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Abstract. An old question of Linnik asks about the equidistribution of integral points on a large sphere.
This question proved to be very rich: it is intimately linked to modular forms, to subconvex estimates for
L-functions, and to dynamics of torus actions on homogeneous spaces. Indeed, Linnik gave a partial answer
using ergodic methods, and his question was completely answered by Duke using harmonic analysis and
modular forms. We survey the context of these ideas and their developments over the last decades.
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1. Linnik’s problems

Given Q a homogeneous polynomial of degree m in n variables with integral coefficients, a classical problem
in number theory is to understand the integral representations of an integer d by the polynomial Q, as
|d| → +∞. Let VQ,d(Z) = {x ∈ Zn, Q(x) = d} denote the set of such representations (possibly modulo
some obvious symmetries). If |VQ,d(Z)| → +∞ with d, it is natural to investigate the distribution of the
discrete set VQ,d(Z) inside the affine variety “of level d”

VQ,d(R) = {x ∈ Rn, Q(x) = d}.

In fact, one may rather consider the distribution, inside the variety of fixed level VQ,±1(R), of the radial
projection |d|−1/m.VQ,d(Z) (here ± is the sign of d) and one would like to show that, as |d| → +∞, the

∗The research of the first author is partially supported by the Marie Curie RT Network “Arithmetic Algebraic
Geometry” and by the “RAP” network of the Région Languedoc-Roussillon. The research of the second author is
supported by a Clay Mathematics Research Fellowship and NSF grant DMS-0245606.
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set |d|−1/m.VQ,d(Z) becomes equidistributed on VQ,±1(R) with respect to some natural measure µQ,±1 on
VQ,±1(R). Here, to take care of the case where VQ,d(Z) and µQ,±1(VQ,±1(R)) are infinite, equidistribution
w.r.t. µQ,±1 is defined by the following property: for any two sufficiently nice compact subsets Ω1,Ω2 ⊂
VQ,±1(R) one has ˛̨

|d|−1/m.VQ,d(Z) ∩ Ω1

˛̨˛̨
|d|−1/m.VQ,d(Z) ∩ Ω2

˛̨ → µQ,±1(Ω1)

µQ,±1(Ω2)
as |d| → +∞. (1.1)

The most general approach to this kind of problems is the circle method of Hardy/Littlewood. (Un)fortu-
nately, that method is fundamentally limited to cases where the number of variables n is large compared with
the degreem. To go further, one is led to make additional hypotheses on the varieties VQ,d. It was anticipated
by Linnik in the early 60’s and systematically suggested by Sarnak in the 90’s [Lin60,Lin63,Sar91], that for
varieties which are homogeneous with respect to the action of some algebraic group GQ, one should be able
to take advantage of this action either via harmonic analysis or via ergodic theory or via a combination of
both. Equidistribution problems on such homogeneous varieties are called (after Sarnak), equidistribution
problems of Linnik’s type.

By now, this expectation is largely confirmed by the resolution of wide classes of problems of Linnik’s
type ([Lin68, LS64,DRS93,EM93,EMS96,COU01,GO03,EO03]); and the methods developed to deal with
them rely heavily on powerful techniques from harmonic analysis (Langlands functoriality, equidistribution of
Hecke points and approximations to the Ramanujan/Petersson conjecture) or from ergodic theory (especially
Ratner’s classification of measures invariant under unipotent subgroups) possibly complemented by methods
from number theory.

In this lecture we will not discuss that much the resolution of these important and general cases (for this
we refer to [Esk98,Ull02]); instead, we wish to focus on three, much older, examples of low dimension and
degree (m = 2, n = 3) which were originally studied in the sixties by Linnik and his school. Our point in
highlighting these examples, is that the various methods developed to handle them (some of which even go
back to Linnik in the 50’s) are fairly different from the aforementioned ones which, in fact, may not apply1

or at least not directly. In fact, we believe that the approches we are about to survey will be a starting point
of new interesting developments.

The three problems are relative to polynomials of ternary quadratic forms of signatures (3, 0) and (1, 2)
and these are problems of Linnik’s type with respect to the action of the orthogonal group G = SO(Q) on
VQ,d.

The first problem is for the definite quadratic form Q(A,B,C) = A2 + B2 + C2. For d an integer,
VQ,|d|(Z), is the set of representations of |d| as a sum of three squares

VQ,|d|(Z) = {(a, b, c) ∈ Z3, a2 + b2 + c2 = |d|}

and VQ,1(R) = S2 is the unit sphere. We denote by

Gd = |d|−1/2.VQ,|d|(Z)

the radial projection of VQ,|d|(Z) on S2:

Theorem 1 (Duke [Duk88]). For d→ −∞, and d 6≡ 0, 1, 4(mod 8) the set Gd is equidistributed on S2 w.r.t.
the Lebesgue measure µS2 .

It will be useful to recall the “accidental” isomorphism of SO(Q) with G = PG(B(2,∞)) = B×2,∞/Z(B×2,∞)

where B(2,∞) is the algebra of the Hamilton quaternions. This arises from the identification of the quadratic
space (Q3, Q) with the trace-0 Hamilton quaternions endowed with the norm form N(z) = z.z via the map
(a, b, c)→ z = a.i+ b.j + c.k.

The second and third problems are relative to the indefinite quadratic form Q(A,B,C) = B2 − 4AC
which is the discriminant of the binary quadratic forms qA,B,C(X,Y ) = AX2 +BXY + CY 2. In that case,
there is another “accidental” isomorphism of SO(Q) with PGL2 via the map

(a, b, c)→ qa,b,c(X,Y ) = aX2 + bXY + cY 2

1for instance, in the problems presented below, the natural groups which acts on the sets VQ,d(Z), are (quotients
of adelic) tori which, obviously, have no unipotent elements.
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which identifies VQ,d with the set Qd of binary quadratic forms of discriminant d; PGL2 acts on the latter
by linear change of variables, twisted by inverse determinant. As PGL2(Z) acts on Qd(Z), one sees that,
if VQ,d(Z) = Qd(Z) is non empty (i.e. if d ≡ 0, 1mod 4), it is infinite; so the proper way to define the
equidistribution of |d|−1/2.VQ,d(Z) inside VQ,±1(R) = Q±1(R) is via (1.1). However, instead of formulating
the problems in these terms, it is useful to put them in a slightly different (although equivalent) form
which has a modular interpretation and will prove suitable for number theoretic applications. Let H± =
H+ ∪ H− = C − R = PGL2(R)/SO2(R)) denote the union of the upper and lower half-planes and Y0(1)
denote the (non-compact) modular surface of full level i.e. PGL2(Z)\H± ' PSL2(Z)\H+.

As is well known, the quotient PSL2(Z)\Qd(Z) is finite, of cardinality some class number h(d). For
negative discriminants d, one associates to each PSL2(Z)-orbit [q] ⊂ Qd(Z), the point z[q] in Y0(1) defined
as the PGL2(Z)-orbit of the unique root of q(X, 1) contained in H+. These points are called Heegner points
of discriminant2 d and we set

Hd := {z[q], [q] ∈ PSL2(Z)\Qd(Z)} ⊂ Y0(1).

An equivalent form to (1.1) for Q(A,B,C) = B2 − 4AC and d→ −∞ is the following:

Theorem 2 (Duke [Duk88]). As d → −∞, d ≡ 0, 1mod 4, the set Hd becomes equidistributed on Y0(1)
w.r.t. the Poincaré measure dµP = 3

π
dxdy
y2

.

For positive discriminants d, one associates to each class of integral quadratic form [q] ∈ Qd(Z) the
positively oriented geodesic, γ[q], in Y0(1) which is the projection to Y0(1) of the geodesic line in H+ joining
the two (real) roots of q(X, 1). This is a closed geodesic – in fact, all closed geodesics on Y0(1) are of that
form – whose length is essentially equal to the logarithm of the fundamental solution to Pell’s equation
x2 − dy2 = 4. We denote by

Γd := {γ[q], [q] ∈ PSL2(Z)\Qd(Z)}
the set of all geodesics of discriminant d.

Theorem 3 (Duke [Duk88]). As d → +∞, d ≡ 0, 1mod 4, d not a perfect square, the set Γd becomes
equidistributed on the unit tangent bundle of Y0(1), S∗1 (Y0(1)), w.r.t. the Liouville measure dµL = 3

π
dxdy
y2

dθ
2π

.

These three problems (in their form (1.1)) where first proved by Linnik and by his student Skubenko by
means of Linnik’s ergodic method; we will return this method in section 6. The proof however is subject to
an additional assumption which we call Linnik’s condition, namely:

Theorem 4 (Linnik [Lin55,Lin60], Skubenko [Sku62]). Let p be an arbitrary fixed prime, then the equidis-
tribution statements of Theorems 1, 2, 3 hold for the subsequence of d such that p is split in the quadratic
extension Kd = Q(

√
d).

As we’ll see in section 6 Linnik’s condition has a natural ergodic interpretation; the method of Linnik
amounts to studying the dynamics of a Q×

p -action on a homogeneous space. It can be somewhat relaxed to

the condition that for each d there is a prime p = p(d) 6 |d|
1

1010 log log |d| which splits in Q(
√
d). The latter

condition is satisfied by assuming that the L-functions of quadratic characters satisfying the generalized
Riemann hypothesis or even by assuming the much weaker (still unproven) statement that these L-functions

have no zeros in a log log |d|
log |d| -neighborhood of 1. In particular, Linnik’s condition (resp. the weaker one)

is automatically fullfilled for subsequences of d such that Kd is a fixed quadratic field (resp. disc(Kd) =

exp(O( log |d|
log log |d| ))); however, in these cases, the proof of Theorems 1, 2, 3 is much simpler (see [CU04] for

instance), so, as it is the hardest and (from our perspective at least) the most important case, we will limit
ourselves to d’s which are fundamental discriminants (i.e. d = disc(Kd)).

Acknowledgements. The first author is scheduled to give a presentation based on this work in the 2006
ICM. Since much of it is based on our joint work, we have decided to write this paper jointly. The results
of Section 6 are all joint work with M. Einsiedler and E. Lindenstrauss and will also be discussed in their
contribution to these proceedings [EL06].

It is our pleasure to thank Bill Duke, Henryk Iwaniec and Peter Sarnak for both their consistent encour-
agement and for many beautiful ideas which underlie the whole field. Peter Sarnak carefully read an early
draft and provided many helpful comments and corrections. We also would like to thank our collaborators
Manfred Einsiedler and Elon Lindenstrauss, for patiently explaining ergodic ideas and methods to us.

2for simplicity, we will ignore non-primitivite forms
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2. Linnik’s problems via harmonic analysis

Duke’s unconditional solution of Linnik’s problems is via harmonic analysis and is very different from Linnik’s
original ergodic approach. In a sense, it is more direct as it proceeds by verifying Weyl’s equidistribution
criterion. Let (X,µ) denote any of the probability spaces (S2, µS2), (Y0(1), µP ), (S1

∗(Y0(1)), µL) and for each
case and for appropriate d, let µd denote the probability measure formed out of the respective sets Gd, Hd

or Γd: for instance for X = S2,Z
S2
ϕµd =

1

|Gd|
X

(a,b,c)∈Z3

a2+b2+c2=|d|

ϕ(
ap
|d|
,

bp
|d|
,

cp
|d|

).

