,

Map*(M™;Y) = colimgcprn Map(M"/(M™ — K),Y)

where the colimit (union) is taken over all compact subsets K of M™.
Notice that Map®*(M™;Y) C Map(M™,Y) consists of all maps that send
the complement of some compact subspace K C M™ to the basepoint of

Y. This allows us to define the compactly supported mapping spectrum
Map®(M?Z,E) as follows:

Definition 10.25. We define the spectrum
Map®(MZ,E)

by Map®(M7},E), = Map®(M};Ey) C Map(MZ};Ey) with the induced struc-
ture maps.
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Motivated by observation (10.16), we make the following definition of gen-
eralized cohomology with compact supports.

Definition 10.26. Let M™ be an n-dimensional manifold and E* a general-
ized cohomology theory represented by a connective ring spectrum E. We define
the E*-cohomology with compact supports to be,

BS(M") = m_Map*(M?, E)

Notice there is a natural map E¥(M"™) — E*(M™) which is an isomorphism
if M™ is compact.

Exercise. (Compare with the exercise after the statement of the Poincaré
Duality Theorem 1.5 in Chapter 1.) Show that

EL(R") = B*(S")

and more generally that if X is a space whose one-point compactification X U
oo has the property that the point at infinity in the one-point compactification
has a contractible open neighborhood, as is the case if X is a manifold, then

EX(X) = E*(X Uoo).

We can now state the Poincaré Duality Theorem for generalized coho-
mology. First observe that if E* is a generalized cohomology theory repre-
sented by a ring spectrum E, and if M™ is a E-oriented n-dimensional man-
ifold, then if K C M™ is any compact space, we have an orientation class
ag € E,(M™, M"™ — K), which induces a cap product operation (see Defini-
tion 10.19)

Nag : EY(M™, M" — K) — E,_,(M").

As seen in ordinary (co)homology, these operations respect the inclusions of
one compact subspace into another, and define a map

) colimK{ﬁaK}
— 0

Dygn : ES(M™) = colimgcpn EY(M™, M" — K Ep_g(M™).

Theorem 10.39. Let E* be a generalized cohomology theory represented by
a connective ring spectrum E. Let M™ be a E-oriented manifold. Then the
duality map

Dy - EX(M™) = B, _p(M™).

is an isomorphism for all k.
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Proof. This theorem is a generalization of Theorem 1.6. As you will recall
in the proof of that theorem, the argument just needed that the theorem is
true for M™ = R", which we know in the generalized setting by the exercises
above, as well as the fact that (co)homology satisfies the homotopy, exactness,
and excision Eilenberg-Steenrod axioms, so that, for example, we get Mayer-
Vietoris sequences. Of course, generalized (co)homology theories also satisfy
these axioms, and so the proof of Poincaré duality goes through for such
generalized theories. We leave the exercise of going through that proof and
showing that all the steps are satisfied by generalized (co)homology theories
to the reader. We remark that this was first proved by Whitehead in [100]. O

Now recall in Chapter 2, the notion of orientability was generalized from
manifolds to vector bundles. In particular a manifold is orientable if and only
if its tangent bundle is orientable. (See Definition 2.10.) The idea was to assign
to a vector bundle ( — X an “orientation double cover”, Or¢. An orientation
of ( is a section of this covering space. If no such section exists, the bundle ¢
is not orientable.

There is a similar notion of E-orientability of a k-dimensional vector bundle
¢ — X, where E is a ring spectrum representing a generalized homology theory
E.,. To define this, we consider the covering space Or%* — X, where the fiber
over ¥ € X is the set of units of Ej((y, (. —{0}) = Ex(R*, R —{0}) = 70(E).
We leave it to the reader to adapt the methods used in Chapters 1 and 2
to define the topology of the space Or%*. With this orientation cover we can
make the following definition:

Definition 10.27. Let E be a connective ring spectrum representing the gen-
eralized cohomology theory E*. Let { — X be a k-dimensional vector bundle.
A E-orientation of ¢ is a section of the orientation cover OrCE*.

Exercises.

1. Show that a manifold M™ is E-orientable if and only if its tangent bundle
TM™ — M™ orientable.

2. Show that a closed manifold M™ equipped with an embedding or im-
mersion into R” for some L, is orientable if and only if the normal bundle to
this immersion is orientable. Indeed show that an orientation of its tangent
bundle induces an orientation of its normal bundle, and vice versa.

An important property of oriented vector bundles is the Thom isomor-
phism theorem (5.10). There is an analogous Thom isomorphism theorem for
[E-oriented vector bundles ( — X, which we now state. The proof follows the
proof of Theorem 5.10 at every step.

Theorem 10.40. Let ¢ be a E- oriented n - dimensional real vector bundle
over a connected space X, where E is a connective ring spectrum representing
the generalized cohomology theory E*. The orientation gives generators (units)
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Uy € E™((y,Ce — {0}) & mo(E). Then there is a unique class (called the E-
Thom class) in the cohomology of the Thom space

we EN(T(Q)

so that for every x € X, if

Ju : Ca/(Ce —{0}) = ¢/(¢ — zero(X)) = T(()

is the natural inclusion, where zero(X) is the image of the zero section, then
under the induced homomorphism in E*- cohomology,

Jz : B*(T(C)) = E™(Ce, G — {0}) = mo(E),

Furthermore the induced cup product map

y: BI(X) —= ET(T(Q)

is an isomorphism for every q € Z.

This generalized Thom isomorphism theorem has many applications, but
a particularly interesting one that we will discuss is an analogue of Alexander
duality for E-oriented manifolds.

Theorem 10.41. (Alezander Duality) Let e : M™ C RY be a regular em-
bedding of a closed, E-oriented manifold into Euclidean space. Let E be a
connective Ting spectrum representing the generalized cohomology theory E*
and homology theory E.. Then there is an isomorphism

E"(M™) = En_p_1 (RN — M™).

Before we prove this theorem, we note that one of the most striking appli-
cations of this duality theorem is to knot theory. Recall that a “knot” is the
image of a regular embedding e : S* < R3. We call the image of this embed-
ding K C R3. As above, assume E is a ring spectrum. Then the Alexander
Duality theorem, combined with Poincaré duality calculates the E,-homology
of the complement of the knot in terms of the F, homology of S*:

Corollary 10.42. R
E,R* - K)=E, ;(S").

Notice that in the case of ordinary integral homology this corollary says
that H;(R? — K) = Z. This in particular says that the fundamental group of
the complement of the knot, which can be quite complicated, always has the
integers Z as its abelianization.

We now proceed with the proof of the Alexander duality theorem.
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Proof. . Let . be a tubular neighborhood of the embedding e : M™ < RY,
and let v, — M™ be its normal bundle. Since e is a regular embedding,
its complement of the tubular neighborhood is a deformation retract of the
complement of the manifold,

RN —p. SR — M™.

Now that the quotient space RY /(RY —17,) is homeomorphic to the one-point
compactification 7. U co. But by the Tubular Neighborhood Theorem, this is
homeomorphic to the one-point compactification of the normal bundle, v, Uoco.
Now notice that since M™ is compact, the one-point compactification of the
normal bundle is homeomorphic to its Thom space, T'(v,). So we have

RY /(RN —1.) 2 . Uoo & v, Uoo 2 T(v).

We use this observation in the following way. Since E is assumed to be E-
orientable, then as vector bundles, its tangent bundle is E-orientable. But
by an exercise above this is equivalent to its normal bundle v, being ori-
entable. Now the E-Thom isomorphism theorem 10.40, interpreted for homol-
ogy (rather than cohomology) says that taking the cap product with the Thom
class u, € EN""((T(v.)) gives an isomorphism

~ o

Nt : Byyn-n(T(ve)) = B (M™). (10.17)

Combining this with the above homeomorphisms, together with the fact that
E, satisfies the Excision Axiom, we get an isomorphism

Epn—n®Y RY —p,) =2 E,(M™). (10.18)

Now using the long exact sequence in reduced homology for the pair (RY, RN —
ne) together with the fact that by the Homotopy Axiom which implies that
E.(RM) =0, we see that the connecting homomorphism is an isomorphism,

8: E. RV, RN — ) = E,_1(RY — 1)
for all r € Z. Combining this with isomorphism (10.18) we get an isomorphism
Eg(M™) 2 Egynn 1 (RN —no) & Egpn 1 (RN — M™).
But Poincaré duality gives us an isomorphism
A[M™g : E"=9(M™) = E,(M™).

The theorem now follows by combining these isomorphisms. O
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10.8.3 Spanier-Whitehead duality and Atiyah duality

An important result in the study of closed differentiable manifolds says that
if a manifold M™ is embedded in R, then the Thom spectrum of the normal
bundle and the manifold itself, are in a sense that can be made precise, dual to
each other. This is a stable homotopy theoretic generalization of the Alexander
Duality theorem, and was proved by Atiyah in [6]. The type of duality that
is appropriate in this setting is known as “Spanier-Whitehead” duality (see
[88]). In this subsection we introduce and explore these concepts.

The notion of Spanier-Whitehead duality is a direct analogue of the notion
of duality in linear algebra. Recall that if V' and W are finite dimensional
vector spaces over a field k, then they are said to be dual to each other if
there is a bilinear pairing

VxW =k

whose adjoints define isomorphisms
V = Hom(W,k) and

o

W = Hom(V, k).

In the setting of spectra, the notion of a finite dimensional vector space
is replaced by the notion of a “finite spectrum”. Such a spectrum X is one
whose homology is finite in the sense that

1. Hy(X) is nonzero for only finitely many ¢ € Z, and

2. H,(X) is a finitely generated abelian group for every ¢ € Z.

The archetypical example of a finite spectrum is the suspension spectrum
of a finite, based CW-complex, X = ¥°°(X). This example is quite general
because of the result of the following exercise:

Exercise. Show that every finite spectrum X is weakly homotopy equivalent
to an iterated suspension or desuspension of the suspension spectrum of a
finite CW-complex.

Definition 10.28. Two finite spectra X and Y are said to be “Spanier-
Whitehead dual” to each other, (or simply S — dual) if there is a pairing
of spectra

XAY =S

whose adjoints define weak homotopy equivalences,
Y = Map(X,S) and
X = Map(Y,S).
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An equivalent definition is that X and Y are said to be Spanier- Whitehead
dual if there are maps of spectra

p:XAY—=S and n:S—->YAX

so that compositions
1An puAl

X=XAS—XAYAX—SAX=X and

nAl 1Ap

Y=SAY —YAXAY —YAS=Y

are homotopic to the identity.,

Exercise. Show that these two definitions are equivalent.

If X is a finite spectrum, we denote it’s Spanier-Whitehead dual by DX.

Observations.

1. The sphere spectrum S is Spanier-Whitehead dual to itself, via the
identity map B
SAS —=S.

2. If X is Spanier-Whitehead dual to Y, then the iterated suspensions ¥X
and X~*Y are also Spanier-Whitehead dual.

Exercises.

1. Let X be a finite spectrum, and let E be a connective spectrum. (Recall
that a connective spectrum is one which has zero homotopy groups in negative
dimensions.) Prove that there is a weak homotopy equivalence of spectra

Map(X,S) AE = Map(X,E).

2. Suppose that X and Y are finite spectra that are Spanier-Whitehead
dual to each other. Suppose that E is a connective spectrum representing
cohomology and homology theories E* and E,, then

E1(X)

It

&
=
=

and

for all g € Z.
3. Show that if X and Y are finite spectra,

D(XAY) ~ DX A DY.

4. Show that the dual of the dual is the original spectrum. That is, if X is
a finite spectrum then DDX ~ X.
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Note. In exercises 3 and 4 the equivalences mean the same weak homotopy
type).

5 If f : X — Y is a map of finite spectra, then there is a natural map
D(f): DY) = D(X) with DD(f)=f: X =Y.

6. X L Y % 7 is a cofibration sequence of finite spectra, then

D(X) 29 D(Y) LW D(Z) is also a cofibration sequence of spectra.

Let X be a finite CW-complex, and assume that X is embedded, in a
nonsurjective way, in the sphere S™, such that the complement S™ — X has
the homotopy type of a finite CW-complex. We actually assume that this
embedding has a regular neighborhood 7, meaning an open subset of S™ which
contains the image of X as a deformation retract. For example if X is a smooth
manifold smoothly and regularly embedded, then 1 can be taken to be a
tubular neighborhood. Every finite CW complex does have such a “regular
embedding” in a sphere of sufficiently high dimension. See, for example, [41].
Then the following gives a more general form of Alexander duality:

Theorem 10.43. The Spanier- Whitehead dual of the suspension spectrum of
X, which we denote by DX, is given by the (n — 1)-fold desuspension of the
suspension spectrum of the complement:

DX ~x~(m=byeegn _ x),

Notice that in this setting the complement S™ — X has the homotopy type of
the complement of a regular neighborhood, S™ — 7.

Proof. We think of the sphere S™ as the one-point compactification, S™ =
R™Uoo. By rotating S™ if necessary, we may assume without loss of generality
that X C R™ C S™. Consider the map

a:(R"—X)x X — gn!

v—x
(v,2) > ———
’ [o — |

Now suspend that map:
Ya:Y(R" - X) x X) —» 28" 1 =957,
We now need the following basic homotopy theoretic lemma.

Lemma 10.44. Let A and B be have the homotopy type of CW -complexes.
Then there is a natural “splitting” of the suspension of the product,

S(Ax B)~SAVEBVY(AAB).
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Proof. We leave the proof of this lemma as an exercise for the reader. Use the
following hint:

Hint. Consider the natural projection maps pa : X(A x B) — YA, pp :
Y(A x B) — ¥B, and parp : X(A x B) — X(A A B). Use the (iterated)
“pinch map” S — S' v S§' v St in the suspension coordinate to define a map

S(AxB) = L(AxB)VE(Ax B)VE(Ax B) ZAYPEYPANS, 52 Ay S\ BY Y (AN B)

Show that this map is a homotopy equivalence. It might be easiest to first
show that it induces an isomorphism in homology. O

We now return to the proof of Theorem 10.43. Using Lemma 10.44 we have
a natural map which gives an inclusion of a wedge summand,

:E(R"=X)NX) = (R - X) x X).
We therefore may consider the composition
SR = X)ATLX = S((R" — X) A X) 5 S((R” — X) A X) =2 g7

Taking the n-fold iterated desuspension of the corresponding map of sus-
pension spectra we produce a map of spectra,

fi:N"TUERRY - X)AE®X S =n%080
Taking adjoints we get a map of spectra
p:NTMTDRRRY — X) - D(X). (10.19)

Our goal is to show the map p is a weak equivalence of spectra for every finite
CW complex X. We will use an induction argument on the skeleta of X. We
begin by showing that j is an equivalence when X is a sphere S* embedded
in S™. Now since we are assuming that S* < S™ has a regular neighborhood
n, then S™ — S* is homotopy equivalent to S* — 7. Since we may take an
arbitrarily small perturbation of the embedding and make it smooth, we may
assume that 7 is a tubular neighborhood of a smooth embedding of S* in S™.
Indeed, since the embedding is not surjective, we may assume that its image
does not include oo € R™ Uoco = S™. In this case we have that

% (R"/R™ —n) = =T (n),

where by abuse of notation T'(n) refers to the Thom space of the normal bun-
dle. (Our admittedly bad notation is identifying the tubular neighborhood
with the normal bundle.) But the spectrum 3°°T'(n) is the (n — k)-fold sus-
pension of the Thom spectrum %"~*(S¥)7. But the stable normal bundle of
S is trivial, so we have that

Y2 (R™/R™ — ) = Bk (SF)1 ~ 3o0(87 v §nF). (10.20)
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Now notice that
R"/R™ —n=S"/S" —n, (10.21)
so that
(S8t —n) ~ ZO‘J(S”_’C Vv .S™).

To finish the argument for the case of S¥ C S”, we study the following
diagram of homotopy cofibration sequences of spectra

zoegnl ToR" — zoogn — = pgn
- I 1 |-
gl SRRT-SK) s ER(Sm-SF) s xogn

| I

Z_IZOC (Rn/Rn _ Sk) - 2_1200 (Sn/sn _ Sk)

The vertical map L% (R"/R™ — S*) — X°°(R™ — S*) is an equivalence,
because its cofiber, X°°R" is contractible. Combining this with (10.35) implies
that

YR(R™ — §F) ~ BT (Ee(Sm R v §)) = mo(snhtl v gntly o (10.22)

Now the horizontal map %°°(S™ — S*) — £°°(S") is null homotopic since
the inclusion S™ — S* < S™ is not surjective, and hence its image lies in
S™ — point which is contractible. This implies there is a splitting o : 3X°°(S™ —
Sk) — ¥°(R"—S*). (By a “splitting” we mean that the composition ¥°°(S"—
Sky L ¥R — S*) — 2°°(S™ — S¥) is homotopic to the identity,). This
means that there is an equivalence

YO(R™ — §F) =~ 10871y 1°°(8™ — §%) and by (10.22)
SHB DL
From this it is easy to conclude that
$o (8" — §k) ~ ;oo gnhTl & yinml p(gk) (10.23)
and that this equivalence is induced by the duality map described above
(10.19).

We now continue our proof of Theorem 10.43 using an induction argument
on the skeleta of a finite CW-complex X. It is an easy exercise to see that the
theorem holds if X is a zero-dimensional finite complex, meaning it is a finite
collection of points. So assume the theorem is true for complexes of dimension
less than ¢, and let X be a g-dimensional finite complex. Let X (@1 be its
(¢ — 1)-dimensional skeleton, and assume we have an embedding X — S™.
Then by our inductive assumption we have that

DXx1) ~ 2—(71—1)200(571 — X(q—l))
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and that the equivalence is induced by the pairing 10.19.
Now write
X =Xx@Yy, DIU,, - U, D
where aq,- -, a, : D9 = §971 — X (@1 are the attaching maps.

For ease of notation we will assume that » = 1, which is to say X =
X(@=1) U, D?. The general case, i.e when X has an arbitrary finite number
g-cells can be handled in the same way.

Let X be the space obtained from X (=1 by attaching a thin cylinder

S971 x [1 — ¢,1] via the map a : S9! x {1} — X@ V. X is homotopy
equivalent to X (@~ so we know that

DX ~xn~(n=hyee(gn _ X)), (10.24)
If we let & : S7' — X be the inclusion
a:8T M x{1-etc ST x[1-¢1]CX
we then have a description
X = X Ug DA.

In particular the composition S7-1 = X CcXcCS™isan embedding.
Now consider the cofibration sequence

ST 4 X 5 X
It’s Spanier - Whitehead dual gives a cofibration sequence of spectra

D(a) o

D(S%71) D(X) + D(X)

We also have the commutative diagram of spectra
I (§n — G(S171)) +—— EnTIEe(Sn — X) «+—— NnTlEe(sn — X)
:l# :l# I
—1 D(&) %
D(s71) — D(X) — D(X)

In order to prove that the right vertical map p : X"~ 1¥°(8" - X) — D(X)
is a weak homotopy equivalence, it suffices to show that the top row

SPTISR(ST — a(897h)) = BTIEP(S™ — X) = BTIER (S - X)

is a cofibration sequence of spectra. This is because if that were the case, then
the above diagram would be a map between cofibration sequences, where two
of the terms are equivalences. This would imply that the third term is an
equivalence.
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We can see that this sequence is a cofibration sequence at the level of
spaces. Namely, since & : 997! - X — X — S™ is an embedding, it’s
complement can be described by

S™— (SS9 = (S — X) Ugn_x (8™ — DY),

Thus the cofiber of (8" — X) — (8™ — @&(S?71)) is the quotient
(8™ — D?)/(S™ — X). But since S™ — DY is contractible, we have £>°(S" —
D%)/(S™ — X) =~ £°%(S™ — X). In other words, X" 13°°(S™ — G(5971)) +
Yoy (S — X) < N7 TIN0(S™ — X) is a cofibration sequence of spectra.
As mentioned before this is what was needed to complete the proof. O

We often have a situation where the embedding of a finite complex X is
given inside a Fuclidean space, X C R™ C R" Uoco = S™. So it is natural to
ask how the the homotopy type of the complement R™ — X is related to the
Spanier-Whitehead dual. For this notice that

R - X = 5" — (X))

where the disjoint basepoint in X, is embedded in S™ as the point at co. So
Theorem 10.43 has the following corollary.

Corollary 10.45. Let X be a finite CW -complex reqularly embedding in R™.
then there are weak homotopy equivalences of spectra
=Dy R - X) =2~ mUyneosn — X ) ~ D(X,

(X
(X

1

[
O T

)
+)
)VS

An important result regarding the topology of manifolds, proved by Atiyah
in [6], relates the Thom spectrum of the normal bundle of an embedding into
Euclidean space, e : M™ < RY to the Spanier-Whitehead dual of M™. This
duality property is sometimes known as “Atiyah duality”, and it now follows

quickly from the generalized version of Alexander duality that we’ve proved
(Theorem 10.43) and its Corollary 10.45.

Theorem 10.46. (Atiyah [6]) Let M™ be a closed n-dimensional manifold
and e : M™ — R"* an embedding with normal bundle v* — M™ and tubular
neighborhood n.. Then there is a weak homotopy equivalence of spectra

LT (WF) ~ 2"t D(MT)

Proof. Recall that we have a homeomorphism of the Thom space of the normal
bundle,

=¥ Uoo 2, Uoo = R"H/(R™F — ).
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But since R"** is contractible there is a homotopy equivalence
Rn+k/(Rn+k —1e) = E(Rnﬂc —7e)-
So we have i
(M™)7e ~ B(R"F —p,) ~ DR - M),
The theorem now follows from Corollary 10.45. O

As in the constructions of the maps yielding Alexander duality (Theorem
10.43) one can give a conceptual, explicit map yielding Atiyah duality, Suppose
the tubular neighborhood 7, of M™ in R™** is small enough so that every point
y € 1. has Euclidean distance less that some number € > 0. Now consider the
subtraction map

M™ x Rk 2, gtk (10.25)

(x,v) = e(z) —v
This map restricts to give a map
Mn % (Rn+k o ne) i> R?’Hrk: o Bn+k

where B"** is the open ball around the origin R"** of radius e. We therefore
have a map of the quotient space

M™ x Rn+k/Mn % (Rn-i-k _ 776) LN Rn-i—k/ (Rn-i-k _ B?+k) ~ Sn+k. (10.26)

The left hand quotient space is equal to the smash product with a disjoint
basepoint, M} AR™E /(R HF _p ) which in turn, via the tubular neighborhood

theorem, is homeomorphic to MY A M v* Thus this subtraction map defines
a map

a:M_Ti_L/\MVk — gntk

and therefore map of spectra, which by abuse of notation we still call «,
a: M7 AR oo () 5 50(50) = 8, (10.27)

We leave it to the reader to verify, by running through the above proof,
that this subtraction map « yields the Spanier-Whitehead duality between
M? and the Thom space of the normal bundle £~ (k) xee a1+,

Inspired by this we make the following definition.

Definition 10.29. Let M™ be a closed n-dimensional manifold embedded in
Euclidean space M™ C R™* with normal bundle v* — M™. Define the spec-
trum M~TM to be the desuspension of the Thom space

M-TM _— E—(n+k)zoo(Muk )
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Exercise. Show that the homotopy type of the spectrum M~ does not
depend on the choice of embedding.

Atiyah duality can then be restated as follows.

Corollary 10.47. There is an equivalence of spectra
MM ~ D(MT)
= Map(Mﬁa S)

We now observe that the Spanier-Whitehead dual of any space X with a
disjoint basepoint, D(X ;) = Map(X;,S) has a natural ring spectrum struc-
ture. This is because there is a natural diagonal map

ArXy 5 (X xX)y =Xy AX, (10.28)
and of course a (commutative) ring structure on the sphere spectrum
SAS = S.
This allows us to make the following ring structure on D(X ) = Map(X4,S):

i Map(X4,S) A Map(X,,S) L Map(Xy A X, SAS) (10.29)
£ Map(X4,SAS) = Map(X+,S)

where (61 A 62) (21 A @3) = 61(01) A da(w2) and A*(6)(x) = Y(A(x)) =
Y(x Ax).

Actually this ring structure is commutative in the sense of [48] essentially
because the diagonal map is cocommutative and because the ring structure on
S is commutative. We refer the reader to [48] for a discussion of commutative
ring (symmetric) spectra.

Notice that by Corollary 10.47 this ring structure translates to give the
Thom spectrum M ~T™ the structure of a commutative ring structure. In [22]
he author described an explicit ring structure on M ~TM defined in terms of
an embedding M" — Rtk

10.9 Eilenberg-MacLane spectra and the Steenrod alge-
bra

When we first introduced the notion of a spectrum toward the beginning of
this chapter, one of the first examples described was that of the Eilenberg-
MacLane spectrum HG, where G is an abelian group. The n*" space in this
spectrum (HG),, is an Eilenberg-MacLane space

(HG),, = K(G,n).
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The main reason that these spaces, and the resulting spectrum are so impor-
tant is that they classify ordinary (co)homology, In particular, if X is any
based space of the homotopy type of a C'W-complex

H™(X;G) = [X,K(G,n)]. (10.30)

Because the Eilenberg-Steenrod axioms are satisfied, this means that, via
Brown’s Representability Theorem 10.16 and Whitehead’s Theorem 10.18,
that the Eilenberg-MacLane spectrum HG represents ordinary (co)homology
with G-coefficients. This means that given any pair of spaces A C X of the
homotopy type of CW complexes

HY(X, A G) = [X/ALHG] and Hy(X,A;G) = m(X/ANHG).
In fact if E is a spectrum its homology and cohomology also satisfy
HYE;G) = [E,XHG] and H,(E;G) = 7my(EAHG).
In particular notice that
H*(HG; G) & [HG, HG]*

where the superscript * represents the degree of the maps to be taken. That
is, [HG,HG)? = [HG, LHG].

This observation describes a special case of the generalized cohomology
of a representing spectrum. Namely, suppose E is a spectrum representing a
generalized cohomology theory E*. Then

E*(E) = [E,E]*.

When E is a ring spectrum these cohomology groups form a ring via com-
position. Indeed they form an algebra over the ground ring E. = E,(point) =
mo(E). As we will see, the importance of this algebra is due to the fact that it
forms the algebra of E*-cohomology operations, in a sense that we will now
make precise.

10.9.1 Cohomology operations

Recall that according to Definition 10.8, a generalized cohomology theory E*
consists of a collection of functors from the category of CW-pairs CW5 to the
category of abelian groups G, as well as a collection of natural “coboundary”
homomorphisms §9 : E4(A) — E94TY(X, A) for any CW-pair (X, A). satisying
the Homotopy, Excision, and Exactness Eilenberg-Steenrod axioms.

Definition 10.30. Let E* be a generalized cohomology theory. An E*-
cohomology operation of degree k is a collection of natural transformations
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al : B1 — E9YF that respect the coboundary homomorphisms. That is, for
any CW pair (X, A),
5q+kaq(x) - aq+16q(x)

for any x € E1(A).
Given a cohomology operation o = {a?} of degree k, we simply write

a: E* — E*tE

Remark. The type of cohomology operations we are considering are some-
times referred to as “stable cohomology operations” since our definition im-
plies that such a cohomology operation commutes with the suspension iso-
morphism E*(X) & E*(XX, point).

Exercise. Verify this statement. That is, verify that according to our defi-
nition of a cohomology operation, such an operation commutes with the sus-
pension isomorphism.

In this book we are mostly concerned with cohomology operations for
ordinary cohomology with coefficients in Z/p where p is a prime number.
Notice that the set of these operations form an algebra over the field Z/p.
The multiplication is given by composition of cohomology operations. This
algebra is called the “mod p Steenrod algebra” which we denote by A,.

Notice that if (X, A) is any pair in CWa, its cohomology H*(X, A;Z/p)
forms a module over the Steenrod algebra A, under application of cohomology
operations. This structure is extremely important in homotopy theory, and so
we explore it further here.

The following is the basic connection between the Steenrod algebra A, of
mod p cohomology operations, and the mod p Eilenberg-MacLane spectrum.

Theorem 10.48. There is an isomorphism of algebras over Z/p
¢: Ay = H*(HZ/p; Z/p) = [HZ/p, HZ/p]".

Proof. (Sketch). In some ways the proof of this theorem is formal. We suggest
the book by Mosher and Tangora [78] for details.

Let a € A, be an element of degree k. Since a is a cohomology operation, it
acts on the mod p cohomology of every space, and in particular of Eilenberg-
MacLane spaces. So a € A, defines homomorphisms

an : H*(K(Z/p,n); Z/p) — H"**(K(Z/p;n); Z/p)

for every n > 0.
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Now H™(K(Z/p,n);Z/p) = Z/p so consider the image of the genera-
tor a, (1) € H""k(K(Z/p;Z/p). Since cohomology is classified by Eilenberg-
MacLane spaces, we can represent these cohomology classes by maps which
are well-defined up to homotopy, which by abuse of notation we call

an : K(Z/p,n) — K(Z/p,n + k)

for each n.

Furthermore, and the reader should check this, because the cohomology
operation a € A, respects the suspension homomorphism, the following dia-
grams homotopy commutes:

K(Z/pan) L) K(Z/pan+k)

=| |=

QK(Z/p,n+1) —— QK(Z/p,n+k+1).

An41

The a,’s then fit together to give a map of w-spectra, which by abuse of
notation we again call
a:HZ/p — XFHZ/p,

We leave it to the reader to check that this map of spectra is well-defined up
to homotopy, and this correspondence defines a map of graded algebras,

¢: A, — [HZ/p; HZ/p]*.

To see that this map is an isomorphism, we note that the above procedure is
completely reversible. Namely, given o € [HZ/p; HZ/p]*, we represent a by a
map of w-spectra, which defines maps

o s K(Z/p,n) = K(Zfp,n + k)
such that the following diagrams commute:

:l l: (10.31)
OK(Z/p,n+1) —— QK(Z/p,n+k+1).

Q0‘71-%—1
If (X, A)is any CW-pair, then by composition the maps «,, then define maps
[X/A, K(Z/p,n)] == [X/A, K(Z/p,n + k)]
H"(X/A;Z[p) == H" ™" (X/A; Z/p)

We leave it to the reader to check that the commutativity of the squares
(10.31) says that these operations are homomorphisms commute with the
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suspension homomorphism, and therefore define a cohomology operation
P(a) € Ap, We leave it to the reader to fill in the details of this argument and
to check that ¢ : A, — [HZ/p,HZ/p|* and ¢ : [HZ/p,HZ/p]* — A, are both
algebra homomorphisms that are inverse to each other.

O

Historically, the Steenrod algebra A, was discovered in two main steps.
First, in approximately 1950, N. Steenrod described cohomology operations
Sq* with coeffiencts in Z/2 that became known as “Steenrod squares” and he
studied many of their properties. His student J. Adem found the multiplica-
tive relations the Steenrod operations satisfied. Steenrod produced similarly
defined cohomology operations P? with coefficients in Z/p for p an odd prime,
which he called “reduced powers”. The reduced powers were shown to satisfy
similar “Adem relations”.

The second step, which we see is necessary by Theorem 10.48, is a cal-
culation of [HZ/p,HZ/p]*. To do this one needs to compute the cohomol-
ogy of the Eilenberg-MacLane spaces, H*(K(Z/p,n);Z/p). This was carried
out by Cartan and Serre. A very nice account of that calculation is given
in [78]. It is a beautiful example of a calculation using Serre’s spectral se-
quence. In any case, the result of these calculations was that the Steenrod
algebra A, (= [HZ/p, HZ/p|*) is precisely the algebra generated by the Steen-
rod squares at p = 2, and by the reduced powers together with the “Bockstein
operator” 3: HY(X, A;Z/p) — HI (X, A;Z/p) when p is odd.

To understand the Bockstein operator, recall that given any short exact

sequence of abelian groups

0-HLHGBK—0 (10.32)

there is an associate long exact sequence of cohomology groups,
O HI(X, A H) 2 HI(X, A;G) 25 HY(X, A K) & HUPY(X, A H) 22

The connecting homomorphism 6 : H4(X, A; K) — H9" (X, A; H) is known
as the “Bockstein operator” associated to the short exact sequence (10.32).
Of particular importance are the Bockstein operators associated to the short
exact sequence

0—Z/p—Z/p* = Z/p—0

for p a prime.

Exercise. Show that the Bockstein operator 5 : HY(X,A;Z/p) —
HYTY(X, A;Z/p) associated to this short exact sequence is a cohomology op-
eration in the sense of Definition 10.30.
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10.9.2 The axioms and some consequences

In the famous book by Steenrod and Epstein on cohomology operations [91],
they showed that the Steenrod squaring operations satisfy the following ax-
ioms, and moreover, they are completely characterized by these axioms.

Axioms. (10.33)

1. There are cohomology operations in the sense of Definition 10.30 known
as “Steenrod squares”

Sq' - H*(=2/2) = H"" (= Z/2)
for all integers ¢ > 0.
Sq° =1 the identity transformation
Sqi(x) =0 if the dimension of x is less than i

Sqi(x) = x?  if the dimension of x equals i

AN e

The Steenrod squares satisfy the product formula known as the “Cartan
formula”:

Sq'(zy) = Y (S¢’x)(Sq"7y).

J
6. Sq' is the Bockstein homomorphism associated to the coefficient sequence

0—-2/2—7Z/4—1Z/2—0.

7. The Steenrod squares satisfy the “Adem relations”:

For a < 2b,

b—j5—1 I
Sqasqb = Z < a ;7 2j >Sqa+b IS¢’
J

where the binomial coefficients are taken mod 2.

Axioms (6) and (7) can be shown to be consequences of axioms (1)-(5).
Since they commute with the suspension isomorphism, the Steenrod opera-
tions act on the cohomology of spectra as well as spaces.

A consequence of Cartan and Serre’s calculation of the cohomology of
the Eilenberg-MacLane spaces H*(K(Z/2,n);Z/2) and the resulting calcula-
tion of the cohomology of the Eilenberg-MacLane spectra, H*(HZ/2;Z/2) =
[HZ/2,HZ/2]* one has the following theorem.

Theorem 10.49. The algebra of 7Z/2-cohomology operations As =
[HZ/2,HZ/2]* is the algebra over Z/2 generated by the Steenrod squaring
operations Sq' subject to the Adem relations.



Stable Homotopy 323

In this book we will mostly be concerned with mod 2 cohomology opera-
tions, but in Steenrod and Epstein’s book [91] they also describe the following
mod p cohomology operations for p an odd prime.

Let p be an odd prime and let
B HI(X, 4 Z/p) — H* (X, A;Z/p)
be the Bockstein operator associated to the short exact sequence
0—Z/p—Z/p* = Z/p— 0.
We have the following axioms:

Axioms. (10.34)
1. There are cohomology operation in the sense of Definition 10.30
P': HY(X, A;Z)p) — HIT? =Y (X A Z/p)
known as “Steenrod reduced power operations” for all integers ¢ > 0.

2. P =1 the identity transformation
If dim(x) = 2k, then P*(z) = aP.

LS

If 2k > dim(x), then P*(x) = 0.

5. The reduced power operations satisfy a product formula known as the
“Cartan formula”:

sz Pk z

6. The reduced powers satisfy the “Adem relations””: If a < pb then

Pan _ [az/p](_l)a-&-t ((p — 1)(b — t) — 1) Pa-l—b—tpt'

part a—pt

If a < b then

[a/p]
a b _ a (p_l)(b_t) a+b—
P*BP _g(_l) +t (W)BP+ t pt

+ ai/p a+t 1 ((p —1)(b—1t) - 1) Pa+b7tIBPt.

a—pt—1
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Again, by the calcuation of Cartan and Serre of the cohomology of the
Eilenberg-MacLane spaces H*(K(Z/p,n);Z/p) and the resulting calculation
of the cohomology of the Eilenberg-MacLane spectrum, H*(HZ/p;Z/p) =
[HZ/p,HZ/p]* one has the following theorem:

Theorem 10.50. For p an odd prime, the algebra of Z/p-cohomology opera-
tions A, = [HZ/p,HZ/p|* is the algebra over Z/p generated by the Steenrod
reduced power operations P* and the Bockstein operator 3, subject to the Adem
relations.

As it turns out, the axioms for the Steenrod squares and Steenrod’s reduced
power operations completely characterize these cohomology operations (see
[91] for a verification). We now observe that calculations can be directly made
using these axioms.

Proposition 10.51. . Let X be a space and v € H*(X;7Z/2). Then

Sq(ub) = (’“) e

7

Proof. If k = 0, then the proposition follows immediately from Axioms 2 and
3 given in (10.33). Now we use induction on k, and observe that

Sq'(u*) = Sq'(u-u ") = S¢°(u) - S¢* (uF1) + Sqtu - St (uWF )

ST e ()

For ease of notation let P denote the infinite dimensional real projective
space P = RP*°. Recall that its cohomology is the polynomial algebra,

O

H*(P;Z/2) = 7./2[d]

where a € H'(IP; Z/2). Proposition 10.51 then gives a complete calculation of
H*(P;Z/2) as a module over As.

10.9.3 Basic algebraic properties

We now discuss some basic properties of the Steenrod algebra A,. For a more
detailed discussion we refer the reader to the book by Steenrod and Epstein
[91].

We begin with a purely combinatorial identity which is extremely useful
in making calculations with the Steenrod algebra.
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Proposition 10.52. Let p be a prime and let a = Y. a;p' and b =
S bipt (0 < aib; <p). Then

O-1) o

We leave the proof of this proposition as an exercise for the reader, or the
reader can refer to [91] for a proof. The main observation needed for the proof

is that because for 0 < ¢ < p, the binomial coefficient (127) is congruent to

zero mod p, and so
(I+z)’ =142 mod p,

and by induction, _ _
(1+2)” =1+2” mod p

for all 7.
We now focus our attention on the mod 2 Steenrod algebra, As.

Given a finite sequence of nonnegative integers, I = (i1, , i), k is called
the length of I, k = £(I). We write

Sql = Sq't - S¢*.
We say that a sequence I is admissible if i, > 2i,44 for g =1,--- ,k —1 and

if i > 1.

Theorem 10.53. The collection {Sq’ : Iis admissible} forms a Z]2-vector
space basis for As.

Proof. Given a sequence I = (i1, ,i) we define its moment to be

k
m(I) = kiy.

We first show that any Sq’, for any inadmissible sequence I is a sum of Sq”’s
where the sequences J have smaller moment than 7. This will show that the
admissible monomials span the Steenrod algebra.

Let I = (i1, ,ir) be an inadmissible sequence with no zeros. Then for
some ¢, iq < 2ig+1. Now by the Adem relations,

Sql — SqLSqiquiq+lqu — ZaquLSqiq+iq+lijquqM
J

where a; € Z/2. It is easy to check that each of the monomials in the sum
have smaller moment than m(I). Thus the admissible monomials span A,
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In order to prove that the admissible monomials in A, are linearly indepen-
dent we need the following lemma, which involves an independently interesting
calculation.

Let P" denote the n-fold cartesian product of the infinite dimensional
projective space P with itself. Let w = a x --- x a € H*(P";Z/2). Notice that
the following lemma will prove that the admissible monomials are linearly
independent, and will complete the proof of this theorem.

Lemma 10.54. The map Ay — H*(P™;Z/2) defined by
Sq" — Sq¢' (w)

sends admissible monomials of dimension < n to linearly independent ele-
ments.

Proof. We prove this lemma by induction on n. For n = 1 it follows from the
fact that Sq'(a) = a® # 0. So we now assume the lemma is true for n — 1.
Our goal is to prove it for n. So suppose that

Za;SqI(w) =0
T

where the sum is taken over monomials of a fixed dimension ¢, where ¢ < n.
Our job is to prove that this implies that the coefficients a; are all zero. We
do this by decreasing induction on the length ¢(I). Suppose that a; = 0 for
¢(I) > k. We can rewrite the above equality as

Z arSql (w) + Z arSq’ (w) = 0. (10.35)

o=k 1<k

Now the Kunneth formula says that

HIT™ (P 2/2) 2 H (B 2/2) @ HIT (P15 2/2).

Let 7 be the projection onto the summand with s = 2%, Let w = u x w’, where
w' € H" 1 (P"~1;Z/2) is the generator. Then by the Cartan formula

Sq' (w) = Sq'(a x w') = 8¢’ (u) x S¢' 7 (w') (10.36)
<J

where J < I means that 0 < j. < 4, for all . Let Jr be the sequence
(2]6—17 .. ’217 20)
We claim that

o if 1)<k
7S¢’ (w) = {an < g () i D) =k, (10.37)
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To see this, notice that since dima = 1, S¢’(a) = 0 unless J has the form
(2971242 ... 2 1) for some q. We call this sequence Jq. Notice furthermore
Sq’i(a) = a*".

To prove (10.37), notice that if ¢(I) < k then J < I implies that £(J) < k
and so 7S¢ (w) = 0. If £(I) = k, then 7(Sq”’(a) x S¢'~7(w')) = 0 unless
J = J, < 1. This verifies (10.37).

If we apply 7 to equation (10.35) and use (10.37), we find that

a® x> arSq' T (w') = 0. (10.38)
o(I)=k

Now one can easily check that as I ranges over all admissible sequences of
length k& and dimension ¢, I — Ji will range over all admissible sequences of
length < k, and dimension ¢ — 2¥ + 1, and the correspondence is one-to-one.
Since k > 1, we have that ¢ — 28 + 1 < n — 1. So the inductive assumption
on n implies that each coefficient in equation (10.38) is zero. Thus a; = 0 for
¢(I) = k. This completes the proof of the lemma and therefore of Theorem
10.53. O

O

We now have an additive basis for the Steenrod algebra A;. Our next goal
is to find a convenient set of multiplicative generators.

Recall that if A is an associative graded algebra, the set of decomposable
elements of A is the image of the multiplication map,

p:A®A— A
This image is a two-sided ideal, and the quotient,
Q(A) = A/p(A® A)

is called the set of indecomposable elements of A. Our next goal is to compute
the set of indecomposable elements in the Steenrod algebra, As.

Lemma 10.55. The Steenrod square Sq' is indecomposable if and only if i is
not a power of 2.

Proof. We write the Adem relations in the form

(b - 1) Sq*t? = S¢*Sq" + ) (b o j) Sq* IS

a =0 a J

where 0 < a < 2b. One then immediately sees that if <b ; 1) =1e€Z/2,

then Sq®*? is decomposable. Now suppose that i is not a power of 2. Then
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there is a unique k such that i = a + 2%, 0 < a < 2*. Let b = 2%. Then
b—1=1+2+---+ 21 But as is immediate from Proposition 10.52,
b—1 -
( a ) =1¢€ Z/2. Thus Sq¢* is decomposable.
To prove the converse, let i = 2¥. Suppose by way of contradiction that
Sq2k is decomposable, so we can write

2k 1

S¢* = Z m;Sq’.
j=1

Then if u € HY(P;Z/2) = Z/2 is the generator, we would have that

2k 1
= 5¢ W = Y m;Sg’(u*) =0
j=1

2k+1

since for 1 < j < 2% —1, dim S¢/ < dim u2". This contradiction completes the
proof of the lemma. O

From this we now have a set of multiplicative generators of As:

Theorem 10.56. The elements SqQk multiplicatively generate As.

10.9.4 The Hopf Invariant

We now describe a classical application of the the Steenrod algebra to the ho-
motopy groups of spheres. In particular we study the question of the existence
of elements of the homotopy groups of spheres having Hopf invariant one.

Given amap ¢ : S?"~1 — S™ it’s Hopf invariant, h(¢) is defined as follows.
Consider the mapping cone,

C(9) = 5" Uy D"

where here D?" represents the closed disk of dimension 2n which is attached to
S™ along its boundary 9D?" = $?"~1 via the map ¢. That is, C(¢) is the CW
complex built out of the union of S™ with D?", subject to the identification
of z € §?"~1 = 9D?*" with ¢(x) € S™.

Now compute in mod 2 cohomology

Z/2 ifg=nor2n
0 otherwise

HY(C(¢);2/2) ={

Let 0, € H"(C($);Z/2) and 03, € H*"(C(¢);Z/2) be the generators. Now
take the cup square,

O’i =€-09, € HQ"(C(¢)Z/2)
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where € € Z/2. Then the Hopf invariant of ¢ is defined to be the coefficient
h(¢)=€e€cZ/2.
Notice that we could have equivalently defined the Hopf invariant h(¢) by

Sq" (o) = h(d)o2n.

Exercises.

1. Show that the Hopf invariant is a homotopy invariant. That is, if
¢1 and ¢y : S?"! — S™ are homotopic, then h(¢;) = h(p2), and more-
over,

h: 7T2n_1(5n) — Z/2
is a homomorphism.

2. Extend the definition of the Hopf invariant(s) to the stable homotopy
groups of spheres
hk : Tk_l(S) — 2/2,

where if ¢ : ¥¥71S — S represents a class in m,_1(S), and it has mapping
cone C(%), then define hy (1)) by the equation in cohomology

Sq*(00) = hi(¥) - o

where oy and oy, are the generators of H?(C(¢)Z/2) in dimensions zero and
k respectively.
Show that Ay : m,—1(S) — Z/2 is well-defined.

3. Consider the self map of the sphere spectrum ¢t : S — S of degree 2.
That is, t € mo(S) = Z represents 2 € Z. Show that ¢ has Hopf invariant one,

hi(t) =1€Z/2.

We now describe an immediate application of the Steenrod algebra to the
problem of the existence of elements of the stable homotopy groups of spheres
having Hopf invariant one.

Theorem 10.57. If there exists an element ¢ € wi—1(S) with Hopf invariant
hi(¢) =1 € Z/2, then k is a power of 2.

Proof. Suppose ¢ € mr_1(S) has Hopf invariant one. Then in the mapping
cone C(¢), Sq*(09) = or € H'(C(¢);Z/2). Suppose k is not a power of 2.
The by Lemma 10.55, S¢* is indecomposable. So we may write

k—1
qu = Zajbj
j=1

where for each j, the dimension of b; is equal to j, where 1 < j < k —1. Now
Sq*(00) # 0 implies that bj(og) # 0 for some 5. But b;(0q) € HI(C(¢);Z/2) =
0 since 1 < 5 < k — 1. This contradiction implies the theorem. O
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This result has an important application to the question of the existence
of certain multiplicative structures on spheres and on Euclidean spaces.

Let S;, i = 1,2,3 be spheres of dimension n — 1, and suppose one has a

pairing
J7a Sl X SQ — S3.

We say that p has bidegree (a, ) if the restriction of p to S1 X zo has degree
« and the restriction of p to x; X So has degree 3, where x; € S; are base-
points. Notice that the degree is independent of the choices of z; € S;. We
observe that if we think of S' € C as the unit complex numbers, then complex
multiplication defines a map

/“:Slxsl—hgl

of bidegree (1,1). Similiarly multiplication of quaternions defines a map ps :
53 % 8% — §3 and multiplication of the octonians defines a map p7 : S7xS7 —
S7, both having bidegree (1,1).

Now go back to the general case of a map p : S1 X So — S3 of bidegree
(o, B8). Let D;, i =1,2,3 be closed n-dimensional disks so that

oD; = S;.

Notice that (D1 x D3) = (S1 x D2)U(D; x S3) which is a (2n—1) dimensional
sphere, and that
(Dl X Sg) N (Sl X DQ) = Sl X SQ.