Showing that µd weak-∗ converges to µ amounts to show that, for any ϕ ranging over a fixed orthogonal
basis ( made of continuous functions) of the L2-space L2

0(X,µ), the Weyl sum

W (ϕ, d) :=

Z
X

ϕµd, converges to 0 as |d| → +∞. (2.1)

In the context of Theorem 1 (resp. Theorem 2, resp. Theorem 3) such bases are taken to consist of non-
constant harmonic polynomials (resp. Maass forms and Eisenstein series of weight 0, resp. Maass forms and
Eisenstein series of non-negative, even, weight).

2.1. Duke’s proof. The decay of the period integral W (ϕ, d) is achieved by realizing it in terms of
the d-th Fourier coefficient of a modular form of half-integral weight and level 4; this modular form – call it
ϕ̃ – is obtained from ϕ through a theta correspondance.

In the case of Theorem 1, and when ϕ is a non-constant harmonic polynomial of degree r, this comes
from the well known fact that the theta-series

ϕ̃(z) = θϕ(z) =
X
|d|>1

“ X
(a,b,c)∈Z3

a2+b2+c2=|d|

ϕ(a, b, c)
”
e(|d|z)

is a modular form of weight k = 3/2 + r for the modular group Γ0(4). This is a special case of a (theta)
correspondance of Maass, which itself is now a special case of the theta correspondance for dual pairs; it
associates to an automorphic form ϕ for an orthogonal group SOp,q of signature (p, q), a Maass form of
weight (q − p)/2, ϕ̃. Moreover, Maass provided a formula expressing the Fourier coefficients of ϕ̃ in terms
of a certain integral of ϕ.

By the accidental isomorphisms recalled above, this provides a correspondance between automorphic
forms either for B×2,∞ or for PGL2, and modular forms of half-integral weight. Under this correspondance,
one has, for d a fundamental discriminant (d = disc(OK) for OK the ring of integers of the quadratic field
K = Q(

√
d))

W (ϕ, d) = cϕ,d
ρϕ̃(d)|d|−1/4

L(χd, 1)
(2.2)

where cϕ,d is a constant depending on ϕ and mildly on d (i.e. one has |d|−ε �ϕ,ε cϕ,d �ε |d|ε for any
ε > 0), ρϕ̃(d) denotes the d-th fourier coefficient of ϕ̃ (here, the Fourier expansion of ϕ̃ is normalized so
that the analog of the Ramanujan/Petersson conjecture for half-integral weight forms is ρϕ̃(d)�ε,ϕ̃ |d|ε for
d squarefree) and χd is the quadratic character corresponding to Kd.

In particular, by Siegel’s lower bound L(χd, 1)�ε |d|−ε, (2.1) is consequence of a bound of the form

ρϕ̃(d)� |d|1/4−δ (2.3)

for some absolute δ > 0. The bound (2.3) is to be expected; indeed the half-integral weight analog of
the Ramanujan/Petersson conjecture – which follows from GRH – predicts that any δ < 1/4 is admissible.
Unlike the situation in integral weight, this half-integral weight analogue does not follow from the Weil
conjectures.

The problem of bounding Fourier coefficient of modular forms can be approached through a Peters-
son/Kuznetzov type formula (due to Proskurin in the half-integral weight case): (un)fortunately the standard
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bound for the Salié sums occuring in the formula yield the above estimate only for δ < 0. This “barricade”
was eventually surmounted by Iwaniec (with the value δ = 1/28, [Iwa87]) for ϕ̃ a holomorphic form of weight
> 5/2 and by B. Duke for general weight as well as Maass forms by adapting Iwaniec’s argument, and thus
concluding the first fully unconditional proof of Theorems 1, 2, 3.

We will not discuss the proof of Iwaniec’s bound, excepted to say that it uses the half-integral weight
Petersson/Kuznetzov formula, the very special structure of the Salié sums, and finally a fundamental trick
of performing an averaging over the level of the forms in some optimal range. We mention this last point
because, although we are unable to offer any idea of “why” Iwaniec’s trick works, it would be extremely
useful to have a conceptual interpretation of it; there are indeed other interesting equidistribution problems
in which the Weyl sums are connected to Fourier coefficients of automorphic forms but on more exotic
groups. A very interesting case, pointed out to us by Dick Gross, is equidistribution problem for the flats
associated to totally cubic rings of large discriminant in PGL3(Z)\PGL3(R) (see Section 6 for an ergodic
approach to this problem), the associated Weyl sums should be related to Fourier coefficients of automorphic
forms for the exceptional group G2 (see [GGS02,GS03,GS04] for the first steps in the direction of such a
connection).

As Duke pointed out in [Duk88], some other values of the signature (p, q) yield exceptional isomorphisms
between SO(p, q) and groups which carry a nice modular interpretation (i.e. connected to Shimura varieties
or their reductions): namely the cases of signature (3, 2) and (2, 2). In [Coh05], Cohen extended Duke’s
approach to these cases and obtained, amongst other, new equidistribution results for special, positive
dimensional, Siegel subvarieties of 3-folds.

2.2. Equidistribution and subconvex bounds for L-functions. Shortly after Duke’s
proof, another approach emerged which turned out to be very fruitful, namely the connection between the
decay of Weyl’s sums 2.1 and the subconvexity problem for automorphic L-function. In Section 3 we give a
full definition of the subconvexity problem; in short, it consists of giving “nontrivial” bounds on the size of
an automorphic L-function on the critical line.

2.2.1. Weyl’s sums as period integrals: Waldspurger type formulae. It goes back to Gauss
that the set of classes of quadratic forms SL2(Z)\Qd(Z) has the structure of a finite commutative group
(the class group) Cl(d). In particular for the second problem (d < 0), Hd is a homogeneous space under the
action of Cl(d) and the Weyl sums can be seen as period integrals for this action:

W (ϕ, d) =

Z
Cl(d)

ϕ(σ.zd)dµHaar(σ).

In a similar way, the Weyl’s sums over Gd and Γd can be realized as orbital integrals for the action of some
class group.3 The connection between such orbital integrals and L-functions follows from a formula basically
due to Waldspurger. To describe it in greater detail it is useful and convenient to switch an adelic description
of the Weyl’s sums. Such description makes clear the unity of Theorems 1–3.

Let us recall recall that in the context of Theorem 1 with Q(A,B,C) = A2 +B2 + C2 (resp. Theorems
2 and 3, with Q(A,B,C) = B2 − 4AC) a solution Q(a, b, c) = d gives rise to an embedding of the quadratic

Q-algebra Kd into the Q-algebra B(2,∞) (resp. M2,Q) by sending
√
d to a.i+ b.j + c.k (resp.

„
b −2a
2c −b

«
).

This yields an embedding of Q-algebraic groups, Td := resK/QGm/Gm ↪→ G, where G = PG(B(2,∞)) (resp.
= PGL2).

Let Kf,max be a maximal compact subgroup of G(Af ) in all three cases. In the context of Theorem 1
(resp. Theorem 2, resp. Theorem 3) take K∞ = Td(R) ∼= SO2 ⊂ G (resp. K∞ = Td(R), resp. K∞ = {1})
and set K = Kf,maxK∞; the quotient G(Q)\G(AQ)/K then equals a quotient of S2 by a finite group of
rotations (resp. Y0(1), resp. the unit tangent bundle of Y0(1)).

It transpires, with these identifications, the subsets

Gd ⊂ S2, Hd ⊂ Y0(1), Γd ⊂ S1
∗(Y0(1))

3For the first case, a connection between VQ,|d|(Z) and Cl(d) (d < 0) goes back to Gauss: to any (a, b, c) ∈ VQ,|d|(Z),
one associates the SL2(Z)-class of the quadratic form of discriminant d obtained by restricting the square of the
euclidean norm in R3 to the Z-lattice (a, b, c)⊥ ∩ Z3. Similarly, one can relate Γd to the idele class group of a real
quadratic field.
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may be uniformly described, after choosing a solution zd, as a compact orbit of the adelic torus Td:

Td(Q)\zd.Td(AQ)/KTd ⊂ G(Q)\G(AQ)/K

where KTd := Td(AQ) ∩K. In this notation the Weyl sum is given as a toric integral

W (ϕ, d) =

Z
Td(Q)\Td(AQ)/KTd

ϕ(zd.t)dt (2.4)

when dt is the Haar measure on the toric quotient. A superficial advantage of this notation is that it allows
for a uniform presentation of many equidistribution problems for “cycles” associated with quadratic orders
in locally symmetric spaces associated to quaternion algebras. Indeed, as we shall see below that one can,
under suitable compatibiility hypotheses, consider the above equidistribution problems while changing

• the group G to G = B×/Z(B×) for B any quaternion algebra over Q (definite or indefinite);

• the compact Kf,max to a compact subgroup K′f ⊂ Kf,max (i.e. changing the level structure)

• the subgroup KTd to a subgroup K′Td (i.e. considering cycle associated to suborders O of the maximal
order Od).

• the base field Q to a fixed totally real number field F .

When ϕ is a new cuspform (the L2 normalized new vector in some automorphic representation π), Wald-
spurger’s formula [Wal85] relates |W (ϕ, d)|2 (and correspondingly the square of the d-th Fourier coefficient
|ρϕ̃(d)|2) to the central value of an automorphic L-function. In its original form, the formula was given up to
some non-zero proportionality constant; as we are interested in the size W (ϕ, d) a more precise expression is
needed. Thanks to the work of many people ([KZ81,GZ86,Gro87,Hat90,KS93,CU05,Zha01,Zha01b,Pop06,
Xue05, Xue05b]) notably Gross, Zagier and Zhang such an expression is by now available in considerable
generality. Under suitable hypotheses (which in the present cases are satisfied), it has the following form

|W (ϕ, d)|2 = cϕ,d
L(π, 1/2)L(π × χd, 1/2)

L(χd, 1)2
p
|d|

(2.5)

where π′ is a GL2-automorphic representation corresponding to π by the Jacquet/Langlands correspondance
and cϕ,d > 0 is a constant which depends mildy on d.

The Waldspurger formula (2.5) is more powerful than (2.2) as it may be extended to a formula for more
general toric integrals. Indeed, let χ be a character of the torus Td(Q)\Td(AQ) = K×

d A×
Q\A

×
Kd

trivial on
KTd . Under suitable compatibility assumptions between χ and ϕ and possibly under additional coprimality
assumptions between the conductors of of π, χ, the relation (2.5) generalizes to

|Wχ(ϕ, d)|2 = cϕ,dχ,χ∞
L(π × πχ, 1/2)

L(χd, 1)2
p
|dχ|

(2.6)

where Wχ(ϕ, d) is a twisted toric integral of the form

Wχ(ϕ, dχ) =

Z
Td(Q)\Td(AQ)

χ(t)ϕ(zdχ .t)dt,

πχ is the GL2-automorphic representation (of conductor dχ) corresponding to χ by quadratic automorphic
induction and L(π × πχ, s) is the Rankin/Selberg L-function of the pair (π, πχ).

2.3. Subconvexity, equidistribution and sparse equidistribution. We see, from
formula (2.5) and Siegel’s lower bound that (2.1) follows from the bound

L(π × χd, 1/2)�π |d|1/2−δ; (2.7)

for some absolute δ > 0; subject to this bound, one obtains another proof of Linnik’s equidistribution
problems. More generally, we see from (2.6) that the twisted Weyl sums are decaying, i.e.