Consider the suspension >S5 which is an n-dimensional sphere. This sus-
pension consists of an upper and lower cone which we denote by C, and
C_. These are n-dimensional cells with Cy N C_ = S3. We extend the map
w81 xSy — S3 to a map

C(,U) : (Dl X SQ) U(Sl X Dz) — C+ uc_ = 253 ~ gn

in such a way that C(u)(D1 % S2) C C4 and C(u)(S1 x D2) C C—. (We leave
it to the reader to verify that such and extension can be produced.) Then
C(p) is a map

C(p): 8*t — 8™

We now prove the following theorem about this construction.

Theorem 10.58. The Hopf invariant of the map C(u) : S?"~1 — S™ is the
product of the components of the bidegree mod 2:

WC(f)) = aff € Z,/2.

Proof. (See [91]) The product of the disks D; x Dy has boundary equal to
(D1 x S3) U (S1 x D3). So may consider the space

X = (Dl X Dg) Ue(w) Sm
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where the attaching is along the boundary 9(D; x Ds) via the map C(u).
Notice that the attaching map gives rise to a map of triples

g: (D1 X DQ,Dl X 52,51 X DQ) — (X7 CJF,CL).

Let w e H™"(X;Z/2) = Z/2 be the generator. Define uy and u_ to be the
inverse images of u under the isomorphisms H"(X,C4;7Z/2) = H"(X;Z/2)
and H"(X,C_;7/2) = H"(X;Z/2) respectively. Consider the commutative
diagram (all coefficients are taken to be Z/2)

H"(X)® H"(X) —~ 5 H>™(X)

4 Tg

H™(X,Cy)® H"(X,C_) —=— H?'(X,%S3)

Thus the cup product u;, Uu_ has image u? under the map H*"(X;XS3) —
H?"(X).

Now easy diagram chases, that we leave to the reader (or refer to [91])
show that the map of triples g restricts to maps in cohomology

g* : It[n()(7 C,) — Hn(Dl X DQ,Sl X Dg) and
g* : Hn(X, C+) — Hn(Dl X DQ,Dl X SQ)

such that ¢* (u4) = avy and ¢*(u_) = fv_ where vy € H"(Dy X D3, Sy x D3)
and v_ € H"(D; x Dy, D x Sg) are the generators. Notice that v, determines
a class v1 € H"(D1,S1) and v_ determines a class vy € H"(D3, S3) under the
obvious projection maps. Now

U_t,_U’U_:(Ule)U(lXUg):Ul X Vg.

Therefore
g"(us) Ug*(u-) = aB(vy x v3)
and (v; X vo) generates H2"(Dy x Dy; D1 x So U Sy x Dy).
Now g : (D1 x Dg, D1 X S3US1 x Do) — (X, XS3) is a relative homeomor-
phism and so induces an isomorphism in cohomology. So we have isomorphisms

o

H?(X) <= H*(X,%S3) = H?*(Dy x Dy, Dy X Sy U Sy x Dy)

Under these isomorphisms, u? € H?"(X) corresponds to u_ U u; €
H?"(X;%S3) and to aB(u; X ug) € H?>*(Dy x Dy, D1 x So U Sy x D3). Since
(up x ug) € H?"(Dy x Do, Dy x Sy U Sy x Dy) corresponds to the gener-
ator of H?"(X) under these isomorphisms, this completes the proof of the
theorem. 0

Notice that Theorem 10.58 says that if there is a pairing

E Sn—l % Sn—l N Sn—l
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that has bidegree (1, 1) then the resulting construction C(u) : S?"~! — S™ has
Hopf invariant one. But by Theorem 10.57 we know that this cannot happen
unless n is a power of 2. That is to say we have the following application of
these results.

Corollary 10.59. If there is a pairing pn: S*~' x S*~1 — S"~1 of bidegree
(1,1), then n = 2% for some k > 0.

Finally we remark that if R™ has the structure of a division algebra (even
a non-associative one) then its unit sphere S"~! would admit a pairing of
bidigree (1,1). This is given by the restriction of the multiplication map

ST ST C (R - {0)) x (R™ — {0}) MY, g {0} Z 97!

where the last map is the homotopy equivalence given by radial retraction of
R™ — {0} onto the unit sphere. Notice that the image of the multiplication of
two nonzero elements of R™ is nonzero is because a division algebra contains
no zero divisors.

Exercise. Show that the pairing of the unit sphere S"~! described above
when R"™ is a not-necessarily commutative or associative division algebra, has
bidegree (1,1).

From these arguments we know that the only dimensions in 7,_1(S) that
can possibly contain elements of Hopf invariant one are when n = 2¥ for
some k > 0. In one of the most striking algebraic topology results of the
20th century, J. F. Adams showed that there are no elements of m,_1(S) of
Hopf invariant one unless n = 1,2,4,8 [2]. In particular this means that the
only dimensions n for which R™ can have the structure of a division algebra
are n = 1,2,4, or 8. Of course such structures in these dimensions are well
known: the real numbers when n = 1, the complex numbers when n = 2, the
Hamiltonians when n = 4, and the octonions when n = 8. What was startling
was that sophisticated techniques from algebraic topology could be used to
show that no such structures exist in other dimensions.

Adams’s technique for the solution of this problem is what became known
as the Adams spectral sequence. We will say more about this spectral sequence
later in this book.

10.9.5 Definitions

So far our discussion of the Steenrod algebra and its applications were based
on the assumption that the Steenrod squares and reduced powers exist, and
satisfy the axioms 10.33 and 10.34. We now give a quick definition of the
Steenrod squaring operations.

Given a space X, consider the diagonal mapping A : X — X x X. This
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map is clearly equivariant with respect to the trivial Z/2- action on the source
X and the action on the target X x X given by permuting the coordinates.
Indeed A embeds X as the subspace of fixed points of this action. By this
equivariance we can extend this map (which by abuse of notation we also call

A),
A:EZ2 Xz/9 X — EZ[2 Xz,5 (X x X) (10.39)
BZ/2 x X 25 EZ/2 xz/5 (X x X).
In this notation EZ/2 refers to the total space of the universal principal bundle
7/2 — EZ/2 — BZ/2
a model of which can be taken to be the Z/2-covering space
Z]2 — S — RP>™.

The subscript Z/2 under the product sign means taking the orbit space of the
induced diagonal action on the product space. Notice that since in the source
space the action on X is trivial,

EZ/2 xz75 X = BZ/2 x X ~RP™ x X.

One way to define the mod 2 Steenrod squares is by computing this map
in cohomology. To do this, we recall that S has a Z/2-equivariant cell de-
composition with two cells e; and e} in each dimension i. The Z/2-action
interchanges these two cells. Let C,(S°°) be the resulting cellular chain com-
plex with coefficients in Z/2. Since S*° is contractible and its Z/2-action is
free, C,(S*°) is a free acyclic resolution of the ground field Z/2 as a module
over the group ring Ro = Z/2[Z/2]. Explicitly it is the complex

(91‘ ai— 3
%%Czﬁcl_lv—;—O>CQi>Z/2

where C; is the 2-dimensional vector space generated by e; and e where the
Z/2 action interchanges these generators. That is, if ¢ € Z/2 is the nonzero
element, the the module structure of C; is given by t-e; = ¢} and ¢ - ] = e;.
The boundary homomorphism is given by

Oi(x) =(1+t)x

for every i.

Exercise. Show that this complex is a free acyclic resolution of the ground
field Z/2 over R..

If we let S.(X) and S*(X) respectively denote the singular chains and
cochains with coefficients in Z/2 of a space X, then using the Alexander-

Whitney correspondence, which gives a chain equivalence S,(X x Y) =
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S+(X) ® S.(Y), one sees that the cohomology H*(EZ/2 7,5 (X x X);7Z/2)
can be computed using the cochain complex C*(S°) ®r, S*(X) @ §*(X). If
a®pfeS*(X)®S*(X) then the Ry action is given by t(a® 5) = f ® a.
Exercises.

1. Verify this claim. That is, show that the cochain complex C*(5*°) ®x,
S*(X) ® §*(X) computes H*(EZ/2 X795 (X x X);7Z/2).

2. Show that for any cohomology class o € H?(X;Z/2) represented by a
cocycle & € S%(X), the class 1 @ a® & € C*(S®) @r, S*(X) ® S*(X) is a
cocycle and so represents an element

l@a®ac H*(BL/2 %7/ (X x X);Z/2).
Verify that this correspondence gives a well-defined homomorphism

w:HYX;Z/2) — H*(EZ/2 %75 (X x X);Z/2).
Now consider the equivariant diagonal map in cohomology:

A H*(BZJ2 %55 (X x X);Z/2) — H*(BL/2 x X;Z,/2).
For a € H1(X;Z/2), the Kunneth theorem says that we can write

A(w(a) =Y a'®p;
=0

where a € HY(BZ/2;Z/2) = HY(RP>*;Z/2) = 7/2 is the generator, a’ €
Hi(RP>;Z/2) is the i-fold cup product, and 3; € H?1"%(X;Z/2) is some
cohomology class. We define the Steenrod square Sq?* by letting

Sq? " (a) = B

A shorthand description of the above definition is
2q
A1ea®a)=Y d ®S¢ " (a). (10.40)
i=0

Exercise Show that this definition satisfies the following axiom from (10.33):
Axiom: If a € HY(X;Z/2), Sq¥(a) = o* € H*(XIZ/2).

We now have a map Sq* : H1(X;7Z/2) — HIt*(X;Z/2) for each space X
and for each ¢ and k. Of course now one needs to check that this defines a
cohomology operation satisfying all the Axioms 10.33. This is essentially done
in [91]. By “essentially” we mean that the above description is a topological
version of an algebraic definition of the Steenrod squares given by Steenrod
and Epstein in [91]. A closely related approach using the notion of “cup - i”
products is given in the book by Mosher and Tangora [78]. An elegant, more
general approach to Steenrod operations is given by J. P. May in [62]. We
encourage the reader to consult these sources for more thorough developments
of the Steenrod algebras.
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10.9.6 Free modules over A,

We end this section on the Steenrod algebra with an observation about what
it means for the cohomology of a spectrum to be a free module over A,. From
Theorem 10.48 we know that H*(HZ/p;Z/p) is isomorphic to the Steenrod
algebra A,. More generally we can conclude the following:

Corollary 10.60. Let E be a spectrum that is weakly homotopy equivalent
to a wedge of suspensions of the Eilenberg-MacLane spectrum HZ/p. More
precisely, suppose there is a graded Z/p - vector space with basis B = {n} such
that
E~ \/ s"HZ/p
neB

where |n| denotes the grading (dimension) of a basis element n € B. Then
H*(E;Z/p) is a free module over the Steenrod algebra A, with basis B. That
18,

H*(E; Z/p) = P ¥ A4,.

neB

We now observe that the converse to this corollary is also true.

Theorem 10.61. Let p be a prime and suppose E is a spectrum such that
H*(E;Z/q) = 0 for all primes q¢ # p and that H*(E; Q) = 0. (Such a spectrum
is called “p-local”.) Suppose furthermore that H*(E;Z/p) is a free module over
the Steenrod algebra A,, with a countable basis. Then E is weakly homotopy
equivalent to a wedge of suspensions of the Filenberg-MacLane spectrum HZ /p.

Proof. Let B = {n} be a basis for H*(E; Z/p) as an A,-module. By assumption
it is countable. As cohomology classes these classes can be represented by maps
of spectra, which we call

by : E — SMHZ/p.

Now recall that any spectrum X has a “pinch map” X — X Vv X. Since one
can suspend and desuspend a spectrum, this pinch map can be viewed as
being induced by applying the pinch map S' — S' Vv S! in the suspension
coordinate. (Check that the homotopy type of the pinch map on a spectrum
X is well-defined.) By iterating the pinch map a countable number of times
one then has a map

\/ by :E— \/ =HZ/p.

neB neB

It is immediate that this map induces an isomorphism in (co)homology with
Z/p-coeflicients. Since both the source and target of this map have zero
(co)homology with Z/g-coefficients for ¢ any prime other than p, and also
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have zero rational (co)homology, this means that this map induces an iso-
morphism in integral homology, and therefore by the Hurewicz theorem, in
homotopy groups. O



11

Cobordism theory

Cobordism is a theory coming out of work of Pontrjagin and Thom which
gives one of the most important connections between differential topology
and stable homotopy theory. The Pontrjagin-Thom theorem basically says
that to classify smooth manifolds up to “cobordism”, perhaps with structure
(eg an orientation, almost complex structure, framing), one needs to study
the homotopy type of a corresponding spectrum. This theorem supplied a
tremendously important computational tool in differential topology, while at
the same time served as an important stimulus for the development of stable
homotopy theory. In this chapter we prove the Pontrjagin-Thom theorem, and
use it as Thom did [94], to compute the unoriented cobordism ring. Along the
way we show that the unoriented cobordism Thom spectrum, traditionally
denoted MQ), is built out of mod 2 Eilenberg-MacLane spectra (the spectrum
corresponding to ordinary mod 2 cohomology). These spectra and the alge-
bra of natural transformations between them, namely the Steenrod algebra
Az, were introduced and studied in the last chapter. We use this study to
show that the unoriented cobordism ring turns out to be a polynomial al-
gebra, and we give explicit examples of manifolds representing generators of
this algebra. We will also discuss other cobordism rings (oriented cobordism,
almost complex cobordism, framed cobordism). We describe Milnor’s famous
and beautiful calculation of the almost complex cobordism ring. This uses the
“Adams spectral sequence” which we will also discuss in this chapter. A theory
such as framed cobordism is much more difficult to compute, but homotopy
theoretic techniques lead to fascinating geometric consequences.

Pontrjagin and Thom’s theory studies cobordism classes of closed mani-
folds. This is an equivalence classes based on the following equivalence rela-
tion: two closed n-manifolds M™ and N™ are cobordant if there is an (n + 1)-
dimensional manifold with boundary W"*! whose boundary is the disjoint
union,

oWl = M™UN"™,

In recent years, an exciting area of research has developed around the
study of “cobordism categories”. In such a category the objects are closed
n-manifolds, and the morphisms between, M™ and W™ are all possible cobor-
disms between them. Work of Madsen and Weiss [58], and Galatius, Madsen,
Tillmann, and Weiss [34] has lead to work of Galatius and Randal-Williams
[35] which uses cobordism categories to study the topology of diffeomorphisms

337



338 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

of manifolds in a stable sense, that we will make precise. We give an overview
of this exciting area of current research toward the end of this chapter.

11.1 Studying cobordism via stable homotopy: the
Pontrjagin-Thom Theorem

In the last chapter we presented Theorem 10.32 which describes the“Thom
functor”, which is a monoidal functor from the category of spaces over BO to
the category of symmetric spectra,

Th:Cpo — Sp*

that takes a map X — BO to its Thom spectrum Xf. We mentioned the
example of the Thom spectrum of the identity map

BO — BO

which is denoted MQ. Since the Thom functor is monoidal, and since the iden-
tity map of BO obviously preserves its multiplicative structure, MO is a ring
spectrum. It can be viewed as being built out of the spaces {MO(n), n > 0},
which are the Thom spaces of the universal vector bundles over the classifying
spaces {BO(n), n > 0}. The structure maps of this spectrum are maps

€n : EMO(n) - MO(n+1)

which are maps of Thom spectra induced by the usual inclusion maps
BO(n) - BO(n+1).

The critical feature of the Thom spectrum MO is that by the following
remarkable theorem of Thom, it’s homotopy type describes cobordism classes
of manifolds.

Theorem 11.1. (Thom, [94] (1954)) There is an isomorphism between the
homotopy groups of the Thom spectrum,

T (MO) = kllg)lo Tk (MO(K))

and the set of cobordism classes of closed n-manifolds, n,. This is defined to
be the set of equivalence classes of n-dimensional closed manifolds, defined by
saying M7 is cobordant to MY if there is an (n + 1) dimensional manifold
with boundary, WnH1, with

oWt = MU M.
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The abelian group structure on 7, corresponding to the group structure
on stable homotopy groups is simply induced by disjoint union of manifolds.
The identity element in this group is the empty set  (by convention () can
be viewed as a manifold of any dimension). Notice that this group consists
entirely of elements of order 2. One sees this fact by observing that for any
closed n-manifold M", the disjoint union M™ LI M™ is cobordant to the empty
set () since it is the boundary of W™+! = M™ x [0, 1]. Furthermore, the graded
abelian groups 7, = w2 (MQO) is a graded ring (and hence an algebra over Z/2),
since MO is a ring spectrum, with the induced product on n, = @©,n, given
by cartesian product of manifolds.

The main goal of this section is to give a proof of this fundamental theo-
rem and its natural generalizations. In particular we will describe the analogue
of this theorem in the setting of almost complex and framed cobordism. The
example of framed cobordism was actually proved considerably earlier by Pon-
trjagin, and so the generalization of this theorem that we will prove is often
referred to as the Pontrjagin - Thom Theorem.

We begin with Pontrjagin’s construction.

Definition 11.1. Let M™ be a closed, smooth manifold, and N"** be a
smooth (n + k)-dimensional manifold (not necessarily closed). Suppose e :
M"™ < N"*tF s an embedding. A framing of this embedding is a an exten-
sion of e to an embedding & : M™ x D* — N™F that is a diffeomorphism
onto its image. Here D denotes the unit open disk in R¥.

Exercises
1. Show that an embedding e : M™ < N™* has a framing if and only if
the normal bundle v, — M™ is a trivial k-dimensional vector bundle.

2. Show that a framing é : M™ x D* — N™* determines, and is deter-
mined by a vector bundle isomorphism

d:v, = M™ x RF.
3. Show that the standard embedding e : S™ < R"*! as the unit sphere,

has a framing.

4. Show that the inclusion embedding e : RP® — RP"*! does not have a
framing.

Given a framed embedding é : M™ < R"™* one can perform the
“Pontrjagin- Thom construction” to define a map g : S"tF — Sk,

ag i SMTR = R"F oo — R™TE/(R™TF — &(M x DF))

> (M™ x D¥) U oo 222 Dk oo = GF
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Here, when we write Uco we mean the one-point compactification. The
map ag : S"F — S” determines a class in the stable homotopy groups of

spheres,
[az] € mn(S).

Conversely, suppose [a] € 7, S is represented by a smooth, basepoint pre-
serving map o : S"* — Sk for some k sufficiently large. Think of S* as
the one-point compactification S* = R*¥ U oo and assume 0 € R¥ ¢ S* is
a regular point of a. One loses no generality in this assumption since if this
were not the case, then choose a regular value zg € S* of o near 0, and then
by composing « with a degree one map of the sphere that send xzy to the
origin and keeps co € S* fixed, one produces a map that is homotopic to a
for which the origin is a regular value. So we continue with this assumption.
Recall that the preimage a~!(0) € S™** is a closed manifold of dimension n.
Indeed by compactness we know that it lies in (S"** — co) = R"**. So one
has a manifold

M"™ = a~1(0) c R"F,

Notice that this embedding is in fact framed. To see this notice that if € > 0
is sufficiently small, and B.(0) C R* is the ball of radius €, then

M" x RF = a7(0) x RF = o7 1(B.(0)) c R"*
is a framed embedding.

Exercise. Prove this assertion. Namely, show that M" x R*¥ = a~1(0) x R¥ =
a™(B(0)).

These constructions lead to the famous result giving a correspondence
between the stable homotopy group of spheres, 7, (S) and the group of “framed
cobordism classes of n-dimensional closed, (stably) framed manifolds”, n/".
Rather than immediately make this precise and provide a proof, we will first
prove Thom’s Theorem 11.1, and then show how it generalizes to describe
the cobordism groups of manifolds with any type of stable normal structure
(which we define), including a framing, in terms of the homotopy groups of a
corresponding Thom spectrum.

We now proceed with a proof of the Pontrjagin-Thom Theorem 11.1.

Proof. By differentiating, we get for every z € M"™, two subspaces,
De, (T, M™) C R"* and De, (T, M™)*+ C R"**. Of course the first of these
is the tangent space T, M" linearly embedded in R™** and the second is the
normal space v¥ C R™"*F. Letting = vary over M™ defines continuous maps to
Grassmannians,

Te : M"™ = Gr,(R"™") and v, : M™ — Gri(R"F). (11.1)

Allowing the ambient vector spaces to get large we get maps

Tam - M™ — Grp,(R®) ~ BO(n) and wvyn e : M™ — Gri,(R™) ~ BO(k)
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that classify the tangent bundle and the normal bundle respectively. Notice
that the homotopy class of the map vy . depends on the embedding e, but,
as we have seen earlier, by taking the colimit we obtain the stable normal

bundle map, vy : M™ — BO which is an invariant of the smooth manifold
M™.

Going back to the original embedding, e : M"™ — R"** we may let 7. be
a tubular neighborhood. The we can perform the “Thom collapse map”

Mot S"TE = R"™F Yoo — SR /(SR — ) = Uoco 2 T(rv,)  (11.2)

where, as earlier T'(v,) denotes Thom space of the normal bundle v,.. Recall
that we have seen this construction earlier, as well as similar constructions
when we discussed Alexander duality (Theorem 10.41) and Atiyah duality
(Theorem 10.46).

Composing with the map of Thom spaces induced by the classifying map
of the normal bundle,

T(v.) = MO(k)
we get the map
e ST IS T(v,) = MO(K). (11.3)

This map is known as the “Pontrjagin - Thom construction” on the embedding
e: M™ — R" ¥ The resulting homotopy class [a.] € 7,41(MO(k)) depends
on the embedding e. However if we let the codimension of the embedding get
large, we get an element in the homotopy group of the spectrum MO

apn = [ae] € klim 7rn+kMO(k) = WH(M@) (114)
—00

which does not depend on the embedding, basically because all embeddings
are isotopic in sufficiently large codimensions. The next result shows that Pon-
trjagin - Thom class gives a well-defined homomorphism from the cobordism
group to the homotopy groups of MQO.

Proposition 11.2. 1. A cobordism W™ between two closed manifolds M™
and N™ defnes a homotopy between their Pontrjagin-Thom constructions

apm : S"TR 5 MO(k) and  ann : S"TF = MO(k)
for k sufficiently large.

2. The Pontrjagin-Thom construction for a disjoint union of closed n-
manifolds, M{* U M3 is homotopic to the sum of the Pontrjagin-Thom
constructions of each component

ampumy = aypp + ayy € T, (MO).
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Proof. For part (1), assume W™ is a smooth, compact manifold with bound-
ary and OW"*t! = M™ LI N™. By a relative version of Whitney’s embedding
theorem, we can find an embedding of manifolds with boundary,

e: Wntl s RHR &« [0, 1]
where
6(Wn+l) N (Rn+l~c « {0}) _ G(Mn) and e(Wn—i-l) e (Rn+k X {l}) = e(Nn).

We now do the Pontrjagin-Thom construction for the embedding e:

e (R™F % [0,1]) Uoo) = (R™F x [0,1])/ (R"* x [0,1]) — ne) — MO(k)

(11.5)
where 7). is a tubular neighborhood of the embedding e. The relative Tubular
Neighborhood Theorem states that this neighborhood is homeomorphic to a k-
dimensional normal bundle uf — W™+l and the last map in this composition
is the induced map on Thom spaces of the classifying map of v*. Also observe
that the tubular neighborhood 7. has the property that

e =ne N (R x {0}) and g = ne N (R™F x {1})

are tubular neighborhoods of the restrictions of the embedding e to M™ and
N™ respectively.
Notice that the one point compactification of R*** x [0, 1] is given by

(R™F % [0,1]) U oo = (S"* x [0,1]) / (00 x [0,1]),

where, as usual, we are thinking of S"** as R"** Uco. We can therefore think
of the Pontrjagin-Thom construction p, as a (base point preserving) homotopy
between it’s restrictions

Pl (R™F % {0}) Uoo — (R™* x {0}) Uoo/ (R™™* x {0}) — 1Y) — MO(k)
and
pet (R™F x {1}) Uoo — (R™* x {0}) Uoo/ (R™F x {1}) — n}) — MO(k)

But these maps are Pontrjagin-Thom constructions for the embeddings of the
boundary components e|,,,, : M™ < R"™*x{0} and e|,,, : M™ < R""Fx{1}.
Thus for k-sufficiently large these represent aps» and apnn respectively. Part
(1) of this proposition now follows.
To prove Part (2) of the proposition, assume we have an embedding of the
disjoint union
emn =e1 Ues: M7 UM — R™HE

Clearly the images of the components are disjoint. We may assume that the
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tubular neighborhood 7., = n; U 12 where n;, i« = 1,2, are tubular neighbor-
hoods of the embeddings e; and es respectively, and 1y N7z = (). Furthermore,
by translating one of these tubular neighborhoods if necessary, we can assume
there are disjoint open balls, B{”rk and Bngk in R"** containing the tubular
neighborhoods 7 and 7y respectively.

Therefore the Thom collapse map

Te : R"™F Yoo — §™HF/ (SR — ) 2 T (1)

factors up to homotopy as the composition

7 : R™F U oo - (BIF Uoo) v (B U co) —
(B Uco)/ (B Uoo) = ne,) v (By ™ Uoo)/ (ByHH Uoo) —ne,) =
T(Ve,) VT (Ve,) = T(ve)

Notice that the first map in this composition is homotopic to the pinch map
p: S™HE 5 gntky gntk and the second map in this composition is homotopic
to the wedge of the Thom collapse maps

Mo, Ve, : VTRV S 5 T, YV T(ve,).

Thus the Pontrjagin-Thom construction c. is homotopic to the composition
Qo SR By gty gk Tl po, Gy, ) < MO(K)WMO(k) — MO(k)

where the last map in this composition is the fold map (which exists for any
space, X VX — X). But this composition represents the sums of the homotopy
classes

ey + ey € Tpii(MO(K)).

Thus
ayrumy = ayp + ayy € T, (MO).

We now have a well defined homomorphism
a1y — m (MO).

In order to prove that it is an isomorphism, we exhibit an inverse homomor-
phism, p : 7, (MQO) — 7,. We describe it’s construction, but our description
will not contain full details. It would be a valuable exercise for the reader to fill
in the details, or (s)he may consult one of many references that give complete
proofs, for example Thom’s original paper [94] or the book by R. Stong [93].

Let 0 € m,(MQO) be represented by a basepoint preserving map fy :
Stk — MO(k). Here we are using the infinite Grassmannian Gry(R>) to
represent the classifying space BO(k), and MO(k) is the Thom space of the
canonical bundle y;, — Gry(R>). By the compactness of S"** for sufficiently
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large N > 0, fp factors through a map, which by abuse of notation we also
call
fo: S"TF = T(n)

where T'(vyx n) is the Thom space of the canonical bundle v x — Gri(RY),
which we take to be the one-point compactification

T(Yr,N) = Yr,n U 00.

Since fy must be a basepoint preserving map, we can take the basepoints of
both $"+F = R"** U oo and 7y U oo to be co. Notice that the total space of
Yie.N C Ye,n U oo =T (v, n) is an open subspace which is a smooth manifold.
Notice also that the inverse image f(;l(vk,N) C 8™t is an open submanifold.
We may then assume that the restriction of fy to that inverse image,

fo: £y (en) = MmN

is a smooth map which is transverse to the zero section Gry(RY) < 4 n.
Notice that this zero section is a codimension k-submanifold of 4 n, and so
its inverse image, f, ' (Gri(RY)) C R"k C S"*+k is a closed, codimension
k-submanifold of R*t* ¢ §"*% We call this n-dimensional manifold

My C R,

We will define p(0) = [M]'] € ny,.

Of course we need to show that p : 7, (MQO) — n, is well-defined. But first
we observe that if e : M™ — R"** C §"*+F represents a class in the cobordism
group 1y, then the Pontrjagin-Thom construction,

nt+k Te T(VE)
Qpn - S TR ey T(I/Mn) _— T('Yk,n+k)

has the property that ay/, (M™) C S"** is equal to M™ C R™*k. This is
because, since T'(ve) : T(Van) — T(Vkn+k) is induced by a map of vector
bundles which induces a vector space isomorphism along each fiber, the inverse
image of the zero section of T'(yg n+k) is the zero section of T'(vas»). That is,
T (vare) " H(Gre(R™F)) = M™. Also, clearly the inverse image under the Thom
collapse map m, of M™ is M™ C S™tF.

This observation tells us that

p oo = identity,,, . (11.6)

Similarly if § € 7, (MQ) is represented by fy : S"** — T(vyx.n) as above, and
e: M™ — R"* is f71(Gri(RY)), then the Pontrjagin - Thom construction

et S = T(ve) = T(k,n)

is clearly homotopic to fp. Thus a o p = identity,. wio)-
Thus once we know that the map p : m,(MO) — 7, is well-defined, we
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would know that it is an inverse to the Pontrjagin-Thom construction « :
Nn, — 7, (MO) thus proving that « is an isomorphism.

The main step in showing that p is well defined, is to show that if fJ
and f} : S"*F — T(vj n) are homotopic maps, transverse to Gry(R"), then
their inverse images, MJ = (fJ) 1 (Gri(RY)) and M7 = (f})~1(Gri(RY))
are cobordant. To see this, suppose

Fp: 58" x[0,1] = T(vk,n)

be a homotopy between f§ and f;. Again, assuming Fy is transverse to the zero
section Gry(RY), its inverse image would be a (n + 1)-dimensional manifold
with boundary, W"*! embedded in R"** x [0, 1], that would be a cobordism
between MJ C R"* x {0} and M7 C R"T* x {1}. We leave it to the reader
to fill in the details of this sketch of the proof that p : 7, (MQ) — 7, is
well-defined. Once done, this will complete the proof of the Pontrjagin-Thom
Theorem (11.1). O

Notice that Theorem 11.1 gives an isomorphism between each homotopy
group 7,(MQO) and the corresponding cobordism group 7,. But recall that
since MO is a homotopy commutative ring spectrum, its homotopy groups,
m(MQO) for a graded commutative ring. Similarly the cobordism groups
{Nn, n > 0}. fit together to give a graded ring

0o
N = @ Tin
n=0

where the product structure is represented by the cartesian product of mani-
folds.

Exercise: Show that the cartesian product of manifolds induces a well-defined
product structure on 7., That is, show that if M; is cobordant to M], and
My is cobordant to M}, then M; x My is cobordant to M; x M.

Proposition 11.3. The Pontrjagin-Thom construction
a: N — 7 (MO)
is an isomorphism of graded rings.

Proof. . Suppose €1 : M — R™** and ey : Ni* < R™** are smooth embed-
dings. Consider the Thom collapse maps,
pr: STE =R"™E Yoo —» R"TF /(R — . ) = T(ve,) and
02 Sm+s — Rm+s U oo — Rm+3/(R7n+s _ 7751) — T(l/eQ)

The Thom collapse map for the product e; xeq : M x MJ* < R+ xR™+s
makes the following diagram commute:
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(RUHF X R™H) oo L2 (R X R J(RMTF X R™E) = (1, X 7e;)) ——— T(Weyxes)

(Rn+k U OO) A (Rm+s U OO) T Rn+k/(Rn+k - 7761) A Rm+s/(Rm+s - 7762) E— T(Vel) A T(Vez
Pey/N\Peg =
Notice also that the classifying map of the normal bundle of e1 x €3, Ve, xe,
is given by the composition

Veq XVey

MP x My BO(k) x BO(s) £ BO(k + s)

where p represents the Whitney sum map. Therefore the following diagram
of Thom spaces commutes:

T(e) AT(ve,) 220 MO A MO(s) —*— MO(K + s)
T(Vey xes) —_— MO(k + s)

In this diagram when v : X — BO(n) is a classifying map, then tv : T(v) —
MO(n) represents the induced map of Thom spaces.

Putting these two diagrams together means we have a commutative dia-
gram of Pontrjagin-Thom constructions:

aMl ><M2 : S’I’L+m+k+8 m) T(Vﬁ’l ><62) — MO(k + S)

| 5 -

an, - ang, @ SR A §mts PRV T(Vey) NT(ve,) —— MO(k + s)
o1 \Pey

That is, the map « : 7, — 7, (MQ) satisfies
a([My x Ms]) = a[Mi]) - a([M2])

thus proving that « is a ring homomorphism. Combining this with Theorem
11.1 implies that the Pontrjagin-Thom map « is an isomorphism of graded
rings. O

11.2 Unoriented cobordism: Thom’s calculation

Thom also did a complete calculation of these graded rings.
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Theorem 11.4. [94]
7]« %ZZ[b27b4ab57"' abra"’ - r 7é 2k - 1}

In other words, 1. is a polynomial algebra over the field Z/2 with one generator
b, of dimension r > 0 so long as r is not of the form 2F — 1 for any integer
k> 0.

In fact Thom gave a complete description of the homotopy type of the
spectrum MQO.

Theorem 11.5. [94] The spectrum MQ has the homotopy type of a wedge of
FEilenberg-MacLane spectra,

MO ~ \/ £/HzZ,/2
wel

where the indexing set I consists of all monomials in Z/2[ba, by, -+ byp--+ , :
r # 2% —1]. The notation |w| refers to the dimension of the monomial b, €
Z/2[b27b4)"'abT"'vtr#Qk_]‘]'

The main step in proving both Theorems 11.4 and 11.5 is to compute the
cohomology H*(MQ;Z/2) as a module over the Steenrod algebra As.

Proposition 11.6. H*(MQ;Z/2) is a free module over As.

Proof. We begin this proof with a basic algebraic lemma below about Hopf
algebras and coalgebras. Recall the following definition:

Definition 11.2. A (graded) Hopf algebra B over a field k is both a unital,
associative algebra and a counital coassociative coalgbra over k such that the
coproduct map,

Yv:B—>BB

is a map of algebras.

We observe that the Steenrod algebra A; is a Hopf algebra over Z /2, where
the coproduct is induced by the map on generators,

k
¥(S¢") =D S¢' ® S¢* . (11.7)

=0

Exercise. Show that with the coproduct as defined above, Ay is a Hopf
algebra. That is, show that the coproduct v is a map of algebras over Z/2
defining a coalgebra structure on As.

Hint. Let Ay be the free algebra over Z /2 generated by S¢* : i > 0. There
is a natural surjective map 7 : Ay — Ay sending S¢' to Sq’ that has kernel
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generated by the Adem relations. The map 1 defined above defines an algebra
homomorphism % : Ay — As®.A5. You have to show that ¢ vanishes on ker 7.

If you have trouble carrying this out, see the argument at the beginning of
Chapter 1T of [91].

We make two more observations about the Hopf algebra structure of the
Steenrod algebra, As.

e A, is a connected Hopf algebra. Recall that a Hopf algebra A over a field
k is connected if it is connected as a coalgebra. This means that A has no
nonzero terms of negative grading, and the counit map ¢ : A — k is an
isomorphism in degree zero.

Exercise. Show that in a connected Hopf algebra over k, the coproduct
map satisfies

w(a):a®1+1®a+2a;®a§'

where the degrees of all the terms a) and @] in this summation are all
positive. Notice that in the case of Ay, this follows immediately from the
definition of 1) on the generators Sq*.

e As a coalgebra, Aj is cocommutative. That is, the following diagram com-
mutes:

As L As @ Ao

:l J
Ay — s Ay @ Ay

where 7(a x b) = b ® a. This follows from the symmetry of the Cartan
product formula upon which the coproduct v is based (11.7).

We now state and prove the basic algebraic lemma about Hopf algebras
that we will need. Our proof is adapted from [99].

Lemma 11.7. Let A be a connected Hopf algebra over a field k. Let P be a
connected coalgebra over k which is a left A-module and such that its coproduct
map A : P — PP is a map of A-modules. Let u € P be the unique class of
degree zero mapping to 1 € k under the counit € : P — k. Consider the map

w:A—P

a— a-u.

If the map p is injective, then P is a free A-module.

Proof. Let AT be the submodule of A consisting of elements of positive degree.
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Let Q = P/ATP. Consider a splitting splitting of k-vector spaces ¢ : Q — P
of the natural projection map 7 : P — (). Define

o: ARQ —P
a®q— a-iq).
Clearly ¢ is a map of A-modules. To prove the lemma we show that ¢ is an
isomorphism.
We first show that ¢ is surjective. Notice that in degree zero ¢ is the

identity map. Inductively assume that ¢ is surjective in all degrees less than
k. Let a € P have degree k.

m(a—¢(l@n(a)) =

So one can write
a—o(1ln(a)) = Zaiai

where a; € AT and o; € P. Notice that all of the ;’s have degree less than the
degree of «, which is k. So by the inductive hypothesis we can find z; € AQQ
with ¢(z;) = a;. This implies that

a=¢ (1 @ 7m(a) + Zaixi)

which proves surjectivity. To see that ¢ is injective, consider the sequence of
A-module maps:

ARQE AP P S PP L PeQ.

By tracing through these maps, one sees that the image of a class a ® ¢ is of
the form a - u ® ¢ plus elements of different bidegrees. So since the map

w:A—"P
a—a-u.
is injective, then this composition is injective. But since ¢ : A® Q — P is
the composition of the first two maps, it also is injective. This establishes

that ¢ : A® Q — P is an isomorphism of A-modules and hence P is a free
A-module. O

We want to make use of Lemma 11.7, by applying it to H*(MQ;Z/2).
We first observe that since MO is an associative, homotopy commutative ring
spectrum, the multiplication map

1 : MO A MO — MO
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induces a commutative algebra structure on it’s homology, u. : H,(MO;Z/2)®
H,.(MO;Z/2) — H,(MQO;Z/2), and a cocommutative coalgebra structure on
it’s cohomology

w*: H*(MO;Z/2) —» H*(MO;Z/2) ® H*(MO;Z/2).

Notice furthermore that the comultiplication map p* is a map of As-modules,
since it is induced by a map of spectra. Furthermore H*(MQ);Z/2) is obvi-
ously a connected coalgebra because MQ is a connected spectrum. Also, since
H°(MQ;Z/2) = Z/2 and is generated by the Thom class u € H°(MQ;Z/2),
then by Lemma 11.7, in order to prove Proposition 11.6 it suffices to prove
that the map

¢: A - H*(MO;Z/2) (11.8)
a—a-u
is injective.
To do this it suffices to work on the space level, to show that the map
¢: Ay — H (MO(k);Z/2)
a—a-ug
is injective for dega < p(k) where p : Z — 7Z is some strictly increasing
function of k.
Now consider the multiplication map puy : MO(1)A---AMO(1) — MO(k)
where there are k-copies of the Thom space M O(1) in this wedge product. This
map is the induced map on Thom spaces of the product map on classifying

spaces
BO(1) x -+ x BO(1) — BO(k).

The induced map in cohomology,
wi s H*(MO(k); Z,/2) — H*(MO(1)A---AMO(1); Z/2) = H*(MO(1); Z,/2)®*
preserves Thom classes, so it suffices to show that the map

¢: Ay — H' (MO)A--- ANMO(1);Z/2) = ﬁ*(MO(l);Z/2)®k
a— a-ug (11.9)

is injective for dega < p(k) where p(k) is an increasing function.
Now consider the homotopy type of the Thom space M O(1). By definition,

MO(1) = D(y")/S(+")

where v — BO(1) = RP* is the universal line bundle and D(v') and S(y!)
are the associated unit disk and sphere bundles respectively. Clearly D(y!) has
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the base space RP*° as a neighborhood deformation retract, so it is homotopy
equivalent to RP*°. On the other hand

S(yh = {(L,u) : L C R*is a one dimensional subspace,
andu € Lhas|u|| = 1}.

But this is just the infinite dimensional sphere S*° C R, which is con-
tractible. Therefore we have a homotopy equivalence

MO(1) = D(vY)/S(y') ~ D(y(1)) ~ RP>. (11.10)

With respect to this homotopy equivalence, the Thom class u; €
HY(MO(1);Z/2) corresponds to the generator a; € H'(RP>;Z/2) = Z/2.
Therefore under the product map

wh s HY(MO(k); Z)2) — H*(MO(1)"*; Z/2) = H* (RP>)"*; 7,/2)

the Thom class uy maps to aP¥.
We therefore can complete the proof of Proposition 11.7 by proving the
following.

Lemma 11.8. The map

br : Ay — H*(RP>;Z/2)®*
a—=a (e ® - ®ap)

is injective for dega < k.

This lemma follows because we know explicitly how the Steenrod algebra
acts on H*(RP>;Z/2) (see Proposition 10.51 above), the Cartan product
formula (which tells us how A, acts on H*(RP>;Z/2)®*) and induction on
n. This argument is carried out in the proof of Proposition 3.2 in [91]. O

We can now turn back to the proof of Theorem 11.5.

Proof. In our proof in the last chapter of Theorem 10.61, if E is a spectrum
whose mod 2 cohomology is a free module over A5 with basis B, then there is
a map
¢:E— \/ =HzZ/2 (11.11)
bo€B

that induces an isomorphism in cohomology with Z/2-coefficients. From
Proposition 11.6 we can let E = MQ. In order to know that ¢ is a weak
homotopy equivalence, we can appeal to Theorem 10.61 once we know that
the cohomology of MO is zero with Z/p-coeffiencients for p an odd prime,
and with rational coefficients. For this, the first thing to recall is since, by
Thom’s Theorem 11.1, the homotopy groups 7, (MQ) 2 7, is a vector space
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over Z/2. As was observed after the statement of Theorem 11.1, this is be-
cause any cobordism class represented by a manifold M™ is 2-torsion, since
twice this class 2[M™] is represented by the disjoint union M™ U M™ with is
the boundary of M™ x I, and therefore is zero as a cobordism class.

Next, in order to apply Theorem 10.61 to MO, we need to prove the
following lemma.

Lemma 11.9. Let E be a spectrum such that m.(E) is finitely generated 2-
torsion. That is,

m(E)®Z/p=0 forp any odd prime, and m.(E) ® Q = 0.
Then, the same is true of homology, That is,

H.(E;Z/p) =0 forp any odd prime, and H,(E;Q) = 0.

Proof. We first discuss H,(E;Z/p), where p is an odd prime. Consider the self
map of the sphere spectrum Xp : S — S representing p € Z = mo(S). Taking
the smash produce with the spectrum E gives us a self map,

xp:E—E

defined to be
EAS 22U g A

Notice that the map xp : E — E induces multiplication by the prime p in
homotopy groups, since, by definition, it does so on the sphere spectrum. That
means, since 7, () is 2-torsion, then

(XP)s : Tu(B) = 7 (E)

is an isomorphism. Therefore xp : E — E is a weak homotopy equivalence. So
if X is a spectrum representing a generalized homology theory, then

xp:EAX ZPM oA x

is a weak homotopy equivalence that represents multiplication by the prime p
in homotopy groups. But when X is the Eilenberg-MacLane spectrum HZ/p,
this map in homotopy groups is given by

(xp)s : Ho(E; Z/p) = H.(B;Z/p).

Since H, (E;Z/p) is a Z/p- vector space, multiplication by p must be zero, so
we must conclude that H,(E;Z/p) = 0.
We now turn our attention to H,.(E; Q). By Proposition 10.22, we know
that
H.(E;Q) 2 m(E) ©Q =0

since each 74 (E) is assumed to be a finitely generated abelian 2-torsion group.
O
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O

Thus we know that E = MO satisfies the hypotheses of Theorem 10.61,
and so we may conclude that there is a weak homotopy equivalence

MO ~ \/ £IHz/2, (11.12)
weB

where B forms a basis for H*(MQ) as a module over the Steenrod algebra, As.
Notice that the homotopy groups of the right hand side of this equivalence,
and hence of MO, is the Z/2-vector space spanned by B. That is, the basis
generating H*(MO) as an Az-module can be identified with a basis for its
homotopy groups. Comparing the homology of both sides of this equivalence
we have the following:

Corollary 11.10. We again assume all (co)homology is taken with Z/2-
coefficients. There is an isomorphism

H,.(MO) 7, (MO) ® H.(HZ/2)
~ 1, (MO) ® A

where A3 is the dual of the Steenrod algebra.

Remark. By the dual of the Steenrod algebra A3 we mean the graded dual.
that is,

o0

Az = P(A2);

d=0

where (Az)5 = Hom(Aqg,Z/2) with (Az)q being the degree d component of
As.

Before we compute the cobordism ring 7, = 7.(MQO), we draw some im-
mediate geometric conclusions from what we’ve shown so far.

Corollary 11.11. Two closed n-manifolds M™ and N™ are cobordant if and
only if the images of their fundamental classes under their stable normal bun-
dle homomorphisms are equal. That is, if vy : M™ — BO andvy : N — BO
are the stable normal bundle maps for M™ and N™ respectively, then these
manifolds are cobordant if and only if

(v30)<(IM™) = (n)(IN"]) € Ho(BO: Z/2).
Proof. By the Pontrjagin-Thom theorem, we need to know when the classes
ayn and  ayn € m,(MO)
are equal. But as one sees from Corollary 11.10, the Hurewicz homomorphism

h:m,(MO) — H,(MO;Z/2)
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is injective, so this is equivalent to knowing that h(apm) = h(an») €
H, (MQO;Z/2). But by the Thom isomorphism theorem, this is equivalent to
knowing that

uNh(ayn) =unh(ayn) € H,(BO;Z/2).

Here u € H°(MQj;Z/2) is the Thom class. The corollary then follows from
the following straightforward exercise.

Exercise. For any closed manifold M™,
O

The result of Corollary 11.11 is often stated in a different way. Recall that
H*(BO;Z/2) = Z/2[w1, - ,w;, -] where w; is the i*" Stiefel-Whitney class.

Definition 11.3. Let M™ be a closed n- manifold, and f : M™ — BO, be
a map, which we think of as classifying a stable vector bundle over M™. We
define “Stiefel-Whitney numbers” of f as follows. Let p(w) be a polynomial in
the Stiefel-Whitney classes, that is an element of H*(BO;Z/2). p(w) deter-
mines a “Stiefel-Whitney number” by the rule

{(f*(p(w)); [M™]) € Z/2.

Note. This evaluation map is to be interpreted as follows. The polyno-
mial p(w) is a sum of monomials of varying dimensions. The evaluation
(f*(p(w)); IM™]) = (p(w), ) on an n-dimensional homology class « is the
sum of the evaluations of its monomials on f.(«). A monomial having dimen-
sion other than n has, by convention, zero evaluation on an n-dimensional
homology class.

If 7pn : M™ — BO classifies the stable tangent bundle of M™ we call it’s
Stiefel-Whitney numbers the “tangential Stiefel-Whitney numbers” of M™, or
sometimes just the Stiefel-Whitney numbers of M™. Similarly, if vy : M™ —
BO classifies the stable normal bundle, we call it’s Stiefel-Whitney numbers,
the “normal Stiefel Whitney numbers” of M™.

Notice that the tangential and normal Stiefel-Whitney numbers of a man-
ifold are invariants of the manifold. We can now interpret Corollary 11.11 as
follows:

Corollary 11.12. Two manifolds are cobordant if and only if they have the
same normal Stiefel-Whitney numbers.

The inverse relation between the stable tangent and stable normal bundle
maps of a manifold will allow us to quickly prove the following.
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Corollary 11.13. Two manifolds are cobordant if and only if they have the
same tangential Stiefel-Whitney numbers.