Wχ(ϕ, dχ)→ 0 for dχ → +∞, (2.8)
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as soon as

L(π × πχ, 1/2)� |dχ|1/2−δ. (2.9)

Both (2.7) and (2.9) are special cases of subconvex bounds for central values of automorphic L-functions
and have been proven (see below).

One should note that the decay of the twisted toric integral is useful if one needs to perform harmonic
analysis along the toric orbit Td(Q)\zd.Td(AQ)/KTd : this is particular the case when one needs equidis-
tribution only for a stricly smaller suborbit of the full orbit, a problem we call a sparse equidistribution
problem.

For instance one has:

Theorem 5 ([HM06]). There is an absolute constant 0 < η < 1 such that: for each fundamental discriminant
d < 0, choose z0,d ∈Hd a Heegner point and choose Gd a subgroup of Cl(d) of size |Gd| > |Cl(d)|η then the
sequence of suborbits

H ′
d := Gd.z0,d = {σ.z0,d, σ ∈ Gd}

is equidistributed on Y0(1) w.r.t. µP .

One has also similar sparse equidistribution results for sufficiently large suborbits of Gd on the sphere
and for suffciently large geodesic segments of Γd [Mic04, Pop06]. Note however that the present method
has fundamental limitations as one cannot take η too close to 0: even under the GRH, one would prove
equidistribution only for η > 1/2. Nevertheless we would like to formulate the following

Conjecture 1. (Equidistribution of subgroups) Fix any η > 0 and for each fundamental discriminant d < 0,
choose z0,d ∈Hd a Heegner point and choose Gd a subgroup of Cl(d) of size |Gd| > |d|η. Then as |d| → +∞,
the sequence of suborbits

H ′
d := Gd.z0,d = {σ.z0,d, σ ∈ Gd}

is equidistributed on Y0(1) w.r.t. µP .

This conjecture is certainly difficult in general; however, we expect that, by ergodic methods, significant
progress might be made, at least for subgroups Gd that satisfy suitable versions of Linnik’s condition for
some fixed prime p (see Section 6 for evidence in that direction). One might consider Conjecture 1 to be a
homogeneous space analogue of the results of Bourgain-Konyagin [BK03] on small subgroups of (Z/pZ)×.
In a related vein we formulate:

Conjecture 2. (Mixing conjecture) For each fundamental discriminant d < 0, let σd ∈ Cl(d) be such that the
minimal norm of any integral ideal representing the class σd approaches ∞ as |d| → ∞. Then, as |d| → ∞,
the sequence

H ′′
d = {(z, σdz) : z ∈Hd} ⊂ Y0(1)× Y0(1)

is equidistributed w.r.t. µP × µP .

One can formulate natural generalizations of Conjecture 2: e.g. one can replace Y0(1) × Y0(1) by
Y0(1)×

`
S2/SO3(Z)

´
and, fixing base points z1 ∈Hd, z2 ∈ Gd, replace the role of H ′′

d by the set {(σ.z1, σ.z2) :
σ ∈ Cl(d)}. Similarly one can formulate a version with even more factors, or replacing Cl(d) by a subgroup
of size dη. See also Section 6.4.1.

2.4. Equidistribution and non-vanishing of L-functions. Before continuing with the
subconvexity problem, we would like to point out another interesting application. It combines subconvexity,
equidistribution and the period relation (2.5) and applies them to the non-vanishing of L-functions. It should
be noted that the field of proving non-vanishing for L-functions is a vast one, with many techniques that
have proved successful in different contexts; the technique we present here is only one of many, and in fact
achieves much weaker results than have been obtained in other contexts.

Consider, for simplicity, the context of Theorem 2 (see also [MV06]): let ϕ be a Maass-Hecke eigenform
of weight 0 and π be its associated automorphic representation. If one averages (2.5) over the characters of
Cl(d), one obtains by orthogonality (in that case the constants cϕ,dχ,χ∞ = c > 0 are all equal to an absolute
constant)

c

√
d

|Cl(d)|2
X

χ∈cCl(d)

L(π × πχ, 1/2) =

Z
Y0(1)

|ϕ|2.µd
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and since by Theorem 2 Z
Y0(1)

|ϕ|2.µd →
Z
Y0(1)

|ϕ(z)|2dµP (z) > 0, as |d| → +∞

this shows that for some χ the central value L(π × πχ, 1/2) does not vanish.
Moreover, by the subconvex bound (2.9), one obtains a quantitative form of non-vanishing

|{χ ∈cCl(d), L(π × πχ, 1/2) 6= 0}| � |d|η (2.10)

for some absolute η > 0.
By considering equidistribution relative to definite quaternion algebras, one can obtain similar non-

vanishing results for central values L(π × πχ, 1/2) where π∞ is in the discrete series and the sign of the
functional equation of L(π × πχ, s) is +1. In particular when π = πE is the automorphic representation
associated to an elliptic curve E/Q , such estimates provide a lower bound for the size of the “rank-0” part
of the group E(HK) of points of E which are rational over the Hilbert class field of K as |d| → +∞ .

Remark 2.1. When π corresponds to an Eisenstein series, stronger results where obtained before by
Duke/Friedlander/Iwaniec and Blomer [DFI95, Blo04]; although this it appears in a somewhat disguised
(and more elaborate) form, the basic principle underlying the proof is the same.

An interesting problem is to adress the case where the sign of the functional equation is −1. In this
case, L(π × πχ, 1/2) = 0 and one considers instead the question of non-vanishing of the first derivative
L′(π × πχ, 1/2). At least when π∞ is in the holomorphic discrete series and π has trivial central character ,
the Gross/Zagier formula (and its extensions by Zhang) interprets L′(π × πχ, 1/2) as the “height” of some
Heegner cycle above some modular (or Shimura) curve. This is not quite a period integral; however the
height decomposes as a sum of local heights indexed by the places v of Q. These local heights are either
simple or can be interpreted as periods integrals over quadratic cycles associated with K which live over
appropriate adelic quotients G(v)(Q)\G(v)(A)/Kv where G(v) is associated to a quaternion algebra B(v)

ramified at v.
It seem then plausible that one can compute the asymptotic of the average

P
χ L

′(π× πχ, 1/2) by using
the equidistribution property of quadratic cycles on these infinitely many quotients. One consequence of
this would then be, for compatible E and K, a lower bound for the rank of E(HK):

rankZ E(HK)� |d|η

for some η > 0 as |d| → +∞.

Remark 2.2. A few years ago, Vatsal and Cornut [Vat02,Vat03,CV04] used period relations and equidis-
tribution in a similar way to obtain somewhat stronger non-vanishing results for Rankin/Selberg L-functions
but associated to anti-cyclotomic4 characters of a fixed imaginary quadratic field. This is in constrast with
the present case where one can allow the quadratic field to vary. Note that one of their main ingredient
to obtain equidistribution came for ergodic theory and precisely from Ratner’s classification of measures
invariant under unipotent subgroups. We expect that the ergodic methods to be described in section 6
(which are distinct from Ratner’s) will enable one to obtain results stronger than say (2.10) for a possibly
varying quadratic field.

3. The subconvexity problem

Although the subconvexity problem is a venerable topic in number theory – its study begins with Weyl’s
estimate |ζ(1/2 + it)| �ε t

1/6+ε– there has been a renaissance of interest in it recently. This owes largely
to the observation that a resolution of the subconvexity problem for automorphic L-functions on GL has
many striking applications, as we have just seen to Linnik’s equidistribution problems or to “Arithmetic
Quantum Chaos.” We refer to [IS00] for a discussion of all these questions in the broader context of the
analytic theory of automorphic L-functions.

4The case of cyclotomic characters was carried out even earlier by Rohrlich, by more direct methods.
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Let Π = Π∞ ⊗
N′

p Πp some reasonable “automorphic object”: by automorphic object we mean, for
instance an automorphic representation or more generality an admissible representation constructed out of
automorphic representations via the formalism of L-groups (for instance the Rankin/Selberg convolution
π1 × π2 of two automorphic representations on some linear groups). To Π, one can usually associate a
collection of local L-factors

L(Πp, s) =

dY
i=1

(1− αΠ,i(p)

ps
)−1, p prime, L(Π∞, s) =

dY
i=1

ΓR(s− µΠ,i)

where ΓR(s) = π−s/2Γ(s/2) and {αΠ,i(p)}, {µΠ,i} are called the local numerical parameters of Π at p and
at infinity; from these local datas one forms a global L-function

L(Π, s) =
X
n>1

λΠ(n)

ns
=

Y
p

L(Πp, s).

In favourable cases, one can show that L(Π, s) has analytic continuation to C and to satisfies a functional
equation which we normalize into the form

q
s/2
Π L(Π∞, s)L(Π, s) = wΠq

(1−s)/2
Π L(Π∞, 1− s)L(Π, 1− s),

where |wΠ| = 1 and qΠ > 0 is an integer called the conductor of Π. We recall (after Iwaniec/Sarnak [IS00])
that the analytic conductor of Π is the function of the complex variable s given by

C(Π, s) = qΠ

dY
i=1

|s− µΠ,i|.

It is expected, and known in many cases, that the following convexity bound for the values of L(Π, s)
holds on the critical line <es = 1/2: for any ε > 0, one has

L(Π, s)�ε,d C(Π, s)1/4+ε.

This is known, in particular, when Π is an automorphic cuspidal representation of GL(n) over any number
field, [Mol02]. The Lindelöf conjecture, which is a consequence of the GRH, asserts that in fact L(Π, s)�ε,d

C(Π, s)ε. In many applications, however, it is sufficient to improve the convexity bound.
The subconvexity problem consists in improving the exponent 1/4 to 1/4 − δ for some positive absolute

δ. In fact, for most applications it is sufficient to improve that exponant only with respect to one of the
three type of parameters s, qΠ or

Qd
i=1(1+ |µΠ,i|); these variants of the subconvexity problem are called the

s-aspect, the q-aspect (or level-aspect) and the∞-aspect (or eigenvalue-aspect) respectively. See [Fri95,IS00]
for an introduction to the subconvexity problem in this generality. In this lecture, we mainly discuss the
recent progress made on the subconvexity problem in the q-aspect, although the other aspects are very
interesting, both for applications and for conceptual reasons (see [Iwa92, Ivi01,Sar01,Blo04b,JM05]).