Proof. Recall that for any space X the fact that BO is an infinite-loop space
implies that the set of homotopy classes, [X, BO] is an abelian group (equal
to it’s reduced K-theory). Let —t : BO — BO represent the homotopy class
in [BO, BO] that is inverse to the class represented by the identity map. Since
the sum of the tangent bundle of a manifold with the normal bundle of any
embedding of the manifold in Euclidean space is a trivial bundle, that means
that the classes in [M™, BO] represented by 7a/» and vym are inverse to each
other in this group structure. In other words, the composition

M" 2 BO =% BO
is homotopic to vy, and similarly the composition
M™ 2 BO =% BO

is homotopic to Tasn. Because (—¢) o (—¢) ~ id : BO — BO, —: BO — BO
is a homotopy equivalence.
Let p(w) be a polynomial in the Stiefel-Whitney classes. Then

()" (p(w)) = (varn)*((=0)"(p(w))  and  (vare)" (p(w)) = (Tarn) " ((=0)" (p(w))-

So the tangential Stiefel-Whitney number determined by p(w) is the normal
Stiefel-Whitney number determined by (—:)*(p(w))), and vice-versa. Since
(—¢)* is an isomorphism, we can conclude that two manifolds have the same
normal Stiefel-Whitney numbers if and only if they have the same tangential
Stiefel-Whitney numbers. The corollary now follows from Corollary 11.12. [

Corollary 11.14. A manifold that can be stably framed, i.e a manifold M™
whose stable normal bundle map vy : M™ — BO is null homotopic, is the
boundary of an (n + 1)-dimensional manifold.

Proof. If M™ is framed manifold, all of its Stiefel-Whitney numbers are zero.
The sphere S™ is stably frameable, since the standard embedding in R"*!
has a trivial normal bundle. So by Corollary 11.12 M™ is cobordant to S™,
which is null-cobordant since it is the boundary of D"*!. Therefore M" is
null-cobordant. 0

We remark that the fact that the Stiefel-Whitney numbers of a manifold
are cobordism invariants is not very difficult, as we will see below. What was
difficult, and was a major achievement of Thom, is that the Stiefel-Whitney
numbers of a manifold are a complete cobordism invariant as stated in Corol-
laries 11.12 and 11.13.

We now give an elementary proof of the following fact.
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Proposition 11.15. . If M™ is a closed manifold that is the boundary of
Wntl then all of the tangential Stiefel- Whitney numbers of M™ are zero.

Proof. Pick a metric on W"*1, Then there is a unique outward normal vector
field along OW"*! = M", spanning a trivial line bundle e'. Therefore, the
restriction of the tangent bundle to its boundary

TW"HYy, L =T(M) @€'

By

Hence, the Stiefel-Whitney classes of M™ are the restriction of Stiefl-
Whitney classes of W"*!. By the long exact sequence,

o HY WL Z/2)) — HMOW™T 7/2) S HY YW, 0W); 2/2) — -+

this implies that §(w) = 0 for every tangential Stiefel-Whitney class w. The
natural map 0 : Hyy1(W,0W;Z/2) — H,(0W;Z/2) takes the fundamental
class [W, 0W] to the fundamental class [0W] = [M"].

Therefore if p(w) is any polynomial in the Stiefel-Whitney classes,

((rar)"p(w), [M™]) = (5((rar) "p(w)), [W"F, 0W"H1]) = 0,

O

Exercise. Show that this proposition implies that if M7 and Ms are cobordant
manifolds, they have the same tangential Stiefel-Whitney numbers.

We now turn our attention back to computing the cobordism ring 7, =
. (MO).

Since we know the homology H,.(MQO) we will be able to calculate
7 (MQO) = ., using knowledge of A} and their relation given by Corollary
11.10. Fortunately 43 is well-understood by work of Milnor [75], which we
now quickly describe.

Recall from Theorem 10.53 that the Steenrod algebra A, has an additive

basis over Z/2 consisting of cohomology operations Sq’, where I = (i1, - - , i)
is an admissible sequence. Recall this means that i; > 2,4, for all j =
1,--- ,k — 1. Recall also from the exercise following Definition 11.2 that A,

is a Hopf algebra, whose coproduct A : Ay — Ay ® As is determined by the
Cartan formuia,

k
A(SqF) = Z Sq’ @ Sq".
j=0
The symmetry of the Cartan formula implies that the coalgebra structure of

Aj is cocommutative. This implies the dual A% is a commutative algebra. The
following is the result of Milnor’s calculation of Aj3.
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Theorem 11.16. (Milnor [75]). Let {(Sq")* : I is admissible} be the addi-
tive basis of A% dual to the basis of admissible sequences of Aq. Let Iy, be the
admissible sequence I, = (28712872 ... 2. 1), and let & = (Sq'*)* € Aj.
Then as an algebra, A5 is the polynomial algebra on the &;’s,

A; 22/2[51,52,"‘ ,gj’]

We refer the reader to Milnor’s original paper [75] or the book by Steenrod
and Epstein [91] for nice proofs of this theorem. We will use this result and
Corollary 11.10 to compute the cobordism ring 7, = 7,.(MQO).

To understand 7, (MQ) as a graded Z/2 vector space, it suffices to compute
the dimension of ,,(MQ) for each n. For this we use a little combinatorics as
is done in [99].

Recall that a partition of a positive integer n is an unordered sequence
(s, ,ix) of positive integers whose sum equals n. Let p(n) be the number
of partitions of n. Notice that in the polynomial ring Z/2[e1, ea, -+ ,ex, - -]
where |e;| = ¢ (recall from Theorem 10.36 that this is H,.(MQ;Z/2)), a mono-
mial in degree n determines, and is determined by, a partition of n. Let p(n)
denote the number of partitions of n. This is then the dimension of H, (MO).
(Here, as above, when we don’t specify coefficients in (co)homology we mean
7/ 2-coefficients.

Now by Theorem 11.16, A} = Z/2[¢;, j > 1], where the degree |;| = 27 —1.
A monomial in this ring of degree n is also a partition, but a very special one.
Namely it is a “dyadic partition”, meaning a partition (;,--- ,i) where each
i; is of the form 2™ — 1 for some m. We write pq(n) to be the number of
dyadic partitions of n. By convention we let pg(0) = 1. Notice that ps(n) is
the dimension of A3 in degree n.

Finally we say that a partition (i;,--- ,ix) of n is nondyadic if none of
the i;’s are of the form 2™ — 1 for any m. We let p,q(n) be the number of
nondyadic partitions of n, with the convention that p,4(0) = 1. The following
gives a calculation of the cobordism groups:

Theorem 11.17. The cobordism group of n-dimensional closed manifolds,
N = 7, (MO) is the Z/2-vector space of dimension pnq(n).

Proof. The main step in the proof of this theorem is the following fact from
combinatorics.

Lemma 11.18. For every positive integer n,

n

p(n) = pa()pna(i).

=0
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Furthermore, if f(n) is an function defined for nonnegative integers n satis-
Jying

p(n) = pa(i)f(n —i)
=0

then f(m) = ppa(m) for allm > 0.

Proof. f I = (i1, ,ix) and J = (j1,---,jr) are partitions of n and m
respectively, write IJ = (i1, -+ ,4ik,j1, -+ ,jr). This is a partition of n 4+ m.
Notice that if I is any partition of n, the we can uniquely write

I =14l

where I; is the dyadic partition obtained by taking all the entries of I of
the form 2¥ — 1 for some k, and I,,4 is the nondyadic partition obtained by
taking the remaining entries of I (i.e those not of the form 2¥ — 1 for any k).
Conversely, for every i such that 0 < i < n, if I; is a dyadic partition of i
and I,4 is a nondyadic partition of n — ¢, the I4l,4 is a partition of n. Notice
that there are pq(i)pna(n — i) ways of making such a partition of n for each .
This verifies the formula p(n) = Y. pa(i)f(n — ). The second statement is
proved by an easy induction on n. O

We now complete the proof of Theorem 11.17. By Corollary 11.10, we know
that
H,.(MO) = 7, (MO) ® AS. (11.13)

We then have

dim Hy,(MO) =" dim 7;(MO) - dim (A3 ) ;.

i=0
As observed above, dim H,(MO) = p(n) and dim (A%)r = pa(k). If we let
f(m) = dim 7, (MQO) then the result follows from Lemma 11.18. O

We can now draw an immediate geometric consequence of Theorem 11.17,
which would be very difficult to prove without Thom-Pontrjagin theory,

Corollary 11.19. Ewvery closed 3-dimensional manifold is the boundary of a

4-dimensional manifold.

Proof. By Theorem 11.17 53 is a Z/2-vector space of dimension p,4(3). But

there are no nondyadic partitions of 3, so p,q(3) = 0. O
We now observe that we can restate Theorem 11.17 in the following way.

Corollary 11.20. Consider the polynomial algebra Z/2[bo, by, ,b;, -]
such that |b;| =4 and i is not of the from 28 — 1 for any k. Then there is a
graded Z/2 wvector space isomorphism between this algebra and m.(MQO) = 7,.
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Proof. Notice that the monomials of degree n in this polynomial algebra are
in bijective correspondence with nondyadic partitions of n, The result then
follows from Theorem 11.17. O

Our goal is to strengthen this corollary to show that there is an isomor-
phism of algebras between the cobordism ring and this polynomial algebra.
This would establish Theorem 11.4.

Proof. Recall from Theorem 5.20 that the splitting principle gives us an al-
ternative description of H*(BO(n)) as the ring of symmetric polynomials
7)2[o1,- -+ ,0n], where o; is the i*" elementary symmetric polynomial in m-
variables, say x1, - , T, all of which have degree one. Here we are choosing
m > n so that the elementary symmetric polynomials are algebraically inde-
pendent.

Definition 11.4. We say that two monomials in x1,...,x, are equivalent
if there is a permutation of x1,...,T.,, that takes one to the other. Define
Staft 29 to be the sum of all monomials in x1,. .., Ty, which are equivalent
to xyt -zl

Exercise. (See Lemma 16.1 of [76]) Show that an additive basis for S¥, the
group of homogeneous symmetric polynomials of degree k in xy,...,x,, is
given by the polynomials Y {* --- 2% | where (a1, ...,a,) range through all
partitions of k of length r < m.

Now let I = (i1,---4,) be a partition of n, and let s; = s5(;, ... ;) be the
unique polynomial satisfying

81(0-17..'0-71,) — szll ...xir.

For m > n the p(n) polynomials s;(o1, - - - 0,) are linearly independent and
form a basis of ™. See Milnor and Stasheft’s book [76] for a more complete
discussion of these symmetric polynomials.

Given a vector bundle £ over a closed n-manifold M™, by recalling that
the 7" Stiefel-Whitney class w; € H*(B0) can be identified with the 7*"
elementary symmetric polynomial o;, then I is a partition of n we may write

s1(w(€)) = s(wi(§), ..., wn(£)) € H"(M).

(We recall that unless otherwise stated, all (co)homology is taken with Z/2-
coefficients.).

Now since the symmetric polynomials s; form an additive basis for the ring
of symmetric polynomials, which, by the splitting principle is isomorphic to
H*(BO), then by Corollary 11.13 the cobordism type of any closed n-manifold
M™ is completely determined by the collection of numbers

Si[M"] = ((s1(rmn), [M"]) € Z/2,
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where 7s» is the tangent bundle and I ranges over all partitions of n. A quick
calculation using the Cartan product rule for Stiefel-Whitney classes that is
done in [99], verifies the following:

Lemma 11.21. Let & and ¢ be any two wvector bundles over a closed n-
manifold M™. Then for any partition I

stwE @)= > sp,w@)snw(),
NI=I
and if N™ is another closed manifold,

S]( me Z Sh sz Nm]
I I,=I

Recall the fact from Theorem 5.22 that the total Stiefel-Whitney class of
the projective space is given by

”LU(T]R]Pm) = (1 + a)”+1

where a € Hq(RP™) is the nonzero class. This will immediately imply the
following:

Lemma 11.22. Consider the length-one partition (n) of n. Then
S(n) [RP”} =n+1¢€ Z/Q.

As we will see below, these projective spaces can be taken to be generators
of the cobordism ring 7, when n is even. To construct other generators, Thom
considered hypersurfaces H,, , defined as follows.

Definition 11.5. Let m and n be positive integers with m < n. Let RP™ have

homogeneous coordinates [xg, . .., Zy,] and RP™ have homogeneous coordinates
o, - Yn). Let Hypp C RP™ x RP™ be the subset defined by coordinates
([xos -y Zmls [Yos - - - s Yn]) satisfying the equation

m
Z ziy; = 0.
i=0

Exercise Show that [, , is a smooth manifold of dimension m +n — 1.

Using Lemma 11.21 Weston gave a direct calculational proof of the follow-
ing (see Proposition 11.4 of [99]).

Lemma 11.23.

+
S(m+n71)[Hm,n] = (mm TL) S Z/2
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We are now ready to complete the proof of Theorem 11.4. Define manifolds
B,, that we show will generate the cobordism ring, as follows.

RP*  if i is even

Definition 11.6. Let B; = o
Hyp op+14 if 1 =2P(2¢ + 1) — 1 and not of the form 2™ — 1

Let b; € m; be the cobordism class represented by the manifold B;.
We will show that 7, is the polynomial algebra generated by the classes
{b; such that i is not of the form 2¥ — 1}.

First of all notice that

Sw(Bi] =1

by Lemmas 11.22 and 11.23. Let I = (i1, -+ , %) be a nondyadic partitiion of
n. We define the n-manifold

MI:Mil X"'XMik-

We will show that the set {[M;]: I is a nondyadic partition ofn} is a Z/2-
vector space basis for the cobordism group 7,,. For this we follow the argument
in [99] (Theorem 13.4). Since by Theorem 11.17 we know the dimension of this
vector space is ppq(n), which is the number of nondyadic partitions of n, we
need only show that this set of cobordism classes is linearly independent.

To do this we put a partial ordering on the set of partitions of n using the
notion of “refinement”. Let I’ be another partition of n. We say that I’ is a *
refinement of the partition I = (i1, ..., %) if we can write I’ = I - - - Ij,, where
each I; is a partition of the coordinate i; of I. This gives a partial order to
the set of partitions of n by saying that I < I’ is I’ refines I. In particular it
gives a partial ordering to the set of nondyadic partitions of n.

Let I and J be nondyadic partitions of n with I = (i1, -+ ,4ix). Then by
Lemma 11.21, we have

SyMil = > Sn(IMy])--- Si ((M,]). (11.14)
L Tp=J

So in particular if J does not refine I, S;[M;] must be zero. Also this equation
says that S7([M;]) = 1 since in this case there is exactly one choice of I, - - - I},
giving a nonzero contribution to this sum.

Now choose a total ordering of the partitions of n compatible by the partial
ordering given by refinement. Then we can form a (ppq(n) X ppa(n))- dimen-
sional matrix whose rows and columns are indexed by nondyadic partitions
of n according to our ordering, and the entry indexed by (I,J) is given by
Sy ([M;]). Then these calculations tell us that this is a triangular matrix with
one’s along the diagonal. Therefore the p,q(n) columns of this matrix are
linearly independent. Each column is indexed by a nondyadic partition J of
n, and its I** coordinate is S;([M;]). Again, as J varies, these columns are
linearly independent. Now since the polynomials s; are a basis of the sym-
metric functions in degree n which can be viewed as the cohomology group
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H™(BO), this says that the tangential Stiefel-Whitney numbers of the M;’s
also give linearly p,q linearly independent vectors. By Corollary 11.13 this
says that the M7’s are linearly independent vectors in 7,,, which as mentioned
above, implies that they form a basis for 7,,. But the set of [M]’s in n,, consti-
tutes the set of monomials in the b;’s of degree n, and therefore this describes
Nx = @nNyp as the polynomial algebra Z/2[b; : i is not of the form 2™ —1]. O

11.3 Almost complex cobordism: Milnor’s calculation

11.4 Framed, Oriented, and Spin cobordism

11.5 Cobordism categories and the classifying space of
diffeomorphisms of manifolds
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Classical Morse Theory

In this chapter we discuss the traditional, “classical” approach to Morse the-
ory. An approach based on moduli spaces of flows will be discussed in the
next chapter. The best reference to this classical approach is Milnor’s well
known book [69]. We encourage the reader to study that book, not only for
the details of the foundations of the subject, but also for applications that are
still quite relevant more than 50 years after its publication.

12.1 The Hessian and the index of a critical point

Let M be a manifold, and f : M — R a C? function. As explained earlier, a
point p € M is called a critical point of f if df, = 0. f : M — R is a Morse
function if all of its critical points are nondegenerate. To understand what
it means for a critical point p € M to be nondegenerate, we may work in a
coordinate chart around p, with respect to which we may think of f : R™ — R,
with p corresponding to the origin in R™. In such coordinates we can think of
the derivative as a map

Df:R" —» (R")*
T — dfy.

A critical point is then a zero of Df, and 0 € R™ is a nondegenerate critical
point precisely if it is a regular point of D f. Notice that this means that as
v € R™ varies in a small neighborhood around the origin, then D f(x) = df,
takes on every value of (R™)* exactly once. Note also that 0 € R™ being a
nondegenerate critical point is equivalent to the linear map

D(Df)o: R" = (R™)*
being an isomorphism. This in turn is equivalent to the n x n Hessian matrix,
2
Hessg f = (%(O))

is nonsingular.

We now make this into a formal definition. Let p € M be a critical point o

363
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f:M — R, and let (U, ¢ : U — R"™) be a coordinate chart around p, so that
¢(p) = 0. Write ¢ as (x1,...,z,). Write tangent vectors v and w in T,M as
(v1,...,v,) and (w1, ..., wy), respectively (specifically, do,(v) = (v1,...,vn)
and similarly for w).

Definition 12.1. Using the coordinate chart (U, $), The Hessian of f at p,
is the quadratic form Hess, f defined by the formula

Hoss, (/)(0) = Y- 52,

ij=1

Proposition 12.1. When p is a critical point for f : M — R, the Hessian
at p is independent of the coordinate chart.

Proof. One can do this directly by a straightforward calculation which we
leave to the reader. But more generally, with respect to local coordinates, we
may consider an open set V' C R” containing 0 € R”, and a C?>-mapg:V — R
having 0 as a critical point. Let h : V' = U beaC? diffeomorphism of open
sets in R™ taking 0 € R™ to itself. Then the reader should verify that the
following diagram commutes:

R™ Hesso (gh) R

Dhol l:

R* —— R.
Hessog
This gives an invariance of the Hessian under local diffeomorphisms, which is
to say, an invariance of the Hessian under changes of coordinate charts around
a critical point. O

Remark. If p is not a critical point of f, then the Hessian at p is not well-
defined, in that using the above notation, it would depend on the coordinate
chart. However there are ways to extend the Hessian to all of M: by patching
together coordinate charts and using partitions of unity; by choosing a metric
on M, then using the Levi—Civita connection corresponding to this metric to
take the covariant derivative of df at p, and so on. But these approaches all
require extra data (namely the choice of metric or connection). In these notes,
however, we will primarily be concerned with the Hessian at critical points.
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12.2 Morse Functions

Definition 12.2. Ifp € M is a critical point for a C? function f : M — R,
then we call p nondegenerate if the quadratic form Hess,(f) is nonsingular.
If all critical points of M are nondegenerate, we say that f is Morse.

FIGURE 12.1
f is the “height function” given by projecting the torus onto the vertical line.
This is probably the archetypical example of a Morse function.

We will show in Section 12.5 that every manifold M admits a Morse func-
tion, and in fact the set of Morse functions is dense in the set of smooth
functions.

An important property of Morse functions on closed, Riemannian mani-
folds, is that they lead to a CW complex description of the manifold, with
with a cell of dimension A for each critical point of index A of f. In this section,
we prove this statement up to homotopy. That is, we construct a homotopy
equivalence of the manifold to a CW complex of the kind just described. We
follow the approach of Milnor [69] in this chapter.

Throughout this chapter, we will assume M is a closed manifold and f :
M — R is a smooth Morse function. We will also consider the following
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manifolds (with boundary):
M® = f Y (~oc0,a] = {x € M| f(x) < a}.

where a is any real number. If ¢ is less than the minimum value of f, then
M® is the empty set. If a is larger than the maximum value of f, then M¢
is M. The values of a in between will provide, up to homotopy, the necessary
cell decomposition.

N/

FIGURE 12.2
M? for different values of a

There are a number of technical details, but the intuition is simple: Let M
be a surface embedded in R3, and f be the vertical coordinate z. We initially
let a be less than the minimum value of f so that M¢ = (), and gradually
increase a (see Figure 12.2). This is analogous to gradually filling the surface
with water, so that M@ is the part of the surface that is under water. Now if
a increases from a; to ap without passing through critical values, then M
and M?? are diffeomorphic.

But if, by increasing from a; to as, we pass through one critical point, then
at that point the water may do something more interesting. Up to homotopy,
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FIGURE 12.3
M* and M®2 are diffeomorphic if there are no critical values between a; and
as.

this turns out to be an attaching of a cell of dimension A, where X is the index
of the critical point (see Figure 12.4).

So as we pass critical points one by one, the manifold is created by suc-
cessively attaching cells (up to homotopy type). This demonstrates that the
manifold is homotopy equivalent to a CW complex of the type described
above.

In this chapter we prove the details of the above intuition. First we prove
that nothing happens to the homotopy type (and even to the diffeomorphism
type) if there is no critical point between two levels, using the results of gra-
dient flow lines from chapter 12.1. Then we show that if there is one critical
point between the two levels, the homotopy type changes by adding a cell. We
prove this via the Morse Lemma (Theorem 12.4), which studies the behavior
of f near a critical point. We conclude by producing the homotopy equiva-
lence between the manifold and the C'W complex, and giving some interesting
applications to topology.
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FIGURE 124
When there is one critical value between a; and as, M** is homotopy equiv-
alent to M with a cell attached.

Exercise:
Let M be a manifold and let f : M — R be a Morse function. Prove that
f~1({a}), the boundary of M, is a manifold if a is a regular value of f.
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12.3 The Regular Interval Theorem

We first show that if we increase M* from M® to M“2, and there are no
critical values between a; and as, then M and M*? are diffeomorphic.
The main point is the following theorem:

Theorem 12.2 (Regular interval theorem). Let f: M — [a,b] be a smooth
map on a compact Riemannian manifold with boundary. Suppose that f has
no critical points and that f(OM) = {a,b}. Then there is a diffeomorphism

F:fYa)x[a,b] — M
making the following diagram commute:

Fla) x [a,0) —2— M

- |1

[a, b] — [a,0].

In particular all the level surfaces are diffeomorphic.

In the proof of this theorem we will make use of the gradient vector field
V(f). of the function f : M — R, when M has a Riemannian metric. The
definition of V(f) depends on the metric in the following way. Recall that a
Riemannian metric g defines a nonsingular, symmetric biinear pairing on the
tangent bundle,

<, > TM xTM — R.

Equivalently, by taking the adjoint of this pairing we may think of the metric g
as defining an isomorphism of the tangent bundle with the cotangent bundle,

g:TM = T*M.

The differential df is a section of the cotangent bundle, df(x) € TxM for
every x € M, and its definition does not depend on the metric. The gradient
vector field V,(f) € T, M is defined to be the section of TM determined by
df, using the metric g. Said more explicitly, the gradient is the unique vector
field (section of T'M) that satisfies

< Vaf,v>4=df (z)(v) (12.1)

for every € M and v € T, M. We notice that the zeros of the gradient V()
are the same as the zeros of the differential df and are exactly the critical
points of f: M — R.

With this definition we are now ready to prove this theorem.
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Proof. Since f has no critical points we may consider the vector field

Va(f
o= D)

Ve (f)]
Let 7, (t) be a curve through z satisfying

Sonelt) = X(nu(1)

and f(n.(t)) =t.
Let I be a maximal interval on which 7, is defined. We wish to show that

I = [a,b]. First, since M is compact, f(n,(I)) = I is bounded.

Let d = sup([). Then by the compactness of M, there is a point x € M
that is a limit point of n,(d — 1/n). Since 7, (t) = X (n.(t)) is bounded, this
limit point is unique, and lim;_,4- 7, (t) = x. We can extend 7, to d by making
Nz (d) = .

Now lim;_, g0, (t) = limsq X (n:(¢)) = X (n2(d)), and let v be this limit.
We will now show that 7/ (d) = v. In particular, we will show that for every
€ > 0, there exists a § > 0 so that for all h with 0 < h < 4,

nw(d) — nas(d — h)

—v| <€
h

Note that a coordinate chart is chosen near 7,(d) to allow the subtraction
here.
So let € > 0 be given. By the definition of v, there exists a ¢; so that for
all w with 0 < h < 41,
ne(d —h) —v| <e

By the fundamental theorem of calculus,

d
n(d=0)=n) = [ aa
d
nld =)= nefd)+oh= [ () v

d
Ine(d — h) — 0 (d) + v s/d () = ol

d
§/ edt
d—h
< eh
nz(d_h)_nx(d)+v <e
h
wld =) ) [
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Therefore n,(d) = v, and since v = X (1,(d)), the flow equation is satisfied by
N, at d.

By maximality of I, d € I. Similarly with ¢ = inf(I), we see that ¢ € I.
Therefore [ is closed.

If n,(s) € OM, then by the existence of solutions of ODEs, there is an
interval (s — €, s + €) around s on which 7, satisfies the differential equation
1., (t) = X(ny(t)). Therefore n,(c) and 7, (d) are in M. Thus ¢ = f(n,(c))
and d = f(n,(d)) may be either a or b. Since the derivative of f on, is one,
we see that ¢ = a and d = b. Therefore I = [a, b].

Since * € M was arbitrary, and a < f(z) < b, we see that f(M) = [a,b].
Furthermore, if x ¢ M, then by the existence of solutions to ODEs, as above,
we have 7,, defined in a small neighborhood of ¢t = f(z), so that a < f(z) <.
Therefore f~1(a) and f~1(b) are unions of boundary components.

Define a map
F:fYa)x[a,b] — M

by the formula
F(z,t) = n.(t).

The differentiability of F' follows from the same argument as in Theorem 13.2
to prove the differentiability of T', but with 7, instead of ~,.
Define
G:M — f~a) x [a,]

G(z) = (12(a), f(2))-

The differentiability of G follows in the same way as the differentiability of
F. We claim that F' and G are inverses. To prove this, note that the integral
curves through x and n,(¢) are the same, that f(n.(¢)) = t and by uniqueness
of solutions to ODEs, we have F(G(z)) = x and G(F(x,t)) = (x,t). This
proves that F' is a diffeomorphism. O

Corollary 12.3. Let M be a compact manifold, and f : M — R a smooth
Morse function. Let a < b and suppose that f~'[a,b] C M contains no critical
points. Then M® is diffeomorphic to M°. Furthermore, M® is a deformation
retract of MP.

Proof. First we prove that M is a deformation retract of M°. By the regular
interval theorem (Theorem 12.2), there is a natural diffeomorphism F' from
f~Y([a,b]) to f~1(a) x [a,b]. Since f~!(a) x {a} is a deformation retract of
f~(a) x [a,b], we see that f~!(a) is a deformation retract of f~1([a,b]). We
can now paste this deformation retraction with the identity on M, to obtain
the deformation retracton from M to M,.

To prove that M® is diffeomorphic to M® we apply the same principle,
but we need to be more careful to preserve smoothness during the patching
process.

Since the set of critical points of f is a closed subset of the compact set M



372 Bundles, Homotopy, and ManifoldsAn introduction to graduate level algebraic and differential topology

(and hence is compact), the set of critical values of f is compact. Therefore
there are real numbers ¢ and d with ¢ < d < a so that there are no critical
values in [c, b].

By Theorem 12.2 there is a natural diffeomorphism F from f~1([c,b]) to
f7t(c) x [c,b], that maps f~!([c,a]) diffeomorphically onto f~!(c) x [c,a].
There is also a diffeomorphism H : f~1(c) x [¢,b] — f~1(c) x [c,a], and we
can insist that it be the identity on f~1(c) x [¢, d] (finding this function is an
easy exercise in one-variable analysis, and in case you are interested, is listed
as an exercise below). Thus

FloHoF: f b)) — f(ca])

is a diffeomorphism that is the identity on f~!([c,d]), and thus we can patch
it together with the identity on My to create a diffeomorphism from M, to
M,. O

This corollary says that the topology of the submanifolds M® does not
change with a € R so long as a does not pass through a critical value.

Exercise Fill in the detail of the proof of Corollary 12.3 that finds a dif-
feomorphism H : f~1(c) x [¢,b] — f~1(c) X [c,a] that is the identity on
f7He) x [e.d).

12.4 Passing through a critical value

We now examine what happens to the topology of these submanifolds when
one does pass through a critical value. For this, we will need to understand
the function f in the neighborhood of a critical point. This is what the Morse
lemma provides us:

Theorem 12.4 (Morse Lemma). Let p be a nondegenerate critical point of
index A of a smooth function f : M — R, where M is an n-dimensional man-
ifold. Then there is a local coordinate system (x1,...,2,) in a neighborhood
U of p with x;(p) = 0 with respect to which

A n
fln, . an) =fp) =Y ai+ > a3
i=1 =M1

The proof given here is essentially that in Milnor’s famous book on Morse
theory [69].

Proof. Since this is a local theorem we might as well assume that f : R — R
with a critical point at the origin, p = 0. We may also assume without loss of
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generality that f(0) = 0. Given any coordinate system for R”™ we can therefore
write

n
flz,. ... zn) = Za:jgj(acl,...,xn)
j=1

for (21,...,2,) in a neighborhood of the origin. In this expression we have

1af
gi(x1,..., 2y :/ ——(txy,...,tx,)dt.
(@1 ) ; 8xj( 1 )

Now since 0 is a critical point of f, each g;(0) = 0, and hence we may
write it in the form

n
gj(ﬂfl,. . .,.Tn) = inhi,j(x17~ .. ,.Z‘n).
=0

Let ¢;,; = (hs,j + h;,;)/2. Hence we can combine these equations and write

f(xl,...,a:n) = Z .’Ei.’lﬁj(bi)j(.’lﬁl,...,l‘n)

ij=1

where (¢; ;) is a symmetric matrix of functions. By doing a straightforward
calculation one sees furthermore that the matrix

(¢i,3(0)) = (; 8:223];;' (O)>

and hence by the nondegeneracy assumption is nonsingular. From linear alge-
bra we know that symmetric matrices can be diagonalized. The Morse lemma
will be proved by going through the diagonalization process with the repre-
sentation of f as > z;x;¢; ;.

Assume inductively that there is a neighborhood Uy of the origin and
coordinates {uy,...,u,} with respect to which

f::l:(ul)Qj:j:(uk)2+ Z uiujd)lv’j(ul,...,un)
i k41

where (1); ;) is a symmetric, n—k xn—k matrix of functions. By a linear change
in the last n—k coordinates if necessary, we may assume that ¢,+1 x+1(0) # 0.
Let

o(ur,... up) = \/I¢k+1,k+1(m, e Up)]

in perhaps a smaller neighborhood V' C Uy of the origin. Now define new
coordinates
vi=wu; fori#k+1
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and

 Piger1(ur, -, un)
"yt prr (U, un)

Vk1(Ut, - Up) = (U1, Up) [ Uk + Z U

The v;’s give a coordinate system in a sufficiently small neighborhood Uy of
the origin. Furthermore a direct calculation verifies that with respect to this
coordinate system

k+1 n
f: Zi(vz)Z —+ Z vivj&v,j(vl,...,vn)
i=1 i j=k+2

where (6; ;) is a symmetric matrix of functions. This completes the inductive
step. The only remaining point in the theorem is to observe that the number
of negative signs occuring in the expression for f as a sum and difference of
squares is equal to the number of negative eigenvalues (counted with multiplic-
ity) of Hesso(f) which does not depend on the particular coordinate system
used. O

Remark. The Morse Lemma describes the behavior of the function f near a
critical point, but it does not describe the behavior of the gradient near the
critical point. The reason for this is that the gradient vector field depends
on the Riemannian metric, and if we use the coordinate system given by the
Morse Lemma, we do not know how this metric behaves.

Corollary 12.5. If M is a manifold and f : M — R is Morse, then the set
of critical points of f is a discrete subset of M.

Proof. Suppose there were a sequence of critical points x,, converging to some
point a € M. Since df is a continuous one-form on M, we know that a is a
critical point of f. Then apply the Morse Lemma above to a, which gives a
formula for f in a neighborhood of a. But there are no critical points in this
neighborhood as can be seen directly by calculating df in these coordinates.
This is a contradiction. O

Exercise.

Prove the converse of Exercise 12.2; that is, if M is a compact manifold
and f: M — R is a Morse function, and if a is not a regular value of f, then
f~1({a}) is not a manifold.

Definition 12.3. Let f : M — [a,b] be a Morse function on a compact
manifold. We say that f is admissible if OM = f~(a) U f~(b), where a and
b are regular values. This implies that each of f~'(a) and f~1(b) are unions
of connected components of OM .
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Theorem 12.6. Let f : M — R be an admissible Morse function on a
compact manifold. Suppose f has a unique critical point z of index \. Say
f(2) = c. Then there exists a \ - dimensional cell D* in the interior of M
with D> N f~Y(c) = OD?, and there is a deformation retraction of M onto
f~Hc)u D,

Proof, following [44]. By replacing f by f(x)—c we can assume that f(z) = 0.
Notice that by the regular interval theorem Theorem 12.2 it is sufficient to
prove the theorem for the restriction of f to the inverse image of any closed
subinterval of [a, b] around ¢ = 0.

Let (¢,U) be an chart around z with respect to which the Morse lemma is
satisfied. Write R” = R* x R"A. ¢ maps U diffeomorphically onto an open
set VC RM x R*A | and

foo Hzy) = —z|* + |y

Notice that ¢(z) = (0,0). Put g(z,y) = —|z|® + |y|2.

We will use gradient flows, which depend on the metric on M. We choose a
metric for M by pulling back the Euclidean metric on R™ by ¢, and extending
the metric arbitrarily to the rest of M. In this way, ¢ will be a local isometry,
and

Do(u)(Vu(f)) = Vu(9)s

for any u € U such that ¢(u) =v € V.
Let 0 < § < 1 be such that V contains A = BA(8) x B"~(§) where

Bi(§) = {z € R"| Zn:xﬁ <6}

Jj=1

is the closed coordinate ball around the origin of radius §.
Let € > 0 be small enough that v/4e < §, and let

A =B"(Ve) x {0} cV

and we define
DA =7 1(M) c M.

A deformation of f~'[—¢, €] to f~'(¢) U D is made by patching together
two deformations. First consider the set

A= B (vVe) x B (Vae).

Consider the following figure for the case A =1, n = 2.

Note that inside A1, f(z,y) = —|z|> +|y|*> > —e+|y|> > —e. Furthermore,
since z € B® (y/€), we have that (z,0) € c*.

In Ay N g~ !¢, €] a deformation is obtained by moving (x,y) at constant
speed along the interval joining (z,y) to the point (z,0) € g~'(—€) U BA, by
(x, (1 —t)y). This deformation then induces a deformation of ¢~1(A;).
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Outside the set

A2 = BN(V2e) x B (v3¢)

the deformation moves each point along the vector field —V(g) so that it
reaches g~!(—¢) in unit time. (The speed of each point is chosen to equal
the length of its path under the deformation.) See the following figure for a
pictorial description of this deformation.

This deformation is transported to U —¢~1(A3) by ¢, and is then extended
over M — ¢~ 1(Ay) by following the gradient flow lines of f.

Now if such a flow enters V', we now show it may not enter Ay: Suppose we
have a flow that enters V' from the outside at time ¢. Then since the closure of
Ay isin V, there is a time arbitrarily close to ¢ where the point is (x,y) which
is not in Ay. Then at this time either |z|> > 2¢ or |y|? > 3e. But if |y|? > 3¢
then because forg—!([—¢, ¢€]), we have € > —|z|? + |y|?> > —|z|? + 3¢ so that
|z|> > 2¢. Therefore, either way, |z|*> > 2¢. But for 2 non-zero, |z| increases
along flow lines. Therefore (x,y) will not be in Ay for any later time until it
leaves V' (and by repeating the argument for future visits to V, it never enters
Ao).

In f~Y([—€,¢€]) — 71 (Az), then, the downward gradient flow is defined,
and since we assume there are no other critical points than z, the methods of
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the proof of Theorem 12.2 show that the flows defined there flow downward
to f~1(—e).

On f~Y([—e,€¢]) — ¢7(A2), then, we can define the deformation to flow
along the gradient flow with constant speed, with speed equal to the length of
the flow line from the point to its destination on f~1(—¢). In this way, after
unit time, everything in f~!([—¢,¢€]) — ¢~ 1(Az) is deformed into f~1(—¢).

To extend the deformation to points of Ay — A; it suffices to find a vector
field on A which agrees with X in A; and with —V(g) in A — As. Such a vector
field is

Y(z,y) = 2(u(z, y)z, —y)

where the map p : R* x R"™* — [0, 1] vanishes in A; and equals 1 outside
As. The fact that each integral curve of Y which starts at a point of

(A2 = A1) Ng~'[—e,d]

must reach g~ (—¢) because |z| is nondecreasing along integral curves.

The global deformation of f~'[—e, €] into f~'(—e) U D* is obtained by
moving each point of A at constant speed along the flow line of Y until it
reaches g~!(—¢) U B® in unit time and transporting this motion to M via ¢;
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while each point of M — ¢~1(A) moves at constant speed along the flow line
of V(f) until it reaches f~!(—¢) in unit time. Points on f~!(—e) U D" stay
fixed. O

12.5 Homotopy equivalence to a C'W complex and the
Morse inequalities

Theorem 12.7. Let M be a closed manifold, and f : M — R a Morse
function on M. Then M has the homotopy type of a CW complex, with one
cell of dimension A for each critical point of index A.

Proof. Without loss of generality, the critical points of f all have different
values under f (if f(p) = f(¢) and p and ¢ are critical points, then let By C Bs
be balls around ¢ small enough that in By — By, we have |V f| bounded away
from zero by some €, and add a small bump function to f supported in By
and constant in By whose gradient is bounded above by €, and which does not
raise the value of f(g) high enough to reach another critical value of f).
Now let ag < --- < ap be a sequence of real numbers so that ag is less
than the minimum value of f, ay is greater than the maximum value of f,
and between a; and a;4; there is exactly one critical point. By Theorem 12.6
we have a homotopy equivalence h; between M®+1 and M% U D* (where
the union is via an attaching map as in a CW complex). By composing the
h;’s, we obtain a homotopy equivalence from M = M® to a union of disks
attached by CW attaching maps.
O

Corollary 12.8. Given f : M — R as above there is a chain complex
referred to as the Morse-Smale complex

...—)OAL)C)\_1—>...L)CO (122)

whose homology is H.(M;Z), where Cy is the free abelian group generated by
the critical points of [ of index A.

Proof. This is the cellular chain complex coming from the CW complex in
Theorem 12.7. O

We can now prove some of the results promised in the introduction, that
relate the topology of M to the numbers of critical points of f:

Corollary 12.9 (Morse’s Theorem). Let f: M — R be a C* function so
that all of its critical points are nondegenerate. Then the Euler characteristic
X(M) can be computed by the following formula:

(M) = 3 (= 1ie(f)
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where ¢;(f) is the number of critical points of f having index i.

Proof. The Euler characteristic x (M) can be computed as the alternating sum
of the ranks of the chain groups of any CW decomposition of M. O

Corollary 12.10 (Weak Morse Inequalities). Let ¢, be the number of critical
points of index p and let B, be the rank of the homology group H,(M). Then

ﬁp < ¢p.

Proof. The chain group C, ® R generated by the ¢, cells of dimension p is a
vector space of dimension c¢,. The group of cycles is of dimension at most c,.
After quotienting by the boundaries, we see that H,(M;R) is a vector space
of dimension at most c,,. 0

Corollary 12.11 (Strong Morse Inequalities). Let M, f, ¢;(f), and b;(M)
be as above. Then for all natural numbers i,

i

> (=1) >Z 1)**bi(M).

k=0

Proof. The proof is similar except we take a closer look at the boundaries.
Tensoring the chains with R, so that we write V; = Cr ® R, we get the
following chain complex of vector spaces:

i 1¢]
G /AL TN /A N

We write Vi, as Im(0x41) ® Hi(M;R) & (Vi / ker(0x)) and note that Im(9k11)
is of the same dimension as Vj41/ker(dg+1). Thus if we define dj, to be the
dimension of V}/ker(9y), we have

¢ = dp41 + by + di

and applying the alternating sum above we get

i

DG Vi —dz+1+z 1)""*b; (M)

k=0

(where here we need that dy = 0). This proves the strong Morse inequalities.
O

To see that the strong Morse inequalities prove the weak Morse inequali-
ties, write down the strong Morse inequality for ¢ and for ¢ + 1, and subtract
the two inequalities. To see that the strong Morse inequalities imply Morse’s
theorem, apply the strong Morse inequality for ¢ and for i + 1 for ¢ larger
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than the dimension of the manifold M, noting that ¢; = 0 and b; = 0 for all
j > dim(M).
It is instructive to work out the following;:

Exercise

Show that the strong Morse inequalities is “strictly stronger” than the
weak Morse inequalities together with Morse’s theorem. More specifically,
show that given the n + 1-tuple of natural numbers (b, ...,b,), we can find
another n + 1-tuple of natural numbers (cg,...,c,) so that these numbers
satisfy the weak Morse inequality and the Morse theorem but not the strong
Morse inequalties.

A typical application of these result is to use homology calculations to
deduce critical point data. For example we have the following.

Application
Every Morse function on the complex projective space

f:CP" — R
has at least one critical point in every even dimension < 2n.

The following is a historically important application of Morse theory, due
to Reeb, that follows from the techniques we have mentioned so far.

Application
Let M™ be a closed manifold admitting a Morse function

f+M—R

with only two critical points. Then M is homeomorphic to the sphere S™.

Remark This theorem does not imply that M is diffeomorphic to S™. In
[73] Milnor found an example of a manifold that is homeomorphic, but not
diffeomorphic to S7. Indeed he proved that there are 28 distinct differentiable
structures on S7! Milnor actually used this fact to prove that the manifolds
he constructed were homeomorphic to S7.

Proof of Theorem 12.5. Let S and N be the critical points. By the compact-
ness of M we may assume that S is a minimum and N is a maximum. (Think
of them as the eventual south and north poles of the sphere.) Let f(S) = tg
and f(N) = t;. By the Morse lemma there are coordinates (z1,...,z,) in a
neighborhood U, of N with respect to which f has the form

—x% 4+ =2+t
Therefore there is a b < t; so that if we let D, = f~1[b,¢;] then there is a
diffeomorphism
D, = D"
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with 0Dy = f~1(b) = S"~!. Repeating this process with the minimum point
P we obtain a point a > ty and a diffeomorphism of the space D_ = f~1[t;,a],

D_x~=D"
with 9D_ = f~1(a) = S"~!. By Theorem 12.2 we have that
fa,b) = f~(a) x [a,b] = S"! x [a, b].
Hence we have a decomposition of the manifold

M = f~ to, t1] = £ to,a] U fa, b) U f1[b, t1]
~D"US™ ! x [a,b]UD"

where the attaching maps are along homeomorphisms of S"~1. We leave it as
an exercise to now construct a homeomorphism from this manifold to S™.
O

Exercise
Finish the proof of Theorem 12.5 by showing that the resulting space

D" U S™ ! x [a,b] U D"

is homeomorphic to S™. Hint: Start by embedding one D™ into S™, then embed
S"=1 x [a,b] into S™ to match the first embedding, then to put the last D"
in, you must think of D™ as the cone on S™~!. This last part is why the proof
does not prove that this is diffeomorphic to S™.

In general, there are many applications of this work to the problem of
classifying manifolds of dimensions 5 and higher, leading to the h-cobordism
theorem and the s-cobordism theorem, and surgery theory. There are many
books that describe these developments of the 1960s and 1970s, the old classics
being Milnor’s book on the h-cobordism theorem, [70], Wall’s book on surgery
theory [97], and Browder’s book [14].

We now show that the set of Morse functions is open and dense in the set
of smooth functions. In particular, every manifold M admits a Morse function
f: M — R. In the proof, we will use the transversality theorem, done in
Chapter 8.

Theorem 12.12. Let M be a compact n-manifold. Let r > 2. The set of C"
Morse functions from M to R is dense in C"(M,R).

Proof. . We refer the reader to [44] for a complete proof. However we describe
the proof of a related fact that is a key component of the proof of this theorem.
Consider the exterior derivative map

d:C®(M;R) — QY (M) =Ty (T*M)
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where 'y (T M) denotes the space of smooth sections of the cotangent bundle.

Let ¢ C T*M be the zero section of T*M. Inside T'ps(T* M) we have the
space of sections that are transverse to the zero section, which we denote by
M (M, T*M;¢) C Tp(T*M). We observe that the space of Morse functions
is simply the inverse image under d of th (M, T*M;(). Furthermore, by the
transversality theorem (Corollary 8.9), we can conclude that M (M, T*M; () C
Tr(T*M) a dense subspace.

To see this characterization of Morse functions, observe that df being trans-
verse to the zero section means that whenever df, = 0 (i.e p is a critical point),
then D(df),(T,M) ® T,¢(M)(= T,M) = T4, T*M. But one can easily check
that this condition is equivalent to Hess f,, being nonsingular. O

Exercises

(1) Let M C RE be a closed, smooth submanifold. For each v € SE=1 let
fo : M — R be the map f,(x) =< v,z >. (This is essentially orthogonal
projection into the line through v.) Show that the set of v € SE~! such that
fv is a Morse function is open and dense.

(2) Let M C R be a closed, smooth submanifold.. Show that the set of points
u € RY such that the map x — |z — u|? is a Morse function on M, is open
and dense.

Remark. The functions described in exercise (1) are called “height func-
tions”. The functions described in exercise (2) are “distance functions”. These
are both very common and highly useful examples of Morse functions.

(3). Recall that RP" = {(x1, - xp41) € S® C R"T'}/ ~  where
(X1, Xpy1) ~ —(x1, - Tnt1). We denote an equivalence class using square
brackets [x1, - - Zp41] € RP".

Define a smooth function

f:RP* 5 R

by
n+1

fllar, - zpa]) = D kaj,
k=1

(a) Show that the critical points of f are wup,---un41, where u; =
[0,---0,1,0,---0], where the 1 occurs in the i coordinate.

(Hint. First construct charts U;, ¢ = 1,---,n + 1, where U; =
{[x1, " Znt1] :+ @ # 0}, by proving that there are diffeomorphisms ; :
U; =2 BT, where B}’ the unit open ball around the origin in R". 1); given by

Yiler, - Tpg1] = (X1, Tim1, Tig1, 0, Tn).
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Then compute the differential of the composition

n ¥ n f
B — U; C RP" = R.

Use this to show that the only critical point of f in U; is u;.
(b). Compute the index of each critical point.
(c). Show that f : RP™ — R is a Morse function.

(d). Using parts (a) - (c) to show that the Euler characteristic of RP™ is 0
if n is odd and 1 if n is even.

(e) Prove that if n is even, RP™ does not admit a nowhere zero vector field.






13

Spaces of Gradient Flows

13.1 The gradient flow equation

Let M be a manifold, g a Riemannian metric on M, and f : M — R be a
Morse function. A (gradient) flow line is a curve

~v:(a,b) — M
that satisfies the differential equation

d
() + Vo) (H) = 0 (13.1)
for all s € (a,b). Here V(f) is the gradient vector field as defined in (12.1). If
we imagine a particle that travels along ~, with ¢ describing time, the particle
travels in the path of steepest descent, with velocity given by the gradient.
Recall from the discussion in the previous chapter, that the gradient vector
field V(f), and therefore the gradient flow equation depends on the Rieman-
nian metric g in the following way:

< Vuf,v>4=df(x)(v)

where <, >,: T, M xT, M — R is the nonsingular, symmetric bilinear form on
the tangent space at x € M defined by the metric g. The typical gradient seen
in undergraduate calculus classes occurs on R™ with the standard Euclidean
metric.