During the last decade, there has been considerable progress on the subconvexity problem for L-functions
associated to GL1 and GL2 automorphic forms. For the level aspect the current situation is the following

Theorem 6. Let F be a fixed number field and π2 be a fixed cuspidal automorphic representation of
GL2(AF ). Let χ1, π1 denote respectively a GL1(AF )-automorphic representation (i.e. a grossenchar-
acter) , a GL2(AF )-automorphic representation and let q1 denote either the conductor of χ1 or π1 and
q1 = NF/Q(q1). There exists an absolute δ > 0 (independent of χ1, π1, π2 and F ) such that for <es = 1/2
one has

L(χ1, s)�s q
1/4−δ
1 , (3.1)

L(χ1 × π2, s)�s,π2,χ1,∞ q
1/2−δ
1 , (3.2)

L(π1, s)�s,π1,∞ q
1/4−δ
1 , (3.3)

L(π1 × π2, s)�s,π2,π1,∞ q
1/2−δ
1 . (3.4)

Thus the subconvexity problem is solved in the q1-aspect for all these L-functions.
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• For F = Q, the bound for Dirichlet L-functions (3.1) is due to Burgess (see also [CI00] for a very strong
subconvex exponent when χ is quadratic). The bound for twisted L-function (3.2) is basically due to
Duke/Friedlander/Iwaniec [DFI93] (see also [Byk96,BHM06] for the general bound over Q with a good
subconvex exponent). The bound 3.3 is mainly due to a series of works by Duke/Friedlander/Iwaniec:
[DFI94] for π1 with trivial central character and [DFI97,DFI01,DFI02] for the much harder case of a
central character of conductor q1; it has been recently completed for π1 with arbitrary central character
in [BHM06b] building on the method of [Mic04]. The bound for Rankin/Selberg L-functions (3.4) for
π having trivial central character is due to the first author, Kowalski and Vanderkam ([KMV02]) by
generalizing the methods of [DFI94] and to the first author and Harcos for for π1 with an arbitrary
central character by a different approach which is discussed in Section 3.4 [Mic04,HM06].

• In the case of a number field of higher degree, the first general subconvex result is due to Cogdell-
/Piatetski-Shapiro/Sarnak [Cog03]: it consists of (3.2) when F is a totally real field and π2,∞ is in
the holomorphic discrete series (i.e. corresponds to a holomorphic Hilbert modular form). Recently,
the second author developed a new method which we discuss in section 4 below and established,
amongst other things, the bounds (3.1), (3.2), (3.3) and (3.4) for F an arbitrary number field, π2 fixed
but arbitrary and π1 with a trivial central character [Ven05]. Eventually the authors combined their
respective methods from [Mic04] and [Ven05] to obtain (3.3) and (3.4) for π1 with an arbitrary central
character.

3.1. The amplification method and the shifted convolution problem. Ar-
guably, the most successful approach to subconvexity in the q-aspect is via the method of moments or
more precisely via its variant, the amplification method. For the sake of completness we briefly recall the
mechanism and refer to [Fri95] and [Iwa99] for the philosophy underlying this method.

Given Π1 and a (well choosen) family of automorphic objects F = {Π} containing Π1, the amplification
method builds on the possibility to obtain a bound for the amplified k-th moment of the {L(Π, s), Π ∈ F},
<es = 1/2, of the form X

Π∈F

|L(Π, s)|k|
X
`6L

λΠ(`)a`|2 �ε |F|1+ε
X
`6L

|a`|2. (3.5)

for any ε > 0, where the (a`)`6L are a priori arbitrary complex coefficients and where L is some positive
power of |F|. Such a bound is expected if L is sufficiently small compared with |F|, since the individual
bound |L(Π, s)|k �ε |F|ε would follow from the Generalized Riemann Hypothesis and the estimateX

Π∈F

|
X
`6L

λΠ(`)a`|2 = |F|(1 + o(1))
X
`6L

|a`|2

should be a manisfestation of the quasi-orthogonlity of the {(λΠ(`))`6L}Π∈F which is a frequent theme in
harmonic analysis.

Assuming (3.5), one deduces that

L(Π1, s)�ε

“ P
`6L |a`|

2

|
P
`6L λΠ1(`)a`|2

”1/k

|F|1/k+ε �ε

“ P
`6L |a`|

2

|
P
`6L λΠ1(`)a`|2

”1/k

C(Π1, s)
1/4+ε

if F is such that |F| � C(Π1, s)
k/4. Often it is possible to choose the coefficient (a`)`6L (depending on Π1)

so that P
`6L |a`|

2˛̨P
`6L λΠ1(`)a`

˛̨2 � L−α

for some α > 0; eventually this yields a subconvex bound.

In fact, all the subconvex bounds presented in Theorem 6 can be obtained by considering for L(Π, s) an
L-function of Rankin/Selberg type, i.e. either of the form L(χ1 × π2, s) or of the form L(π1 × π2, s) with
π2 a fixed (not necessarily cuspidal) GL2-automorphic representation . The families F considered are then
essentially of the form {χ × π2, qχ = q1} or {π × π2, qπ = q1, ωπ = ωπ1} and the bound (3.5) is achieved
for the second moment (k = 2).

The next step is to analyze effectively the lefthand side of (3.5) and in particlular to have a manageable
expression for L(Π, s) for s on the critical line. The traditional method to do so is to apply an approximate
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functionnal equation technique which expresses L(Π, s) essentially as a partial sum of the form

Σ(Π) :=
X
n>1

λΠ(n)

ns
W (

n
√
qΠ

)

with W a rapidly decreasing function (which depends on s and on Π∞). In the context of Theorem 6 the
second amplified moment of the families of partial sums {Σ(χ × π2), qχ = q1 =: q} or {Σ(π × π2), qπ =
q1 =: q, ωπ = ωπ1} are computed and transformed by spectral methods. These involve, in particular, the
orthogonality relations for characters and the Kuznetsov-Petersson formula. These computations reduce the
subconvex estimates to the problem of estimating non-trivially sums of the form

Σ±(ϕ2, `1, `2, h) :=
X

`1m±`2n=h

ρϕ2(m)ρϕ2(n)W(
m

q
,
n

q
), (3.6)

the trivial bound being �ϕ2 q
1+o(1); here h = O(q) is a non-zero integer, ρϕ2(n) denote the n-th Fourier

coefficients of some automorphic form ϕ2 in the representation space of π2, W(x, y) is a rapidly decreasing
function and `1, `2 6 L are the parameters occuring as indices of the amplifier (a`)`6L. These sums are
classical in analytic number theory and are called shifted convolution sums; the problem of estimating them
non-trivially for various ranges of h,m, n is called a shifted convolution problem.

Observe that when h = 0 the sum in (3.6) is is a partial sum of Rankin/Selberg type and can be
analyzed by means of the analytic properties of the Rankin/Selberg convolution L-function. The non-
homogeneous case h 6= 0 is different. Historically, the shifted convolution problem already occured in the
work of Kloosterman on the number of representations of an integer n by the quadratic form a1.x

2 +a2.y
2 +

a3.z
2 + a4.t

2, and also in Ingham’s work on the additive divisor problem. In Kloosterman’s case ϕ2 is a
theta-series of weight 1, whereas in Ingham’s case ϕ2 is the standard non-holomorphic Eisenstein series.

3.2. Shifted convolutions via the circle method. In order to solve a shifted convolution
type problem, one needs an analytically manageable expression of the linear constraint `1m± `2n = h; one
is to suitably decompose the integral

δ`1m±`2n−h=0 =

Z
R/Z

exp(2πı(`1m± `2n− h)α)dα,

and there are several methods to achieve this; the first possibility in this context was Kloosterman’s refine-
ment of the circle method; other possibilities are the ∆-symbol method, used in [DFI93] and [DFI94] to
prove some cases of (3.2) and (3.3) or Jutila’s method of overleaping intervals which is particularly flexible
[Jut99,Har03]. These methods provide an expression of the above integral into weighted sums of Ramanujan
type sums of the form X

a mod c
(a,c)=1

e
` (`1m± `2n− h).a

c

´
for c ranging over relatively small moduli. Such decomposition makes it possible to essentially “separate”
the variable m from n and to reduce Σ(ϕ2, `1, `2, h) to sums over moduli c on additively twisted sums of
Fourier coefficientsX

c

· · ·
X

a mod c
(a,c)=1

e
`−ha

c

´
×

“X
m

ρϕ2(m)e
` `1ma

c

´
W(

m

q
)
”“X

n

ρϕ2(n)e
`
± `2na

c

´
W(

n

q
)
”
.

The independent m and n-sums are then transformed via the Voronöısummation formula with the effect of

replacing the test functions W( .
q
) by some Bessel transform and the additive shift e

`
± `2a.

c

´
by e

`
−± `2a.

c

´
where a denote the multiplicative inverse of a mod c. After these transformations and after averaging over
a mod c the sum Σ±(ϕ2, `1, `2, h) takes essentially the following form (possibly up to a main term which
occurs if ϕ2 is an Eisenstein series [DFI94])

MT±(ϕ2, `1, `2, h) +
X

c≡0(`1`2qπ0 )

X
h′

` X
∓`1n−`2m=h′

αmρϕ2(m)βnρϕ2(n)
´
Kl(−h, h′; c)V(h, h′; c) (3.7)
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where MT±(ϕ2, `1, `2, h) is non-zero only if ϕ2 is an Eisenstein series (in which case it is a main term of
size ≈`1,`2,ϕ2 q

1+o(1)), αm, βn are smooth coefficients, Kl(−h, h′; c) is a Kloosterman sum and V is a smooth
function. Eventually, Weil’s bound for Kloosterman sums

Kl(−h, h′; c)� (h, h′, c)1/2c1/2+o(1))

gives the formula

Σ±(ϕ2, `1, `2, h) = MT±(ϕ2, `1, `2, h) +Oϕ2,ε

“
(`1`2)

Aq3/4+ε
”

(3.8)

for some absolute constant A ( in fact any non-trivial bounds for Kloosterman sums, like Kloosterman’s
original bound, is sufficient to obtain an asymptotic formula with 3/4 replaced by some exponent < 1).
Finally, from (3.8) one can deduce (3.2), (3.3), (3.4) when π has trivial central character although the
derivation may be quite delicate if ϕ2 is an Eisenstein series (cf. [DFI94] and see also [KMV00]).

3.3. Shifted convolutions and spectral theory of automorphic forms. In
[Sar01], Sarnak, inspired by ideas of Selberg, developed a purely spectral approach to the shifted convo-
lution sums (3.6) (previously some special cases have been treated by others, for instance by A. Good). This
method, which at present has been entirely worked out when ϕ2 is a classical holomorphic cuspform (say of
weight k > 2 and level q2), is based on the analytic properties of the Dirichlet series

D(ϕ2, `1, `2, h, s) =
X
m,n>1

`1m−`2n=h

ρϕ2(m)ρϕ2(n)

(`1m+ `2n)s

“ √`1`2mn
`1m+ `2n

”k−1

.

Note that for h = 0 this series is essentially a Rankin/Selberg L-function. As in the Rankin/Selberg
case, the analytic properties of D follows from an appropriate integral representation in the form of a triple
product integral; however, for h 6= 0 one needs to replace the Eisenstein series by a Poincaré series. Precisely,
one has D(s) = (2π)s+k−1(`1`2)

1/2Γ−1(s+ k − 1)I(s) with

I(ϕ2, `1, `2, h, s) := 〈(`1y)k/2ϕ2(`1z).(`2y)
k/2ϕ2(`2z), Ph(z, s)〉

=

Z
Γ0(q2`1`2)\H

(`1y)
k/2ϕ2(`1z).(`2y)

k/2ϕ2(`2z)Ph(z, s)
dxdy

y2

where Ph(z, s) the non-holomorphic Poincaré series of weight 0:

Ph(z, s) =
X

γ∈Γ0(q2`1`2)∞\Γ0(q2`1`2)

(=mγz)se(h<eγz).