Exercises
(1). Verify that if f : R™ — R is a differentiable function on R™, and if
we use the Euclidean metric on R™, then

0 0
V()= phe et e,

(2). Let f be as in the previous exercise, but suppose the metric is given
by an arbitrary symmetric matrix g (that is, < e;, e; >¢= gi;).
Find the formula for V(f) in terms of f and g.

385
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Remark. Notice that the property of p € M being a critical point of f does
not depend on the metric. As a bilinear form, the Hessian of f at a critical
point p € M does not depend on the metric either. Therefore the concepts of
p being a non-degenerate critical point, and the index of a critical point do
not depend on a choice of metric.

Example. If a is a critical point of f, then the constant curve y(t) = a
satisfies the flow equations, so v is a flow line. Conversely, by the uniqueness
of solutions of ordinary differential equations, if any flow line contains a critical
point @ € M, then it must be the constant curve at a.

Example Let M = R? with the Euclidean metric, and let f(z,y) = 22 + 2.
Then we can solve the gradient flow equations:

dx

- —_9
dt v
dy

= _ _9
dt Y

and therefore the gradient flow lines are (z(t),y(t)) = (ae~%, be~2") for some
fixed a and b. For any such flow line, y/x is a constant, so each flow parame-
terizes an open line in the plane emanating from the origin. See figure 13.1.

FIGURE 13.1
Flow lines for f(x,y) = 22 + y?
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FIGURE 13.2
Flow lines for f(z,y) =«

2

—y?

Example Let M = R? with the Euclidean metric, and let f(z,y) = 22 — y2.
Then it turns out that the gradient flow lines are (z,y) = (ae?,be~2) for
some fixed a and b. For any such flow line, zy is a constant, so the gradient
flow lines are hyperbolas of the form xy = c. See figure 13.1.

Example Let M = S? C R?® with the standard round metric, and let
f(z,y,2z) = z (the so-called “height function” defined by the embedding of
S? into R?). Then there are two critical points: one minimum at (0,0, —1),
and one maximum at (0,0,1). The flow lines are “lines of longitude”. See
figure 13.1.

Example Let T2 be the torus in R3, embedded as follows:
(6,0) — (bcos(e), (a+ bsin(¢)) cos(8), (a + bsin(¢)) sin(f)

where 0 < b < a. The picture looks like a donut standing on its edge, as in fig-
ure 13.4. Again, take for f the “height function” z. Then there are four critical
points: (8, ¢) = (£7/2,+7/2), as you can check. The index for (7/2,7/2) is 2,
the index for (7/2, —7/2) and (—n/2,7/2) is 1, and the index for (-7 /2, —7/2)
is 0.

There are two natural choices for a metric on 72: either the metric induced
from the embedding from R3, or the flat metric defined by ds? = df? + d¢?.
Although pictorially it may help to ponder the resulting gradient flow lines
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Qo«,y,z): 2
N

G

(o01)

FIGURE 13.3
Flow lines for the height function on 52
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%

FIGURE 13.4
Flow lines for the height function on the torus

from the metric induced by R? (these are the actual flows of steepest descent
on a physical donut), it is easier to calculate the flow lines when the flat metric
is used. The flow lines can be described explicitly, or else you can verify that
there are flows with § = £ /2 for which 6 is constant, and flows with ¢ = +7/2
for which ¢ is constant. These flows give rise to two flows from the index 2
critical point to one of the index 1 critical points, two flows from one index 1
critical point to the other, and two flows from the lower index 1 critical point
to the index 0 critical point. The other flows are in a one-parameter family of
flows which go from the index 2 critical point to the index 0 critical point.

Exercise Work out the details of the above examples. Find the closed form
solutions to the gradient flow equations and find which critical points they
connect to.

Lemma 13.1. A smooth function f : M — R is nonincreasing along flow
lines. f is strictly decreasing along any flow line which does not contain a
critical point.
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Proof. Let v : (a,b) — M be a flow line. Consider the composition f o~ :
(a,b) — R. Its derivative is given by

41610 = (V500 (1), 200

= (Vo) (f), =V ()
=~ VoD 0.

The only way this can be zero is if v(¢) is on a critical point of f. In
particular, if v(¢) does not contain in its image a critical point of f, then
f(y(t)) is strictly decreasing.

O

Remark In the above proof, we showed

&0 =~ V(N

We can also show

and this would also prove that f((¢)) is nonincreasing.

Remark Now if v(t) does contain a critical point p, then by Example 13.1
the flow must be a constant flow, and f(v(t)) is constant on this flow.

Thus there are two kinds of flow lines: constant flows that stay at a critical
point, and flows that descend for all ¢, and do not contain a critical point.

Theorem 13.2. Suppose that M is a closed, smooth manifold, and f : M — R
a smooth map. Then given any x € M there is a unique flow line defined on
entire real line

Yo : R— M

that satisfies the initial condition
Y2(0) = .
Furthermore the limits

lim ~,(t) and lm ~.(¢)

t——o0 t——+o0
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converge to critical points of f. These are referred to as the starting and ending
points of the flow ;.
The flow map
T:-MxR—M

defined by T(x,t) = v, (t) is smooth.

Proof. Let x € M. By the existence and uniqueness of solutions to ordinary
differential equations, there is an € > 0 and a unique path

Vo i (—€,6) — M
satisfying the flow equation

dry. (t)

g T Venlf)=0
for all |t| < €, and the initial condition 7,(0) = z. By the compactness of M
we can choose a uniform e for all z € M. Notice therefore that for |t| < € we

can define a self map of M,
Ve - M — M

by the formula y:(z) = 7,(t). Notice that vy = id, the identity map. By
uniqueness it is clear that
Vt+s = YVt O Vs

providing that |t|, |s|, |t + s| < €. Among other things this implies that each
¢ is a diffeomorphism of M because ’yt_l = y_4.

Now suppose that [t| > e. Write ¢t = k(e/2) +r where k € Z and |r| < ¢/2.
If k > 0 we define

V=V 0V5 0. Vg Oy

where the map ~¢ is repeated k times. If & < 0 then replace v by Ve Thus
for every t € R we have a map v; : M — M satisfying v 0 vs = Y445, and
hence each -, is a diffeomorphism.

The curves

Yo R— M

defined by ~v,(t) = () clearly satisfy the flow equations and the initial
condition 7,(0) = z. This means that the gradient flow equations can be
solved for all £ € R, and in particular, we will from now on require that
gradient flow lines be defined as functions v : R — M instead of being
defined only on an open interval.

Now let v be a flow line. Consider the composition fovy: R — R. By the
Fundamental Theorem of Calculus, if a < b, then

b
(Fo)®) - (Fora) = [ Lot
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Since M is compact f o has bounded image, so the left side is bounded. By
Lemma 13.1, 4 (f o~) < 0. Therefore

d
Jim % (fon)(t) =0,

By the proof of Lemma 13.1 we know that

d

0= lim_ = f(y(0) = lim_— [V, ()"

Let U be any union of small disjoint open balls around the critical points. By
the compactness of M, M — U is compact, so |V, (f)|* has a minimum value
on M —U. Since M — U has no critical points, this minimum value is strictly
positive. But since the above limit is zero, we know that for sufficiently large
[t], v(t) € U. Since the balls are disjoint and ~y(¢) is continuous, there is a
critical point p so that for any open ball around p, v(t) is in that ball for
sufficiently large ¢. Therefore lim;_, o, v(t) exists and is equal to p; similarly,
lim;—, o ¥(t) exists and is equal to a critical point.

The differentiability of the flow map T'(z,t) = 7, (t) with respect to ¢ fol-
lows because v, (t) satisfies the differential equation. The differentiability of
T with respect to x follows from Peano’s theorem (the differentiable depen-
dence of solutions to ODEs with respect to initial conditions). This is proved
in Hartman’s book on ODEs [40] in chapter V, Theorem 3.1. O

Let ~v(t) be a non-constant gradient flow line from p to ¢. Then by
Lemma 13.1, we know that h(t) = f(v(t)) is strictly decreasing, and in par-
ticular, is a diffeomorphism from R to the open interval (f(q), f(p)). We can
therefore consider the smooth curve n(t) = v(h~1(t)) from (f(q), f(p)) to M.
Then it is easy to check that f(n(t)) = t. So v and 7 have the same image,
but the parameter in 7) represents height (that is, the value of f).

Exercise Prove that f(n(t)) =t as claimed above.

We can also extend n to a continuous map from the closed interval
[f(@), f(p)] to M by defining 1(f(q)) = ¢ and n(f(p)) = p.

Exercise Prove that the extension of 1 to the closed interval [f(q), f(p)] is
continuous.

Definition 13.1. If~(t) is a non-constant gradient flow line for f, and h(t) =

f(y(t)), then
n(t) =~y(h= () : [f(a), f(p)] — R

is the height-reparameterization of v, and such a curve is a height-
parameterized gradient flow of f.

Remark This reparameterization of v is a direction-reversing one, since h
is strictly decreasing. This is to be expected since f(y(t)) is decreasing but
f(n(t)) =t is increasing.
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We now differentiate 7.

Exercise Prove

d Vo (f)
oty = — 1
dt Voo (H)*

Therefore, 7n(t) is the solution to another differential equation which may
be described as follows:

Lemma 13.3. Away from the critical points of f, we may consider the vector

field (
Vo (f)
X = —,
TN
Then a curve € : (s1,82) — M that satisfies

d
() = X(C()

is a height-reparameterized flow line.

Proof. We insist that (s1, s2) be maximal. We then can show that 4 f({(t)) =
1 as usual (do this now if you wish). Pick a number s € (s1,s2), and con-
sider the gradient flow line (¢) so that v(0) = ((s). We do the height-
reparameterization to v to get a height-reparameterized curve n. Now 7 satis-
fies the same differential equation as ¢, and n(f({(s))) = ¢(s), so we translate
the domain as follows: 1o (t) = n(t+ f(C(s)) — s) satisfies the same differential
equation as ¢ and n9(s) = ((s) so by the uniqueness of solutions to ODEs,
no = G.

Therefore solutions to 4-((t) = X (¢(t)) are precisely those that are height-
parameterized flows. O

Therefore X (x) and V(f(x)) have the same integral curves, although with
different parameterizations.

13.2 Stable and unstable manifolds

As before, for any point € M, let ~,(t) be the flow line through z, i.e. it
satisfies the differential equation

d
a’}/ = _vv(f)

with the initial condition 7(0) = z. We know by Theorem 13.2 that ~,(t)
tends to critical points of f as t — +oo. So for any critical point a of f we
define the stable manifold W*(a) and the unstable manifold W*(a) as follows:
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Definition 13.2. Let M be a manifold, and f a smooth function on M. Let
a be a critical point for f. We define the two subsets of M :

Wia) ={xeM: lim v(t)=a}

W4 a)={xeM: t_lir_noovw(t) =a}.

and call W#(a) the stable manifold of a and W*(a) the unstable manifold of
a.

In other words, W#(a) is the set of points on M that flow down to a,
and W*"(a) is the set of points on M flow out from a. The use of the term
“manifold” is justified by the stable manifold theorem:

Theorem 13.4 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, and f : M — R a Morse function. Let a be a critical point of f of index
A. Then W*(a) and W*(a) are smooth submanifolds diffeomorphic to the open
disks D and D™, respectively.

This will be proved in Section 13.2 below for a large class of metrics (though
it is in general true for all metrics).

Proposition 13.5. If M is a compact manifold with Riemannian metric g,
and f: M — R is a Morse function, then

M= U W*(a)

is a partition of M into disjoint sets, where the union is taken over all critical
points a of f.

Proof. The fact that the union of the W*(a) is M comes from the fact that
every point of M lies on a flow line 7, and we can always find lim;_, _ . y(¢).

The fact that the W*(a) and W*(b) are disjoint when a # b is due to the
fact that ~ is unique. O

Exercise Find the unstable manifolds for each critical point in Example 13.1.
Exercise Find the unstable manifolds for each critical point in Example 13.4.

From these exercises you can see that this decomposition of M makes M
look like a CW complex, with one cell of dimension A for each critical point
of index A. The torus example is problematic because an edge gets attached
to the middle of another edge, but consider the following fix:

Consider the torus in R? as before, but with a slight perturbation. That
is, tilt the torus by pulling it down so it is not quite vertical. Then consider
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FIGURE 13.5
Flow lines for the height function on the “tilted torus”
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the height function f(z,y,z) = z. The following is a picture of the resulting
flow lines.

The point is that with this example, we have a decomposition of M into
cells, with a cell of dimension A for each critical point of index \. These are
essentially the cells D* in Theorem 12.6.

The disks appearing in this result and those appearing in Theorem 12.6
are related in the following way. Suppose that [tg,t1] C R has the property
that f~1([to,t1]) C M has precisely one critical point a of index A with f(a) =
c € (to,t1). Then by Theorem 12.6 there is a disk D* C M?* and a homotopy
equivalence

M™ ~ My D
Now note that W%(a) N f~1([t,t1]) is, under a Euclidean metric defined

by the Morse coordinate chart, equal to the D* mentioned in the proof of
Theorem 12.6.

In Chapter 11, we proved the Morse Lemma (Theorem 12.4), which says
that locally, around any nondegenerate critical point, we can choose a coordi-
nate chart so that

A n
fl,..zn)=fp) =Y al+ Y a3 (13.2)
i=1 J=A+1

In other words, we have a local explicit formula for f around a critical point,
no matter what f is, as long as the critical point is non-degenerate.

What does the gradient vector field look like around such a critical point?

Based on the above equation (13.2), you might expect the gradient to be
this:
V(f)=(-2z1,...,—2zx,2Tx41,...,22T,) (13.3)

But because the metric is not prescribed, it is possible (even likely) that the
gradient vector field is not this at all. Recall that the gradient is obtained by
<v,V(f)) >= df (v) and therefore depends on the metric (see the discussion
in Chapter 11, and in particular where the gradient was defined 12.1).

Since we are dealing with gradient vector fields, and their corresponding
flow lines, it would make sense for us to want to use a metric so that there
are local coordinates where (13.3) is true. This is especially the case, since if
equation (13.3) is true, then the gradient flow equation

9ot) = Vo)
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would take the form (if we write v(¢) = (z1(t),...,x,(¢))):

.’i?l = 23’51

Zi’)\ = 2%)\
Tat1 = —2Tx41

Ty = —2T,

which is easily solved.

If the metric is anything else, we might still hope to diagonalize this
system of differential equations, choosing coordinates (z1,...,z,) so that
Y(t) = =V (f) looks like

.i‘i = C;T; (134)

for some non-zero real constants cy, ..., c,. Then the ¢; would be negatives of
the eigenvalues of the Hessian of f at the critical point, and the corresponding
eigenvectors would be the standard basis vectors 9/0x; in this coordinate
chart.

Unfortunately, it is in general impossible to choose coordinates so that
(13.4) holds, as the following exercises show:

Exercise Solve the system of differential equations (13.4).

Exercise Solve the system of differential equations

i =2z (13.5)
i= (13.6)
Z=z+ay (13.7)

(13.8)

and show that there is no change of coordinates that transform it into the
form (13.4).

Exercise Let f(r,y,2) = 22 —y? + 22. Find a metric g(z,y, ) on a neighbor-
hood of (0,0,0) € R? so that the gradient flow equations near the origin are
as in equation (13.8). Hence prove that it is in general impossible to choose
coordinates so that the gradient flow equations look like equation (13.4) in a
neighborhood of the critical point. Note that the metric must be symmetric
and positive definite in the neighborhood.

Note that in this exercise, what goes wrong is a kind of “resonance” phe-
nomenon that occurs in ordinary differential equations when two eigenvalues
are the same. By analogy, we would expect this kind of problem to be rare,
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and we might hope that for most situations, we can choose coordinates to put
the gradient flow equations in the standard form of equation (13.4), but to
address this will take us rather far afield (see [40]).

Instead, we choose to follow Hutchings [52] to modify the given metric, in
neighborhoods of the critical points, to the standard metric so that equation
(13.2) gives rise to the gradient flow equations in equation (13.4).

This motivates the following definition, due to Hutchings [52]:

Definition 13.3. Let M be a manifold and f be a Morse function. A metric
is said to be nice if there exist coordinate neighborhoods around each critical
point of f so that for each such neighborhood there are non-zero real numbers
C1,-..,Cn SO that the gradient flow equations are

Ti = CiTy,
as in (13.4).

Proposition 13.6. Let M be a compact manifold and f a Morse function.
There exists a nice metric on (M, f). In fact, these are dense in the L? space
of metrics.

Proof. Let gg be any smooth metric on M. Consider the set of critical points
of f. Apply the Morse lemma (Lemma 12.4), to find nonoverlapping coordi-
nate neighborhoods of each critical point of f in M, each with coordinates

T1,...,T, so that the Morse function in each neighborhood is
A n
i=1 J=A+1

For each critical point a of f, let U, be the coordinate neighborhood given
by the Morse lemma, let B; be a coordinate ball around a that is completely
inside U,, and let By be another coordinate ball around a of smaller radius
than Bj. (By coordinate ball I mean the set whose coordinates (x1,...,x,)
satisfy 2% + -+ + 22 < r for some 7.)

Let ¢ : U, — R be a smooth function so that ¢ is 1 on By and 0 outside
B;. Let gg be the standard Euclidean metric with respect to the z1,...,z,
coordinates. Define ¢g to be

9= go(z)(1 — ¢()) + gr(z)9(x).

Since the set of symmetric positive definite bilinear forms is a convex set, this
convex linear combination of the two metrics will be a metric on U,. Extend
g by setting it equal to go on the rest of M. Then g is a metric for which a is
nice.

Now proceed inductively through the other critical points of M. This cre-
ates a metric g so that there is a coordinate neighborhood metric ball B around
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each critical point where both f and the metric are in a standard form. Then
the gradient flow equation p
2
looks like equation (13.4).
By taking By smaller and smaller, we see that the difference between g
and gg is supported on an arbitrarily small set, and by the boundedness of

the metric on M, we know that this difference is arbitrarily small in L. O

We now prove the Stable manifold theorem for nice metrics:

Theorem 13.7 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, with nice metric g, and f : M — R a Morse function. Let a be a critical
point of f of index A\. Then W*(a) and W*(a) are smooth submanifolds dif-
feomorphic to the open disks D and D", respectively.

Remark This theorem is actually true for all metrics (not necessarily “nice”),
but to prove this would take too long and we don’t need it in this generality.
Curious readers can see [40] for the proof.

Proof of the Stable Manifold Theorem. If g is a nice metric, then there is a
coordinate neighborhood B around each critical point where the gradient flow
equations are
dvi
dt
where ~;(t) is the i-th coordinate of v. Note that the ¢; are the negatives
of eigenvalues of the Hessian, corresponding to the directions given by the
standard basis in the coordinate chart. Reorder the coordinates so that the
first A eigenvalues are the negative ones (so that the first A values of ¢; are
positive).
Then explicitly,

= ¢;vi(t)

,%;(O)ek,;\t’ 1 S A
(1) = 13.9
Y ( ) {’)/i(O)elcit, P>\ ( )

inside B.

We prove the theorem for W*(a). The proof for W*(a) is exactly analogous,
and besides, it follows from the W#(a) case, applied to the function —f. We
will first prove that W#(a) is smooth in a small neighborhood of a.

Let Wy be the subset of B consisting of those points where x1 = x5 = -+ - =
2x = 0. Then from the explicit solution (13.9), we see that Wy C W#(a).

Now W, is an open disk of dimension n — A centered on a, and hence is a
manifold, and is furthermore a submanifold of M.

Recall from Theorem 13.2 that the flow map defined as

T - MxR—M

T(z,t) = 7.(t)
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is smooth. Apply this flow backward in time by some time ¢: define W; =
T (W, —t). This will be diffeomorphic to Wy and a subset of W?(a). As ¢ goes
to infinity, we span a larger and larger subset of W*(a).

Let z € W*(a), and + the corresponding gradient flow line with (0) = x.
Since lim;_, o ¥(t) = a, we know that for some ¢y > 0, v(¢) € B for all t > t,.
I will now show that (o) € Wy.

Suppose y(tg) &€ Wy. The translated flow n(t) = v(t +1t¢) is a gradient flow
line, with the property that n(0) ¢ Wy, and n(t) € B for all ¢ > 0. Then for
some coordinate ¢ > A, 7;(0) # 0. By the explicit solution (13.9), n;(¢) will
grow indefinitely, so that eventually n (and hence ) leaves the coordinate ball
B. This is a contradiction. Therefore, v(tg) € Wp.

Since every element of W#(a), when flowed forward, eventually is in Wy,
we know that U, W, = W9(a).

Let ¢ : [0,1) — R be a smooth monotonic function with ¥(0) = 0 and
lim; 1 ¢ () = +oo. Using |z| as /22 + --- + 22, and r( as the radius of the
coordinate ball B, we see that T'(x, ¥ (|z|/r¢)) maps Wy diffeomorphically onto
W#(a). Recall that Wy is a submanifold of M which is a disk of dimension
n — A. Therefore, W*(a) is a submanifold of M and diffeomorphic to D",

O

Exercise Prove the Stable Manifold Theorem (Theorem 13.7) for the unsta-
ble manifold W*(a), without applying the theorem to stable manifolds of — f.
Instead, carefully go through the proof for W#(a) and write out the corre-
sponding proof that would work for W*(a).

Proposition 13.8. The tangent space of W*(a) at a is the positive eigenspace
of the Hessian of f at a. Similarly, the tangent space of W¥(a) at a is the
negative eigenspace of the Hessian of f at a.

Proof. Again, for the sake of our proof we are assuming the metric is nice,
but this is unnecessary. The result holds in general.

Now W#(a) is a smooth submanifold of M, so its tangent space at a is
well-defined. Define Wy as in the previous proof, as

{(3717---,1'»“)|JJ1:~--:(E)\:0}.

The tangent space to Wy is therefore the span of 9/0x; for i = A+ 1 to n.
This is the positive eigenspace of the Hessian.

On the other hand Wy C W*#(a), and since they are of the same dimension,
Wy is an open neighborhood of a in W#*(a). Therefore W, and W#(a) have
the same tangent space at a.

The proof for W*(a) can be done similarly, or if you wish, you may use
the result for W*(a) on —f. O

Let a be a critical point of f. Let us consider the function f restricted to
W(a). Since W*(a) is defined to be the set of points which in some sense
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lie “below” a on gradient flow lines, we expect a to be a maximum of f on
Wt(a), and level sets to be spheres around a.

Theorem 13.9. Let (M,g) be a Riemannian manifold and f : M — R a
Morse function. Let a be a critical point of f. Let h : W"(a) — R be the
restriction of f to W*(a). Then a is the unique critical point of h, and it is
the absolute maximum. If € > 0 is small enough, and f(a) — e < ¢ < f(a),
then h=1(c) is diffeomorphic to a A — 1 dimensional sphere in W¥(a) around
a.

Similarly, let j: W9(a) — R be the restriction of f to W*(a). Then a is
the unique critical point of j, and it is the absolute minimum. If € > 0 is small
enough, and f(a) < ¢ < f(a) + ¢, then j=1(c) is diffeomorphic to an — X —1
dimensional sphere in W#(a) around a.

Proof. We will prove this for W*(a), and the result for W#(a) is the same
using — f instead of f.

Let z € W¥(a), and = # a. Let y(t) be the unique gradient flow line with
~(0) = z. Since z € W"(a), we have that lim;_, . y(t) = a.

According to Lemma 13.1, f(vy(¢)) is strictly decreasing. By the continuity
of f, limi—,_o f(7(t)) = f(a). So f(a) > f(x). Therefore, a is the absolute
maximum of h.

Now, v(t) € W*(a) for all ¢, so v/(0) € T,W"(a). Since f(y(t)) is strictly
decreasing, 7/(0) # 0 (if it were, & f(y(t)) = V(f) - +/(0) would be zero). By
the gradient flow equation v/(t) = =V, ) (f), the =V (f) # 0. Therefore, x
is not a critical point of h. Since x was arbitrary, except for not equalling a,
there are no critical points of h except for a.