The analytic continuation for D follows from that of Ph(., s); in particular, from its spectral expansion one
deduce that the latter is absolutely convergent for <es > 1 and has holomorphic continuation in the half-
plane <es > 1/2 + θ where θ measures the quality of available results towards the Ramanujan/Petersson
conjecture:

Hypothesis Hθ. For any cuspidal automorphic form π on GL2(Q)\GL2(AQ) with local Hecke parameters
{απ,i(p), i = 1, 2} for p <∞ and {µπ,i, i = 1, 2} one has the bounds

|απ,i(p)| 6 pθ, i = 1, 2,

|<eµπ,i| 6 θ, i = 1, 2,

provided πp, π∞ are unramified, respectively.

Remark 3.1. Hypothesis Hθ is known for θ > 3/26 thanks to the works of Kim and Shahidi [KS02,Kim03].

A bound for D(s) in a non-trivial domain, is deduced from the spectral expansion of the inner product
I(s) over an suitable orthonormal basis of Maass forms, {ψ} say, and of Eisenstein series of weight 0 and
level `1`2q0: one hasX

ψ

〈(`1y)k/2ϕ2(`1z).(`2y)
k/2ϕ2(`2z), ψ〉〈ψ, Ph(z, s)〉+ Eisenstein spectrum contr. (3.9)
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For ψ in the cuspidal basis, let itψ denote the archimedean parameter µπ,1 of the representation π containing
ψ; the second inner product 〈ψ, Ph(z, s)〉 equals the Fourier coefficient of ψ, ρψ(−h) times a factor bounded
by (1 + |tψ|)Be

π
2 |tψ|. The Fourier coefficient ρψ(−h) is bounded by O(|h|θ+o(1)) by Hypothesis Hθ at the

non-archimedean places. The problem now, as was pointed out by Selberg, is to have a bound for the
triple product integral 〈(`1y)k/2ϕ2(`1z).(`2y)

k/2ϕ2(`2z), ψ〉 which exhibits an exponential decay for the form
O((1 + |tψ|)Ce−

π
2 |tψ|), so as to compensate the exponential growth of 〈ψ, Ph(z, s)〉. In this generality, this

exponential decay property for triple product was achieved by Sarnak in [Sar94]; later, a representation
theoretic version of Sarnak’s arguments as well as some improvments were given by Bernstein/Reznikov
[BR99]. The final consequence of these bounds is the following estimate

Σ−(ϕ2, `1, `2, h) = Oϕ2,ε

“
(`1`2)

Aq1/2+θ+ε
”

(3.10)

This approach is important for several reasons:

• It ties more closely the subconvexity problem for GL2 L-functions – a problem whose origin lies in
analytic number theory – to the Ramanujan/Petersson conjecture for GL2(AQ); or, in other words,
to the spectral gap property which is a classical problem in the harmonic analysis of groups;

• it gives an hint that automophic period integrals might be useful tool in the study of the subconvexity
problem: this will be largely confirmed in section 4.

• This approach is sufficiently smooth that it can be extended to number fields of higher degree: a few
years ago, Cogdell/Piatetski-Shapiro/Sarnak used the amplification method in conjunction with this
approach to obtain (3.2) when F is totally real and π∞ is a holomorphic discrete series (see [Cog03]
for an account). (Note that no suitable version of the Kloosterman refinement has been carried out
over a number field.)

A challenging point is that, so far this approach has not been carried out succesfully for the case where ϕ2

is non-holomorphic ( or at least not in the ranges required to obtain the bounds (3.2), (3.3) or (3.4) when
the fixed representation π2 is not a holomorphic discrete series): apparently, the main problem is to find an
appropriate test vector ϕ2 ∈ Vπ2 so that the shifted convolution sum can be represented in terms of a triple
product integral I(ϕ2, `1, `2, h). See [Mot04] for a discussion on this issue and some hints.

Remark 3.2. These two approaches of the shifted convolution problem are closely related. This can be
seen already at a superficial level by remarking that Weil’s bound for Kloosterman sums yield the saving
q3/4+ε in (3.8) which is precisely the saving one gets from Hypothesis H1/4 in (3.10); moreover H1/4 (a.k.a
the Selberg/Gelbart/Jacquet bound) can be obtained by applying Weil’s bound to the Kloosterman sums
occuring in the Kuznetzov/Petersson formula.

One can push this coincidence further, by applying, in (3.7) the Kuznetzov/Petersson formula backwards
in order to transform the sums of Kloosterman sums into sums of Fourier coefficients of Maass forms:

(3.7) =
X
ψ

X
h′

“ X
∓`1n−`2m=h′

αmρϕ2(m)βnρϕ2(n)
”
ρψ(−h)ρψ(h′)Ṽ(h, h′, itψ)

+ Discrete Spectrum + Eisenstein spectrum. (3.11)

Thus, we have realized the spectral expansion of the shifted convolution sum Σ±(ϕ2, `1, `2, h) in a way
similar to that obtained in (3.9); from there, we may use again the full force of spectral theory. This may
look like a rather circuituous path to obtain the spectral expansion; this method however has some technical
advantage over the method discussed in section 3.3: it works even if ϕ2 is a Maass form, without the need
to find appropriate test vector or to obtain exponential decay for triple product integrals ! The spectral
decomposition (3.11) will be very useful in the next section.

3.4. The case of a varying central character. The methods discussed so far are sufficient
to establish (3.2), (3.3), (3.4) as long as the conductor of the central character, ω1 say, of π1 is significantly
smaller than q1. The case of a varying central character reveals new interesting features which we discuss
here. To simplify, we consider the extremal (in a sense hardest) case where both conductors are equal
qω1 = q1 =: q.
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3.4.1. Subconvexity of Hecke L-function via bilinear Kloosterman fractions. As usual for
the subconvexity problem, the first result is due to Duke/Friedlander/Iwaniec for the case (3.3) [DFI01,
DFI02]. As pointed out above, the problem of bounding L(π1, s) for <es = 1/2 may be formulated as the
problem of bounding a Rankin/Selberg L-function

L(π1 × π2, s) = L(π1, s)
2

where π2 = 1�1 is the representation corresponding to the the fully unramified Eisenstein series. Eventually,
another approach was considered in [DFI01,DFI02], which comes from the identity

|L(π1, s)|2 = L(π1 × χ, 1/2)L(π̃1 × χ, 1/2)

where π̃1 is the contragredient and χ = ω1|.|−it, t = =ms. The amplification method applied to the familyn
L(π × χ, 1/2)L(π̃ × χ, 1/2), qπ = q1 := q, ωπ = ω1

o
yields in practice to shifted convolution sums of the form ([DFI01,DFI02]) of the formX

`1ad−`2bc=h

χ(a)χ(c)W(
a

q1/2
,
b

q1/2
,
c

q1/2
,
d

q1/2
),

with h ≈ q, h ≡ 0(q). The later is essentially a truncated version of the shifted convolution sums associated
to the Eisenstein series E(1, χ) of the representation 1 � χ (whose fourier coefficients are ρE(1,χ)(n) =P
bc=n χ(c)); the new feature by comparison with the previous shifted convolution problems is that the

coefficients ρE(1,χ)(n) vary with q, which is essentially the range of the variables m = ad and n = bc. Since

χ has conductor q and a, c vary in ranges of size ≈ q1/2 one cannot really use the arithmetical structure of
the weights χ(a), χ(c) so this shifted convolution problem is basically reduced to the non-trivial evaluation
of a quite general sum:X

`1ad−`2bc=h

αaγcW(
a

q1/2
,
b

q1/2
,
c

q1/2
,
d

q1/2
) = MT ((αa)a, (γc)c, `1, `2, h) +O((`1`2)

Aq1−δ) (3.12)

for some δ > 0 absolute and whereMT ((αa)a, (δd)d, `1, `2, h) denote a natural main term and with (αa)a∼q1/2 ,
(γc)c∼q1/2 arbitrary complex numbers of modulus bounded by 1. Since the b variable is smooth, the condi-
tion `1ad− `2bc = h is essentially equivalent to the congruence condition `1ad ≡ h mod c`2. One can then
analyze this congruence by Poisson summation applied on the remaining smooth variable d which yields a
sums of Kloosterman fractions of the shapeX

a∼A,c∼C
(a,c)=1

αaγce(h
a

c
), for h 6= 0 and

where the values of a, c, h and αa, γc may be different from the previous ones. In [DFI97] such sums are
bounded non-trivially for any ranges A,C (the most crucial one being A = C).

A remarkable feature of this proof is that the bound is obtained from an non-trivial bound for the related
sum X

a∼A

˛̨̨ X
c∼C

(a,c)=1

γce(h
a

c
)
˛̨2

by an application of the amplification method in a very unexpected direction, namely by amplifying the
trivial (!) multiplicative characters χ0,a of modulus a in the family of sums˘ X

c∼C
(a,c)=1

γcχ(c)e(h
a

c
), χmod a, a ∼ A

¯
.

Remark 3.3. One should note that (3.12) is quite a bit more general than what is needed to establish (3.3).
In fact, estimates of that kind may be used in other context than subconvexity: for example, to establish
Bombieri/Vinogradov type results. On the other hand, in the context of the subconvexity problem, this
method uses the special shape of the Fourier coefficients of Eisenstein series and does not seem to generalize
to Rankin/Selberg L-functions.
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3.4.2. Subconvexity of Rankin/Selberg L-functions via subconvexity for twisted L-
functions. The case of Rankin/Selberg L-functions over Q, L(π1 × π2, s) when π2 is essentially fixed
and π1 has a central character ω1 of large conductor was treated in [Mic04] (when the fixed representation
π2 corresponds to a holomorphic form) and in [HM06] (in the general case). In the case of a varying central
characters, the shifted convolution problem that needs to be resolved is one on average over h. More precisely
subconvexity comes from an estimate for a sum of shifted convolution sums:

Σ±(ϕ2, `1, `2, ω) :=
X

0<|h|�q

ω(h)Σ±(ϕ2, `1, `2, h); (3.13)

The goal, however, is not to achieve the shifted convolution problem on average over h but to prove
rather more, namely X

0<|h|�q

ω(h)Σ±(ϕ2, `1, `2, h)�ϕ2 (`1`2)
Aq3/2−δ (3.14)

for some A, δ > 0 absolute. In particular even under the Ramanujan/Petersson conjecture (H0), the indi-
vidual bound (3.10) is “just” not sufficient; this means that one has to account for the averaging over the h
variable.

This is achieved through the spectral decomposition of the shifted convolution sums (3.11): plugging
this formula into (3.13) one obtains a sum over the orthonormal basis {ψ} of sums of the formX

0<|h|�q

ω(h)ρψ(−h)

if ψ belong to the space Vτ of some automorphic representation, the later sums are partial sums associated
to the twisted L-function L(τ × ω, s). In that case, the subconvexity bound for twisted L-functions (3.2) is
exactly sufficient to give (3.14).

Remark 3.4. Hence the subconvexity bound for an L-functions of degree 4 has been reduced to a collection
of subconvex bounds for L-functions of automorphic forms of small level twisted by the original central
character ω ! This surprising phenomenon is better explained via the approach described in the next
section. It would be interesting if this reduction of degree persists in higher rank.

4. Subconvexity of L-functions via periods of automorphic
forms

4.1. The various perspectives on an L-function. From the perspective of analytic
number theory, the definition of L-function might be “an analytic function sharing the key features of ζ(s):
analytic continuation, functional equation, Euler product.”

However, there are various “incarnations” of L-functions attached to automorphic forms; although equiv-
alent, different features become apparent in different incarnations. For instance, one can define L-functions
via constant terms of Eisenstein series (the Langlands-Shahidi method), via periods of automorphic forms
(the theory of integral representations, which begins with the work of Hecke, or indeed already with Rie-
mann), or via a Dirichlet series (which is often taken as their defining property).

To give a highly simplified illustration of the difference in perspective these provide, consider the following
standard analytic results:

1. Nonvanishing on the line <(s) = 1;

2. Analytic continuation to the whole complex plane;

3. Convexity bound.

The first is (perhaps) most “transparent” from the Langlands-Shahidi perspective; the second is often carried
out via integral representations, i.e. by periods; the only generally known proof of the third is via Dirichlet
series.
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Thus far in this article, we have discussed the subconvexity from the perspective of Dirichlet series. In
other words, writing

L(s) =

∞X
n=1

ann
−s

we ask: What properties of the sequence (an) give rise to subconvex estimates for the L-function?
Relatively recently, the subconvexity question has also been succesfully approached via the “period”

perspective on L-functions. The first such result (in the eigenvalue aspect) was given by Bernstein-Reznikov
[BR04], [BR05], and a little later a result in the level aspect was given by Venkatesh [Ven05]. These two
methods seem to be quite distinct.

To phrase in the context of the present text: thus far we have studied periods (e.g. (2.4)) via reducing
them to questions about L-functions (via (2.2)) and then proving subconvexity for the L-function. The
viewpoint of [BR05], [Ven05] reverses this general process, although for different families of L-functions.
These papers deduce subconvexity from a geometric study of the period.

These approaches are closely related to existing work, but in many cases the period perspective allows
certain conceptual simplifications and it brings together harmonic analysis and ideas from dynamics. Such
conceptual simplifications are particularly of value in passing from Q to a general number field; so far, with
the exception of the result of Cogdell/Piatetski-Shapiro/Sarnak, all the results in Theorem 6 in the case
F 6= Q are proven via the period approach.

On the other hand, it might be noted that a slight drawback to the period approach to subconvexity is
that, especially for automorphic representations with complicated ramification, one must face the difficulty
of choosing appropriate test vectors. More generally, the proof of the precise formulas relating periods to
L-functions often involve formidable technical difficulties.

4.2. The work of Bernstein-Reznikov and Venkatesh: Triple product pe-
riod and triple product L-function. At present, all known results towards the subconvexity
of triple product L-functions L(π1 × π2 × π3,

1
2
) arise from the “period” perspective.

The period of interest is Z
PGL2(Q)\PGL2(A)

ϕ1(g)ϕ2(g)ϕ3(g)dg

where ϕi ∈ πi, and each πi is an automorphic cuspidal representation of GL2. It is expected that this period,
and the variants when GL2 is replaced by the multiplicative group of a quaternion algebra, is related to the
central value of the triple product L-function L(π1×π2×π3,

1
2
), see [HK91]. A precise relationship has been

computed for the case of Maass forms at full level in [Wat06]; indeed, the following formula is established:˛̨̨̨
˛
Z

SL2(Z)\H
ϕ1ϕ2ϕ3dµ

˛̨̨̨
˛
2

=
Λ(ϕ1 × ϕ2 × ϕ3, 1/2)

Λ(∧2ϕ1, 1)Λ(∧2ϕ2, 1)Λ(∧2ϕ3, 1)
(4.1)

where Λ denotes completed L-function and dµ is a suitable multiple of dx dy
y2

.

4.2.1. The eigenvalue aspect. Let ϕ1, ϕ2 be fixed Hecke-Maass forms on SL2(Z)\H, and ϕλ a Hecke-
Maass form of eigenvalue λ = 1/4+r2. Let π1, π2, πλ be the associated cuspidal automorphic representations.
In [BR05] the following bound is established:

L(π1 × π2 × πλ,
1

2
)�ε,π1,π2 r

5/3+ε (4.2)

The convexity bound for the left-hand side is r2+ε.
Let Γ be a cocompact subgroup of SL2(R), let H be the upper half-plane, let ϕ1, ϕ2 be fixed eigenfunctions

of the Laplacian on Γ\H and ϕλ an eigenfunction with eigenvalue λ := 1/4 + r2. In the paper [BR05],
Bernstein and Reznikov establish the following bound.

r2eπr/2

˛̨̨̨
˛
Z

Γ\H
ϕ1(z)ϕ2(z)ϕλ(z)dµz

˛̨̨̨
˛
2

�ε r
5/3+ε (4.3)

They note that their method is valid also when ϕ1, ϕ2, ϕλ are cusp forms and Γ is noncompact. In the
case when Γ = SL2(Z) and ϕ1, ϕ2, ϕλ are Hecke-Maass forms associated to automorphic representations
π1, π2, πλ respectively, the bound (4.3) translates, via (4.1), to the subconvex bound (4.2).
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We remark only on one key ingredient: for G = PGL2(R) and three irreducible, admissible represen-
tations π1, π2, π3 the space of G-invariant functionals on π1 ⊗ π2 ⊗ π3 is at most one dimensional. An
consequence of this is that one may study the period (4.3) by replacing ϕ1, ϕ2, ϕλ by any other vectors
v1 ∈ π1, v2 ∈ π2, vλ ∈ πλ. An important observation of Bernstein and Reznikov is that the spherical vectors
ϕ1, ϕ2, ϕλ are, in a sense, “poor” test vectors for the trilinear functional defined by (4.3); by switching to
more suitable v1, v2, vλ one can eliminate, for instance, the exponential decay implicit in (4.3). Further ideas
are needed, however, to obtain subconvexity.

It is worth emphasizing that, by contrast to what will be discussed in the following section, the following
two aspects of this method:

1. This method does not use any information about the spectral gap.

2. It does not use Hecke operators: it is purely local, i.e. using only properties of the real group PGL2(R)
rather than the group PGL2(AQ).

4.2.2. The level aspect. Let F be a number field. Let π2, π3 be fixed automorphic cuspidal representa-
tions on PGL2(AF ) – say with coprime conductor – and let π1 be a third automorphic cuspidal representation
with conductor q, a prime ideal of F . In [Ven05] it is established that

L(π1 × π2 × π3,
1

2
)�π1,∞,π2,π3 N(q)1−

1
13 (4.4)

contingent on a suitable version of (4.1) when the level of one factor varies.5 The convexity bound for the
left-hand side is N(q)1+ε.

Remark 4.1. In [Ven05], a form of (4.4) is proved when π2 and/or π3 are Eisenstein series: in that case, (4.1)
corresponds to simple computations in the Rankin-Selberg method and so is unconditional. In particular,
this yields the bounds (3.3) and (3.4) for π1 with trivial central character.

We explain the period bound underlying (4.4) in the classical case F = Q. In this context, one can see
the role of equidistribution clearly; in the next Section 4.3, we explain a more general period bound using
more explicit spectral methods, which have the disadvantage of concealing the underlying equidistribution
results.

Let Γ0(p) = {
„
a b
c d

«
: p|c} and let Y0(p) = Γ0(p)\H. Then the map z 7→ (z, pz) descends to a map

ι : Y0(p)→ Y0(1)× Y0(1).

Let ϕ2, ϕ3 be Hecke-Maass cusp forms for Y0(1) and ϕ1 a Hecke-Maass cusp form for Y0(p). We equip Y0(1)
with the Poincaré measure dµP defined in Theorem 2, which is a probability measure; similarly, we equip
Y0(p) with the probability measure induced from the measure 1

[Γ0(1):Γ0(p)]
3
π
dx dy
y2

on H.

In the paper [Ven05], the second author establishes the bound˛̨̨̨
˛
Z
Y0(p)

ι∗(ϕ2 × ϕ3) · ϕ1

˛̨̨̨
˛� p−

1
26 ‖ϕ1‖L2(Y0(p))‖ϕ2‖L4(Y0(1))‖ϕ3‖L4(Y0(1))

where ι∗ denotes the pullback on functions, i.e. ι∗(ϕ2 × ϕ3)(z) = ϕ2(z)ϕ3(pz). This estimate yields (4.4) –
contingent, as remarked above, on a suitable generalization of (4.1).

The proof uses a certain “geometrization” of the amplification method of Friedlander/Iwaniec, together
with ideas of equidistribution and mixing from ergodic theory. Here we just indicate the rough idea; it is
applicable in various other settings, as is explained in [Ven05], and a more abstract explanation of it as well
as applications to other families of L-functions is given in that paper.

Let T` be the `th Hecke operator on Y0(p), where (`, p) = 1. Let λπ1(`) be the eigenvalue of T` acting
on ϕ1. We take a suitable linear combination

T :=
X
`∈L

a`T` (4.5)

5This has not appeared in the literature to our knowledge, except in the case where one of the πj are Eisenstein;
however, it should amount to a routine though very involved computation of p-adic integrals.
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of the Hecke operators so that the eigenvalue Λπ1 =
P
`∈L a`λπ1(`) is “large.” We regard T as an operator

on functions on Y0(p); it is self-adjoint, and so

Λπ1

Z
Y0(p)

ι∗(ϕ2 × ϕ3) · ϕ1 =

Z
Y0(p)

ι∗(ϕ2 × ϕ3) · Tϕ1

=

Z
Y0(p)

T(ι∗(ϕ2 × ϕ3)) · ϕ1 6 ‖ϕ1‖L2(Y0(p))‖T(ι∗(ϕ2 × ϕ3))‖L2(Y0(p)) (4.6)

Thus far this rather closely resembles the amplification method.
However, at this point, one proceeds to “directly” bound

R
Y0(p)

|T(ι∗(ϕ2 × ϕ3))|2. To see how this might

work, consider first the corresponding integral without T, i.e.
R
Y0(p)

|ι∗(ϕ2 × ϕ3)|2.
It is known that Y0(p) ⊂ Y0(1) × Y0(1) becomes equidistributed as p → ∞; this is the equidistribution

of Hecke points, which was known “classically” in this case, and which was quantified in great generality
(higher rank groups) in [COU01]. This equidistribution shows at once thatZ

Y0(p)

|ι∗(ϕ2 × ϕ3)|2 →
Z
Y0(1)

|ϕ2|2
Z
Y0(1)

|ϕ3|2, (4.7)

as p→∞, with a quantitative rate of decay. Translating to L-functions via (4.1), we see that (4.7) amounts
to a mean value theorem, and indeed it seems often that one can obtain mean value theorems for L-functions
from equidistribution results; another example was seen in Sec. 2.4.

In order to incorporate the T into this argument, one needs to use a slight refinement of the equidistribu-
tion of Y0(p) ⊂ Y0(1)×Y0(1). This refinement is not difficult but notationally is best expressed adelically; we
discuss it briefly in the next section. In classical terms, the key point is the following. If F,G are continuous
function on Y0(1)× Y0(1), then Z

Y0(p)

T`F.G ∼
Z
Y0(1)×Y0(1)

((T` × T`)F ).G

whenever ` is small compared to p. Note on the left-hand side the Hecke operator T` is acting on functions
on Y0(p), whereas on the right-hand side it is acting on functions on Y0(1); in both cases it is normalized to
act as the identity on the constants.