Now we consider the Hessian of h at a. Find a coordinate chart of M
around a so that W*(a) is given by the equations 41 = -+ = z, = 0. By
the invariance of the Hessian under coordinate change (Proposition 12.1), the
Hessian of f can be computed in such a coordinate chart. Since T, W*“(a) is
the negative eigenspace of the Hessian of f (Proposition 13.8) we conclude
that the matrix

0% f
8:@8@3 ij
is negative definite. Since W*(a) is given by setting xx11,...,%, to be con-
stant (in fact, zero), we see that for 4,7 < A, this matrix is the same as
0%h
0z;0x; i '

Therefore the Hessian of h at a is negative definite. In particular, a is a non-
degenerate critical point of h, and h is Morse.

We now consider the preimages h~1(c).

For this, we use the Morse Lemma (Theorem 12.4) applied to h on the
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manifold W*(a). The Morse Lemma states that there exist a coordinate neigh-
borhood U around a with coordinates x1,...,zx on W%(a) so that

Ber,...,ax) = fla) —a? — - — a3

Let € > 0 be given so that the ball
B = {(w177.'17)\)|,’1}%++w§\ <€}

is contained in U. Within this ball it is clear that the preimages h~!(c) (when
f(a)—e < ¢ < f(a)) are coordinate spheres around a. We will now verify that
there are no other parts to h=!(c) which are outside B.

Suppose © € W¥(a), and = ¢ B. As earlier in the proof, let v(¢) be the
gradient flow with v(0) = x. As before, lim;_,_, y(t) = a. But B is an open
set around U. Therefore, for some t < 0, y(¢) € B. Since x = v(0) is not in B,
the generalized Jordan curve theorem says that there exists some T' < 0 for
which v(T) is on the boundary of B. Since f(vy(t)) is strictly decreasing,

f(@) = f(1(0) < F(4(T)) = f(a) — e

So f(z) < f(a) — €. Therefore, if f(a) — € < ¢ < f(a), then h=!(c) is a susbet
of B, and is therefore the coordinate spheres we found earlier. O

13.3 The Morse—Smale condition

An important, generic condition of a Morse function on a Riemannian man-
ifold, is that the unstable and stable manifolds of the various critical points
intersect transversally. This is called the Morse-Smale transversalitycondition,
which we study in this subsection.

Definition 13.4. Suppose f : M — R is a Morse function on a Riemannian
mamnifold M, that satisfies the extra condition that for any two critical points a
and b the unstable and stable manifolds W*(a) and W*(b) intersect transver-
sally. This is the Morse—Smale condition, and if f satisfies this condition, we
call f a Morse-Smale function.

Smale [87] showed that Morse-Smale functions exist. More specifically,
given a metric g and function f : M — R, there exists another metric g’
and another function f’ : M — R so that f’ is Morse-Smale with respect
to ¢g’. His proof also demonstrates that f and f’ and g and ¢’ can be made
arbitrarily close to each other. Hence the set of configurations of functions and
metrics so that the functions are Morse-Smale with respect to that metric is
dense.
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Actually, more is true: if f is Morse, then for an open, dense set of metrics
g, f is Morse-Smale. This can be proved using the same techniques that are
used in the proofs in Smale’s paper. We will sketch out a proof at the end of
this chapter that the set of such metrics is dense. In the meantime we will
first study some properties of Morse—Smale functions.

Exercise Suppose f is Morse (not necessarily Morse-Smale) and suppose b
is a critical point of f. Do W*(b) and W*(b) always intersect transversally?

The main purpose of the Morse-Smale condition is that it allows us to see
how stable and unstable manifolds of different critical points intersect. For
every pair of critical points a and b, let

W(a,b) = W"(a) NW?(b).

W (a,b) is the space of all points in M that lie on flow lines starting from a
and ending at b.

Proposition 13.10. Let (M, g) be a Riemannian manifold of dimension n,
let f: M — R be Morse-Smale, and a and b be two critical points of f.
Then W (a,b) is a smooth manifold of dimension index(a) — index(b).

Proof. It f is Morse-Smale, then W*(a) and W*(b) intersect transversally.
Therefore the intersection W*(a)NW?*(b) = W (a, b) is a manifold of dimension
dim(W*(a)) + dim(W?(b)) — n = index(a) + (n — index (b)) — n = index(a) —
index(b). O

Corollary 13.11. Let f : M — R be a Morse—Smale function, and let a and
b be two distinct critical points of f. If index(a) < index(b), then W(a,b) = ().

Proof. If index(a) < index(b), then the previous proposition shows that
W (a,b) is a manifold of negative dimension, so it must be empty.

If index(a) = index(b), then similarly W (a,b) must be a manifold of di-
mension 0, but since the gradient flow acts freely on elements of W(a,b), the
dimension of W (a,b) must be at least one. Therefore it must be empty. [

Definition 13.5. We refer to the number
index(a) — index(b)
as the relative index of a and b.

Exercise Suppose a and b are critical points of f and a # b. Are a and b in
W (a,b)? If there are other critical points of f, is it possible that these are in
W (a,b)? Now consider the case a = b. What is W (a,b)?
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Let f : M — R be a Morse-Smale function on the smooth, closed Rieman-
nian manifold M. Let a and b be critical points. The fundamental object of
study will not usually be W(a,b), which is the space of points lying on flow
lines between a and b, but rather a space of flow lines themselves. Notice there
is an action of the group R on W(a,b) by the following. Let x € W (a,b), and
let v, : R — M be the unique gradient flow line satisfying the initial condition

v2(0) = z.
Then the action of R is just the flow. More specifically,

R x W(a,b) — W(a,b) (13.10)
t,x — v5(t). (13.11)

Notice that this action is free, and we can study the orbit space W (a,b)/R.
Notice that two points  and y in W (a,b) are in the same orbit space under
this R-action if and only if they lie on the same flow line. Therefore a point in
the orbit space W (a,b)/R can be viewed as simply a flow line. We therefore
make the following definition.

Definition 13.6. Define the “Moduli Space of flow lines” M(a,b) to be the
orbit space,
M(a,b) = W(a,b)/R.

For good intuition and for practical considerations it is useful to instead
pick out a representative of each R orbit in W(a,b). One way to do this is
to select a real number ¢ between f(a) and f(b) and pick the representative
in f~1(t). This is the approach will allow us an alternate, but equivalent
definition of the moduli space M (a.b).

Definition 13.7. Pick a value t € R between f(a) and f(b), and let W (a,b)
to be the set W(a,b) N f=1(t).

Proposition 13.12. Ifa and b are distinct critical points of f, then W (a, b)
is a smooth submanifold of M.

Proof. First, we see that f|y (qs) : W(a,b) — R is transverse to the point
{t} C R. This is because for any point € W(a,b) so that f(z) = t, V.(f)
is not zero, and so mneither is df,(V.(f)) = ||[Vz(f)||?>. Therefore t € R
is a regular value of ff|y(ap), and hence by the Regular Value Theorem,

(f\W(,%b))fl ({t}) = W(a,b)" is a smooth submanifold of W (a,b) of codimen-
sion one. O

Theorem 13.13. Let a and b be distinct critical points of f. The function

¢ : Wi(a,b)' x R — W(a,b)



Spaces of Gradient Flows 405

defined by
¢(pa S) = Ts(p)

is a diffeomorphism.

Proof. We begin by proving ¢ is onto. Let € W (a,b). Let « be the flow line
that has 7(0) = z. Since limy o0 f(1(t)) = £(b) and limy_,_ f(1(t)) = f(a),
by continuity we have that for some s, f(y(—s)) = ¢. Then y(—s) = p and
Ts(p) = =.

Now to show ¢ is one-to-one, suppose x = ¢(p1,s1) = &(p2,s2). Then
T 5, (z) = p1 and T_g,(x) = pe2, meaning that the unique flow line v with
7(0) = = also has y(s1) = p1 and (s2) = p2. Since f(p1) =t = f(p2), and
4 f(y(s)) <0, it must be that s; = s, and therefore p; = po.

Therefore ¢! is defined as a set map. To show that ¢! is continuous, it is
necessary to show that if U is an open neighborhood of (p,s) € W(a,b)! x R,
then there exists an open neighborhood of ¢(p, s) in W (a,b) that is a subset
of ¢(U). It suffices to show this for open neighborhoods U of the form B, (€) x
(s —€,5 + ¢€). Since T_; is a diffeomorphism of M that maps neighborhoods
of ¢(p, s) to neighborhoods of ¢(p,0), it suffices to prove this for s = 0.

So what we need to show is if € > 0 is sufficiently small, and p € W (a, b)?,
then there exists a ¢ so that whenever d(p,y) < J, then writing y = ¢(q,r)
gives us |r| < € and d(p,q) < e.

Since p is not a critical point, there is a d; so that B,(2d1) does not contain
critical points. In this ball, m = inf |V f|? is strictly greater than zero and
sup |V f] is finite. If sup |V f| > 1, then let M = sup |V f|, but otherwise let
M = 1. By continuity of f there is a d2 so that |f(p) — f(Bp(d2))| < me/2M.
Choose ¢ to be smaller than min(dy, dz, €/2).

Now in the proof of Lemma 13.1, we saw that

& Fa) =~ VP
Integrating and using the fundamental theorem of calculus, we get
[f(y(=r)) = f(3(0))] = |r|inf [V f]?
which leaves us with
[rlm = |r[inf [V f|* < |f(p) — f(y)| < me/2M

so that |r| < e/2M <.
Now,

d(q,y) < /Iv’(t)l dt

— [ 191
< Mr < e/2.
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So by the Triangle inequality, d(p,q) < d(p,y) + d(q,y) < 6 +¢/2 < e.
Therefore ¢! is continuous.

To prove ¢! is smooth, we estimate d¢ and show it is non-degenerate.
Let (p,s) € W(a,b)! x R and let vy,...,vx be a basis for the tangent space of

W (a,b)! at p, and let &/9t be the tangent vector to R. Now if d¢ is degenerate
at (p, s), then do(v1), ..., do(vg),dd(9/0t) would be linearly dependent. Now
since @l (a,p)tx {5} 18 Just the flow map T, and this flow map is a diffeomor-
phism, we know that dé(v1),...,d¢(vg) are linearly independent. Therefore
any linear dependence would involve d¢(9/0t), so that

$(0/0t) = chdd) Uk)

for some real numbers c.

Now since ¢(p, 5) = Ty(p), do(0/01) at (p,s) is LT4(p) = +'(s), where ¥
is the flow with v(0) = p. Then if we compose with T,

dT_,dp(0/0t) = > crdT_odp(vy)
dT,Sv s) =chuk

"//(0) = Z CrUk.

But we know ~/(0) is transverse to TW (a, b)t, which is a level set of f. There-
fore, we have a contradiction, and d¢ is non-degenerate. Therefore ¢! is
smooth. O

The following is an immediate consequence of this theorem.

Corollary 13.14. Let f : M — R be a Morse-Smale function on a closed
Riemannian manifold M. Let a, b € M be critical points and t € R be a
number strictly between f(a) and f(b). Then the composition

Wt(a,b) — W(a,b) 22 W(a,b)/R = M(a, b)

is a diffeomorphism.

We therefore may identify the moduli space of flows M(a, b) with the level
space Wt(a,b).

If we use the notation +a to denote the function +a : R — R with
+a(xz) = z + a, then the following diagram commutes:

W(a,b)t x R —2— W(a,b)
(10 | r.|
W(a,b)t x R —2— W(a,b)

We now sketch a proof that the set of metrics for which a Morse function
is Morse—Smale is dense.



Spaces of Gradient Flows 407

Theorem 13.15. Let M be a manifold. Let f : M — R be a Morse function.
For a dense set of metrics g, f is Morse-Smale.

Proof. (Sketch of proof) We suppose a Riemannian metric g is given, and
show that there exists a Riemannian metric g’ arbitrarily close to g so that f
is Morse-Smale with respect to g’. Recall that V, refers to the gradient using
the metric g.

We start by finding a vector field X close to V,f that agrees with V,f
near the critical points of f but so that the unstable and stable manifolds
are transverse (step 1). We then show that for some metric ¢’ close to g,
X = Vy(f) (step 2).

Step 1: finding the vector field X

The details of this step are found in Smale’s proof of Theorem A in the
work just cited above ([87]).

Let the critical values of f be ¢; < -+ < ¢. Choose € > 0 arbitrary, but
small enough so that for each i, c;y1 > ¢; + 4e, and in fact, small enough so
that for each critical point p, Theorem 13.9 gives us that W*(p)N f~1((—oo, c])
is a ball for all f(p) < c < f(p) + 4e.

We first let X = Vg. Then we proceed by induction on i, starting at c;
and ending at ¢y, at each stage altering X in f~1(c; + €, ¢; + 3e).

At stage 7 in the induction, we consider each critical point p so that f(p) =
¢;. In a neighborhood of p, we consider

Q= f"(c; +26) NW*(p).

Since —V(f) is transverse to level sets of f, the gradient flow can be integrated
in a small neighborhood of @ so that there is a coordinate z with —m < z < m
so that 9/0z is —V(f) and z = 0 coinciding with Q. Here m is chosen so that
this keeps us in f~1(¢; + €,¢; + 3¢). By the coordinate structure of f near
p, a tubular neighborhood U of @ is a trivial A-disk bundle. So if P is a A
dimensional disk of radius 1, then there is a diffeomorphism sending [—m, m] x
P x @ onto this tubular neighborhood of @, so that the first coordinate is the
coordinate z, and 0 x 0 X @ is mapped to @ by the identity function. From
now on, we will identify U with [—m,m] x P X @ in our notation.
Consider all critical points ¢ with f(q) > ¢;. Let

S =Ug f(q)>e:, v, (5)=0(0 X P x Q) NW?(q)

and let g : S — P be the restriction of 7p : [-m,m] x PxQ — 0x P x 0
to S. By Sard’s theorem there exist v € P arbitrarily close to zero so that 2v
is a regular value of g.

Now construct S : [-m, m] — R so that 3(z) > 0, 3(z) = 0 in a neigh-
borhood of 9[—m, m], and foim B(z) dz = £|v|. If v was chosen small enough,
B(z) and |5'(2)| can be kept smaller than e.

Let Py C P be a A-dimensional disk of radius 1/3.

We also construct a smooth v : P — Rsothat 0 <y <1,v=01ina
neighborhood of P, v =1 on Py, and |0v/0z;| < 2.
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Let X’ be the vector field on M that equals X outside U, and on [—m, m] X
P x @ let X’ be given by
0 v
X' ==~ BNl
We use the bounds on 8 and v to ensure that df (X’) > 0.

To see that the new stable and unstable manifolds W’*(p) and W' (q)
intersect transversally, we examine any point of intersection, and flow by X’
until it is in f~%(c; + 2€). It will then be at a point {0} x P x Q C [~m,m] x
P x @. The flow X' for time +m carries (0,2,y) € [-m,m] X P X @ to
(£m,x £ v,y), as can be seen by explicitly integrating out X'.

If ¢ is any critical point with f(¢) > ¢;, then consider the new stable
manifold W’¢(q) of ¢ under X'. It agrees with the old stable manifold W*(q)
on (m,0,y), and after flowing by —m we get to (0, —v,y).

Also, the new unstable manifold W'*(p) agrees with the old unstable man-
ifold W*(p) for z = —m, and flowing by X’ for time m from here shows that
W (p)N (0 x P x Q) is

{(0,2 +v,9)[(0,2,y) € W*(p)}.

So their intersection is the set

{(07 —v, y)|(07 2/07 y) € Wu(p)}

and since 2v is a regular value of g, this intersection is transverse.

We do this for all the critical points with critical value ¢;, and these do not
interfere with each other as long as € is small enough that the neighborhoods
U do not intersect.

We then proceed with larger and larger ¢, until we have constructed a new
X'.

Step 2: finding the metric ¢

Note that X is unchanged (it still equals V, f) near critical points of f. So
near critical points of f we define ¢’ to equal g. Outside these neighborhoods
we define, at each point z € M, a linear transformation A, on T,M that is
the identity on the kernel of df, and sends X to

df (X)
lldf 1l

Since df (X) > 0, this is invertible, and if X is close to V4(f), then A, is close
to the identity. Let ¢'(v, w) = g(Av, Aw). Then ¢’ is close to g.

Now if we write an arbitrary vector w € T, (M) as w = wo + aX where
df (wp) = 0, then it is a matter of computation to verify that ¢’ (X, w) = df (w).
By definition of gradient, this means X = Vg (f). O

Vo (f)-

Corollary 13.16. Given a Morse function f : M — R, there exists a metric
g so that f is Morse—Smale.
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13.4 The moduli space of gradient flows M(a,b), its com-
pactification, and the flow category of a Morse func-
tion

Throughout this section we assume that M is a C'*° closed, Riemannian metric
and that f : M — R is a Morse function satisfying the Morse-Smale condition.
As seen above, the Morse-Smale condition is generic.

13.4.1 The moduli space M/(a,b)

Let a and b be critical points of f : M — R. As seen above, the moduli space
M(a,b) is a smooth manifold of dimension equal to one less than the relative
index,

dimM(a,b) = index(a) — index(b) — 1.

The points of M(a,b) are the gradient flow lines that start at a and end
at b. Of course the gradient flow lines in M(a, b) don’t really “start” at a or
“end” at b, but rather they satisfy the initial conditions lim;_, _~, v(t) = a and
lim;, 4 o0 y(¢) = b. This is a rather clumsy arrangement, especially if we want
to “glue” flow lines. That is, if « € M(a,b) and 8 € M(b,c), then we should
be able to describe a (“piecewise”) flow a0 8 which should “start” at a and
“end” at c. This is most easily done if we reparameterize these curves so that
they be “height parameterized gradient flow lines”, as defined in Definition
13.1.

13.4.2 The compactified moduli space of flows and the flow
category

As above let M be a closed Riemannian manifold and let f : M — R be a
Morse function satisfying the Morse-Smale condition. Let V() be the gradient
vector field of f. Consider a flow lines of f which is a curve v : R = M
satisfying the differential equation

dy _

T — v,

If 7 is a flow-line then 7(¢) converges to critical points of f as t — oo and
we define

s(y) = lim ~(t),  e(y) = lim 5(2).

t—o00

Since f is strictly decreasing along flow lines it defines a diffeomorphism
of the flow line ~y(t) with the open interval (f(b), f(a)) where s(vy) = a and
e(y) = b. This reparameterises the flow-line as a smooth function

w: (f(b), fla)) = M
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such that
fw(t)) =t

We can extend w to a smooth function defined on [f(b), f(a)] by setting
w(f(b)) = b and w(f(a)) = a. Then as seen above, this extended function
satisfies the differential equation

dw V(f)
@ = VO (13.12)

with boundary conditions

W(fO) =b,  w(f(a) =a. (13.13)
It is a “height-parameterized” flow line.

We define M(a,b) to be the space of all continuous curves in M which
are smooth on the complement of the critical points of f and satisfy the
differential equation (13.12) and boundary condition (13.13). Here, of course,
we understand that w satisfies (13.12) on the complement of the set of critical
points of f. This space M(a,b) is topologized as a subspace of the space
Map([f (D), f(a)], M), of all continuous maps with the compact open topology.
Note that if w is any solution of (13.12) and (13.13) then if we remove the
points where w(t) is a critical point of f each component of w is geometrically
a flow-line but it is parameterized so that f(w(t)) = t. Therefore by an abuse
of terminology we refer to a curve in M(a,b) as a piecewise flow-line from
a to b.

It is rather straightforward to check that M(a,b) is a compact space and
it clearly contains M (a,b). Furthermore, by work of Smale in [87], since f is
M(a,b) is in fact open and dense in M (a,b) and so M(a,b) is a “ compacti-
fication” of the moduli space of flow lines M(a, b).

There is an obvious associative, continuous composition law

M(a,b) x M(b,c) — M(a,c)

which is denoted by 1 o v».
Following the work of the author, Jones, and Segal [24] are now ready to
define the “flow category” of f, Cy:

Definition 13.8. The flow category C; is the topological category defined as
follows:

e The objects of Cy: The objects of C; are the critical points of f.

e The morphisms of C;: If a and b are critical points of f then the mor-
phisms from a to b are defined to be

Cy(a,b) = M(a,b).
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e The composition law: The composition law is defined by

M(a,b) x M(b,c) — M(a,c)
(11,72) — Mo (13.14)

In fact Cy is a topological category in the sense that each of the sets C¢(a, b)
comes equipped with a natural topology and the composition law

M(a,b) x M(b,c) — M(a,c)

is continuous. The topological category C; has a simplicial classifying space
BCy. The main result of [24] is the following:

Theorem 13.17. If M is a closed Riemannian manifold and f : M — R
is a Morse function satisfying the Morse-Smale condition, then there is a
homeomorphism

M = Bey.

Moreover, even if f does not satisfy the Morse-Smale condition (but is still
a Morse function), there is a homotopy equivalence, M ~ BCy.

We now illustrate this theorem by considering the example of the height
function on the “tilted torus”. Recall that for this we view the torus as em-
bedded in ordinary three-space, standing on one of its ends with the hole
facing the reader, but tilted slightly toward the reader. We let f be the height
function.
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Qm‘y"*);?
—>

There are four critical points; a has index 2, b and ¢ have index 1, and d has
index 0. As the figure depicts, the moduli spaces M(a,b), M(a,c), M(b,d),
and M(c,d) are all spaces consisting of two distinct points each. We will
denote these flows by «ay, S, i, and d; respectively. All points on the torus
not lying on any of these flows is on a flow in M(a,d). This moduli space
is one dimensional, and indeed is the disjoint union of four open intervals.
Furthermore the compactification M (a,d) is the disjoint union of four closed
intervals.

Now consider the simplicial description in the classifying space BCy. The
vertices correspond to the objects of the category Cy, that is the critical points.

Thus there are four vertices. There is one one simplex (interval) for each
morphism (flow line), glued to the vertices corresponding to the starting and
endpoints of the flows. Notice that the points in M(a,d) index a one pa-
rameter family of one simplices attached to the vertices labelled by a and d.
Finally observe that there is a two-simplex for every pair of composable flows.
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R ’;?(a,b\ _ cx‘uﬁ.,,)’ﬁ?(ﬁvg = @v”BL)~ ﬁ{}AS:Eug‘_/WQJ):EU\SL
o Mady=T,uT 2Ty

FIGURE 13.6
Simplicial decomposition of BC¢, where f is the height function on the tilted
torus
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There are eight such pairs (coming from the four points in each of the prod-
uct moduli spaces M(a,b) x M(b,d) and M(a,c) x M(c,d).) A two-simplex
labelled by a pair of flows, say («, 8) will have its three faces identified with
the one simplices labelled by «, 8, and « o1 8 respectively. Notice that all
higher dimensional simplices in the nerve N(Cy) are degenerate and so do
not contribute to the geometric realization. The figure depicts the resulting
simplicial structure of the classifying space and illustrates Theorem 13.17 that
this space is homeomorphic to the underlying manifold.

Remark. The manuscript [24] was never published, primarily because the
proof of the main theorem relied on knowing that, assuming f : M — R
satisfies the Morse-Smale condition, then the compactified moduli spaces,
M(a,b) are manifolds with corners and that the corner structure is appro-
priately preserved under the composition of piecewise flow lines. At the time
that manuscript was written, the authors thought that this was a “folk the-
orem”. However upon further inspection, the authors realized that although
experts in the community believed that this was true, there was no proof in
the literature, and that the issues involved in proving this result were more
complicated than the authors originally imagined. Therefore the manuscript
was never submitted for publication. In any case, the required manifold with
corners properties were eventually proved [81] [98], and the proof of Theorem
13.17 can now be completed using these results. A discussion of manifolds
with corners and a sketch of such a proof will be given in the appendices.
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