Both equidistribution and mixing properties of Hecke operators reduce to a bound towards Ramanujan
on GL2(AQ); one needs in fact a bound Hθ with θ < 1/4, in the notation of Sec. 3.3.

4.3. Central character. In this section, we return to Sec. 3.4 and explain, via periods, the bound
(3.4). In particular, this sheds light on the “reason” for the reduction to a lower rank subconvexity problem
that was encountered in that Section. The content of this section is carried out in detail in [MV].

Let π1, π2 be automorphic cuspidal representations of GL2(AF ). Let ω be the central character of π1.
For simplicity, we restrict ourselves to the case where π2, the “fixed” form, has level 1 and trivial central
character; and where “all the ramification of π1 comes from the central character,” i.e. π1 and ω have the
same conductor q. However, as we remark at the end, the process becomes strictly simpler in the general
case.

Let us first give a very approximate “philosophical” overview of the proof. There is an identity between
mean values of L-functions of the following type:X

π1

L(π1 × π2,
1

2
)←→

X
τ level 1

L(τ,
1

2
)L(τ × ω, 1

2
) (4.8)

where the left-hand summation is over π1 of central character ω and conductor q, whereas the right-hand
summation is over automorphic representations τ of trivial central character and level 1. It includes the
trivial (one-dimensional) automorphic representation, which is in fact the dominant term and actually needs
to be handled by regularization. 6

By means of a suitable amplifier, one can restrict the left-hand summation to pick out a given π1. When
one does this, the necessary bounds on the right-hand side follow from two different inputs:

6Note that “morally”, when τ is trivial, the L-function L(τ, s)L(τ×ω, s) = ζ(s+1/2)ζ(s−1/2)L(ω, s−1/2)L(ω, s+
1/2). Thus we obtain a pole at s = 1/2.
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1. Subconvexity for L(τ × ω, 1
2
) (in the aspect where ω varies), to handle the nontrivial τ .

2. A bound for decay of matrix coefficients of p-adic groups, to handle the case of τ the trivial represen-
tation (this will become clearer in the discussion below).

Now we explain this in a little more detail. A philosophical discussion of the significance of (4.8) may
be found in Section 4.3.3.

4.3.1. The source of (4.8) via periods. Writing YA = PGL2(F )\PGL2(AF ), we note that the
Rankin-Selberg L-function may be expressed as a period integral:

L(s, π1 × π2) ∼
Z
YA

ϕ1(g)ϕ2(g)Es(g)dg

where ϕi ∈ πi are the respective newforms, and Es is the Eisenstein series corresponding to the new vector
of the automorphic representation | · |s � ω−1| · |−s. Here ∼ means that there is a suitable constant of
proportionality, depending on the archimedean types of the representations.

Let Bω,q be an orthogonal basis for the space of forms on GL2(F )\GL2(AF ) of level q and central
character ω; let B1,1 be an orthogonal basis for the space of forms on YA of full level and trivial central
character. By spectral expansion, we have the following identity:

X
ϕ1∈Bω,q

˛̨̨̨Z
YA

ϕ1ϕ2Es

˛̨̨̨2
=

Z
YA

|ϕ2.Es|2 =

Z
YA

|ϕ2|2 |Es|2 =
X

ψ∈B1,1

〈|Es|2, ψ〉〈|ϕ2|2, ψ〉 (4.9)

Here the ψ- summation is, a priori, over an orthonormal basis for L2(YA); however, the summand 〈|ϕ2|2, ψ〉
vanishes unless ψ is of level 1 and trivial central character. Note that the ψ-summation should, strictly,
include a continuous contribution for the Eisenstein series, which also needs to be suitably regularized. This
is not a trivial matter and occupies a good deal of [MV]; we shall supress it for now.

In any case, if ψ belongs to the space of an automorphic representation τ , the Rankin-Selberg method
shows that 〈|Es|2, ψ〉 is a multiple of L(τ, 2s− 1

2
)L(τ × ω, 1

2
). Thus (4.9) basically yields (4.8)!

4.3.2. Introducing an amplifier, and using decay of matrix of coefficients. We restrict to
s = 1/2 for concreteness, although the method works for any s. The identity (4.9) does not suffice to
obtain a nontrivial bound on

R
YA

ϕ1ϕ2E1/2, for the left-hand summation is too large. To localize it, one
introduces an amplifier. We phrase it adelically, but it should be made clear this is still the amplifier of
Friedlander/Iwaniec.

For any function f on GL2(F )\GL2(AF ) and any g0 ∈ GL2(AF ), we write fg0(g) = f(gg−1
0 ). Then one

has the following tiny variant of (4.9), for g1, g2 ∈ GL2(AF ):

X
ϕ1∈Bω,q

„Z
YA

ϕ
g−1
1

1 ϕ2E1/2

« „Z
YA

ϕ
g−1
2

1 ϕ2E1/2

«
=

X
ψ∈L2(YA)

〈Eg11/2E
g2
1/2, ψ〉〈ϕ

g1
2 ϕ

g2
2 , ψ〉 (4.10)

This is again an identity of this shape (4.8), but with slightly more freedom due to the insertion of
g1, g2. The left-hand (resp. right-hand) side is still proportional, by the Rankin-Selberg method, to L(π1 ×
π2, 1/2) (resp. L(τ, 1/2)L(τ × ω, 1/2), if ψ ∈ τ) but the constants of proportionality depend – in a precisely
controllable way – on g1, g2. In effect, this allows one to introduce a “test function” h(π1) into the identity
(4.8), thereby shortening the effective range of summation. It should be noted that in (4.10), by contrast
with (4.8), the right hand ψ-summation is no longer over ψ of level 1; however, it involves only those ψ
which are invariant by PGL2(Ẑ)∩ g−1

1 PGL2(Ẑ)g1 ∩ g−1
2 PGL2(Ẑ)g2, and in particular their level is bounded

in a way that depends predictably on g1, g2.

A subconvex bound for L(π1×π2,
1
2
, ) follows from any method to get nontrivial bounds on the right-hand

side of (4.10) for general g1, g2.

1. To deal with the case when ψ is perpendicular to the constants, we note that the terms 〈Eg11/2E
g2
1/2, ψ〉

are, by Rankin-Selberg, certain multiples of L(τ, 1
2
)L(τ × ω, 1

2
) whenever ψ ∈ τ , the space of an

automorphic representation. We then apply subconvex bounds for L(τ × ω, 1
2
), in the aspect when ω

varies.
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2. To deal with the case ψ = Const, we note that the term 〈ϕg12 ϕ
g2
2 , ψ〉 is, in that case, simply a multiple

of the matrix coefficient 〈ϕg1g
−1
2

2 , ϕ2〉. Thus it is bounded by bounds on the decay of matrix coefficients.

Obviously this description is dishonest, for the term 〈|E1/2|2, ψ〉 is not even convergent for ψ = Const!
However, this is a technical and not a conceptual difficulty: the only two analytic ingredients required are
the two above.

Finally we comment that, in the general case where not all the ramification of π1 arises from central
character, one proceeds precisely as above, but the vector E1/2 is not the new vector in the underlying

automorphic representation. Rather, E1/2 = E
gq′
1/2,new for a suitable gq′ ∈ GL2(AF ), i.e. one takes a certain

translate of the new vector. In that case, the proof becomes strictly simpler: as long as g1, g2 commute with
gq′ , we write

〈Eg11/2E
g2
1/2, ψ〉 = 〈(Eg11/2,newE

g2
1/2,new)gq′ , ψ〉

and again simply use decay of matrix coefficients! We hope these examples indicate the power of the decay
of matrix coefficients when studying periods.

4.3.3. Mysterious identities between families of L-functions and their interpretation.
In a sense, (4.8) is the key point of the above discussion; it explains immediately why one has the “reduction
of degree” discussed in Sec. 3.4. As discussed, (4.8) is essentially the period identity (4.9). This is another
example of the phenomenon discussed in Sec. 4.1: we have an identity that is obvious from the spectral
(period) viewpoint, but not at all clear from the viewpoint of L-functions considered as Dirichlet series.

This type of identity is not an isolated phenomenon. Perhaps a better-known example of such an
identity between a priori different families of L-functions is Motohashi’s beautiful formula [Mot97] for the
4th moment of ζ. Roughly speaking, it relates integrals of |ζ(1/2 + it)|4 to sums of L(ϕ, 1

2
)3, where ϕ varies

over Maass forms. Again, one can gain some insight into this from the “period” perspective. If ϕ is a suitably
normalized Maass form on SL2(Z)\H, its completed L-function is given by the Hecke period Λ(ϕ, 1

2
+ it) =R∞

0
ϕ(iy)yitd×y. Applying Plancherel’s formula shows that 1

2π

R∞
−∞ |Λ(ϕ, 1

2
+ it)|2dt =

R∞
y=0
|ϕ(iy)|2d×y.

Again, one can spectrally expand |ϕ|2, yielding:

1

2π

Z ∞

−∞
|Λ(ϕ,

1

2
+ it)|2dt =

X
ψ

〈|ϕ|2, ψ〉
〈ψ,ψ

Z ∞

0

ψ(iy)d×y =
X
ψ

〈|ϕ|2, ψ〉
〈ψ,ψ〉 Λ(ψ,

1

2
) (4.11)

where, again, the ψ-sum is over an orthogonal basis, suitably normalized, for L2(Y0(1)), and, again, we
suppress the continuous spectrum. (4.11) expresses a relation between mean values of L(ϕ, 1

2
+ it), where

t varies, and the family of L-functions L(ψ, 1
2
), where ψ varies. Specializing (4.11) to the case of ϕ the

Eisenstein series at the center of symmetry yields a formula “of Motohashi type.” We emphasize that
this argument is not rigorous (for the integrals diverge in the Eisenstein case) and has not been carried
out rigorously to our knowledge; it would likely involve considerable technical difficulty. Nevertheless, this
approach may have value insofar as it offers some insight into the origin of such formulae.

A. Reznikov has given a very general and elegant formalism [Rez05] that encapsulates such identities as
(4.8) and (4.11); one hopes that further analytic applications will stem from his formalism.

5. Applications

5.1. Subconvexity and functoriality. Via the functoriality principle of Langlands, it is now
understood that the same L-function may be attached to automorphic forms on different groups. This
gives rise to the possibility of studying the same L-function in different ways; this is a very powerful idea
(implicitly already encountered when we discussed connections between Weyl sums and central values of
L-functions).

A recent instance where this kind of idea played a decisive role was the attempt to solve the subconvexity
problem for the L-functions of the class group characters of a quadratic field K of large discriminant. In
[DFI95], Duke/Friedlander/Iwaniec were able to solve the problem but only under the assumption that K
has sufficiently many small split primes (it would follow from the Generalized Riemann Hypothesis, but
so far, has been established unconditionally only for special discriminants). This assumption, which was
also encountered by the second author in [Ven05] in the context of periods and which is closely related to
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Linnik’s condition, is a fundamental and major unsolved issue that arises in many contexts, e.g. in work on
the André/Oort conjecture [Edi05,Yaf03].

A key observation of [DFI02], is that, by functoriality, (in that case due to Hecke and Maass) a class
group character L-function is the L-function of a Maass form of weight 0 or 1, with Laplace eigenvalue 1/4.
For these, as we have just seen, the subconvexity problem can be solved independently of any assumption.
For that reason, we find it useful to spell out explicitly some direct consequences of the subconvex bounds
of Theorem 6 and of functoriality.

Corollary 5.1. Let F be a fixed number field and ρ : Gal(F̄ /F ) → GL2(C) be a modular Galois represen-
tation (for instance, if the image of ρ in PGL2(C) is soluble). Let qρ be the Artin conductor of ρ and let
L(ρ, s) be its Artin L-function, then for <es = 1/2

L(ρ, s)�F,s NF/Q(qρ)
1/4−δ

for δ > 0 some absolute constant.

Corollary 5.2. Let F be a fixed number field and K be an extension of F of absolute discriminant
disc(K/Q) =: ∆K and let ζK(s) be the Dedekind zeta function of K; then, if K/F is abelian or cubic,
one has for <es = 1/2

ζK(s)�F,s |∆K |1/4−δ

for δ > 0 some absolute constant.

Corollary 5.3. Let F be a fixed number field, π be a fixed GL2(AF )-automorphic cuspidal representation
and let K be an extension of F of absolute discriminant disc(K/Q) =: ∆K . If K/F is abelian or cubic, we
denote by πK the base change lift of π from F to K (which exist by the works of Saito/Shintani/Langlands
and Jacquet/Piatetski-Shapiro/Shalika). For <es = 1/2, one has

L(πK , s)�F,π,s |∆K |1/2−δ

for δ > 0 some absolute constant.

5.2. Equidistribution on quaternionic varieties. We define a quaternionic variety as
the locally homogeneous space given as an adelic quotient of the following form: for F a totally real number
field, B a quaternion algebra over F , let G be the Q-algebraic group resF/QB×/Z(B×); one has

G(R) ' PGL2(R)f
′
× SO(3,R)f−f

′

where f = degF and f ′ is the number of real place of F for which B splits. Let K∞ be a compact subgroup
of G(R) of the form

SO(2,R)f
′
×
f−f ′Y
v=1

Kv

with Kv = either SO2(R) or SO3(R) and let X denote the quotient G(R)/K∞; finally let Kf be an open
compact subgroup of G(Af ) and K := K∞.Kf .

The quaternionic variety VK(G, X) is defined as the quotient

VK(G, X) := G(Q)\X ×G(Af )/Kf = G(Q)\G(AQ)/K.

It has the structure of a Riemannian manifold whose connected components are quotients, by a discrete
subgroup of G(R), of the product of (H±)f

′
× (S2)f

′′
for f ′′ 6 f − f ′. The case of the sphere and of the

modular surface correspond to the case F = Q, B the algebra of 2 × 2 matrices M2(R) or the Hamilton
quaternions B(2,∞), with K∞ = SO(2,R) and Kf the maximal compact subgroup of G(Af ).

LetK/F be a quadratic extension with an embedding into B, and let T denote the Q-torus “resF/QK
×/F×”.

As was pointed out in section 2.2.1, there exists, in great generality, a precise relationship between:

1. Central values of some Rankin/Selberg L-function L(πχ × π2, s) (for which the sign of the functional
equation w(πχ × π2) is +1); and
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2. (the square of) twisted Weyl sums Z
T(Q)\T(AQ)

χ(t)ϕ2(z.t)dt

These Weyl sums describe the distribution properties of toric orbits, T(Q)\z.T(AQ) of cycles associ-
ated to (orders of K) inside VK(G, X).

The general scheme is that, in cases where these formula have been written out explicitly, the subconvex
bound (3.2) (along possibly with hypothesis Hθ for some θ < 1/2) yields at once the equidistribution of
the full orbit and the subconvex bounds (3.4) yield the equidistribution of big enough suborbits of the toric
orbit. We present below further sample of results that have been proven along these lines. However, we note
that there is considerable scope for generalization of these equidistribution results, in particular regarding
the formulas of Waldspurger/Gross/Zagier/Zhang type which can be worked out precisely for more general
quadratic fields (say not necessarily totally real or totally imaginary).

5.3. Hilbert’s eleventh problem. Similarly to what was explained before in the case F =
Q, when B is totally definite, K∞ = SO2(R)f , X = (S2)f is a product of spheres. In this case, the
equidistribution of toric orbits (relative to a totally imaginary quadratic field) above can be interpreted
in terms of the integral representations of a totally positive integer d ∈ OF by a totally positive definite
quadratic form q ( more precisely −q “is” the norm form NB/F (x) on the space of quaternions of trace 0) .

More generally, Hilbert’s eleventh problem asked, amongst other things, which integers are represented
by integral quadratic form over (the ring of integers in) a fixed number field. When F is not totally real or q
is indefinite at some place or q has more than 4 variables this question was basically solved through various
methods during the 20th century. Recently, Cogdell/Piatetski-Shapiro/Sarnak settled the last remaining
case of positive definite ternary forms by following an approach similar to the original method of Duke. In
this approach, however, the non-trivial bound for Fourier coefficients of half-integral weight forms (2.3) is
obtained by combining a formula of Baruch/Mao [BM03] (generalizing the Kohnen/Zagier formula) with
their subconvex bound (3.2) for π2 holomorphic. Their first result is (see also [DSP90] for the case F = Q)

Theorem 7. Let F be a totally real number field and q be an integral positive definite quadratic form over
F ; there is an absolute (ineffective) constant NF,q > 0 such that if d is a squarefree totally positive integer
with NF/Q(d) > NF then d is integraly represented by q iff d is everywhere locally integrally represented.
Moreover, in the later case, the number, rq(d), of all such integral representation satisfies

rq(d)�q,F NF/Q(d)1/2+o(1), as NF/Q(d)→ +∞.

Remark 5.1. The question of the integral representability of d by some form in the genus of q was completely
settled a long time ago by Siegel, in a quantitative way, through the Siegel mass formula. The present theorem
(or a slightly more precise form of it) can then be interpreted by saying that the various representations d
are equidistributed amongst the various genus classes of q. Their next theorem is an even stronger version of
this equidistribution (see [DSP90] for the case F = Q).

Theorem 8. With the same notations as above, let σ : x → (σ1(x), . . . , σf (x)) be the standard embedding
of F into Rf and let Vq,1(R) denote the variety of level 1 of q (a product of ellipsoids in (R3)f ):

Vq,1(R) = {(x1,x2, . . . ,xf ), xi ∈ R3, σi(q)(xi) = 1, i = 1 . . . f} ⊂ (R3)f .

If Rq(d) > 0, let Gd denote

Gd = {( 1

σ1(d)1/2
σ1(x), . . . ,

1

σf (d)1/2
σf (x)), x ∈ OF , q(x) = d} ⊂ Vq,1(R)

the projection of the integral solutions of the equation q(x) = d to Vq,1(R). Then, as NF/Q(d)→ +∞, with
rq(d) > 0, the set Gd becomes equidistributed on Vq,1(R).
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5.4. Equidistribution of CM points on quaternionic Shimura varieties.
When B is indefinite at some real place and K∞ = SO2(R)f

′
×SO3(R)f−f

′
the quaternionic variety VK(G, X)

is a Shimura variety, ShKf (G, X) (a Hilbert modular variety of complex dimension f ′). It has the structure
of the complex points of an algebraic variety defined over some reflex field E/F .

In this setting, the generalization of the set of Heegner point is the so called set of “CM” points, Hd,
which is associated to a quadratic order Od (say of discriminant d) of a (not necessarily fixed) totally
imaginary K/F . In that case and under some natural local condition, the equidistribution of

Hd = T(Q)\zd.T(AQ)/T( bOd)

on ShKf (G, X) as |NF/Q(d)| → +∞ was established independently by Clozel/Ullmo, Cohen and Zhang
[CU05,Coh05,Zha04] by using the subconvex bound (3.2) of the second author. For instance, one has

Theorem 9. Suppose Kf = Kf,max is a maximal compact subgroup of G(AF ), then for |NF/Q(d)| → +∞
and d coprime with disc(F ), the set Hd becomes equidistributed on ShKf (G, X) w.r.t. the hyperbolic measure.

Similarly, as in Theorem 5, the bound (3.4) allows one to show the equidistribution of strict suborbits
of zd:

Theorem 10. With the notations as above, there is an absolute constant 0 < η < 1 such that, for any
subtoric orbit H ′

d ⊂ Hd of size satisfying |H ′
d | > |Hd|η, then H ′

d is equidistributed on ShKf (G, X) as
|N(d)| → +∞,.

As was pointed out by Zhang [Zha04], the possibility of considering strict suborbits of the full toric orbit
has a very nice arithmetic interpretation. Indeed any CM point zd ∈ Hd is defined over some ring class
extension above K and a natural question (motivated in part from the André/Oort conjecture [Ull02]) is the
question of the distribution of the Galois orbits of such points. By Shimura’s theory of complex multiplica-
tion, the galois orbit of zd is a (strict in general) subtoric orbit of the toric orbit T(Q)\zd.T(AQ)/T( bOd),
thus it follows from Theorem 10, that if the Galois orbit is big enough, it is equidistributed. This however
is not to be expected, in full generality, for there exists families of CM points whose the Galois orbit sits
entierely on fixed strict sub-Shimura variety of ShKf (G, X). On the other hand, in the (generic) case of

CM points whose Mumford/Tate group is as big as possible (equal to the full torus T = resF/QK
×/F×) it

is expected (and proven in a very limited number of cases ) that the size of the galois orbit is bigger than
|Hd|1−ε for any ε > 0 which would be more than sufficient to obtain equidistribution [Zha04].

Remark 5.2. In the same vein, the generalization of the sets of geodesics, Γd are the sets, Γd, of compact
flats of maximal dimension ShKf (G, X)(C) associated to totally real quadratic orders Od. To our knowledge
the generalization of (2.2) and (2.5) has not been written up yet for fields F larger that Q. In any case,
once such generalizations become available, the above subconvex bound will imply similar equidistribution
statement of these flats.

6. A modern perspective on Linnik’s original ergodic method

6.1. The source of dynamics. Although the relevance of dynamics to integral points on the
sphere is not immediately apparent, it is not difficult to see from an adelic perspective. We have already
mentioned in Section 2.2.1 that all three theorems (Theorems 1 – 3) may be considered as questions about
the distribution of an orbit of an adelic torus zd.Td(A) inside G(Q)\G(A).

One can, therefore, hope to use results about the dynamics of Td(Qv)-action on G(Q)\G(A). This is
of use, however, only if Q(

√
d) splits at v; for if this is not the case, Td(Qv) is a compact group and has no

dynamics of interest.
This leads to Linnik’s condition: if p is a prime such that Q(

√
d) is split at p, then one may analyze

Theorems 1 – 3 by studying the dynamics of Td(Qp) ∼= Q×
p acting on G(Q)\G(A). This is precisely Linnik’s

method in modern language.
In the case of Theorem 3, we may take instead v =∞, which is split in the (real) quadratic field Q(

√
d).

This amounts to studying the collection of closed geodesics described in Theorem 3 through the dynamics of
the geodesic flow. Curiously, this was apparently never done by Linnik, who only used the action of p-adic
tori.
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6.2. Linnik’s method in the light of modern ergodic theory. As discussed, Linnik
acheived partial results towards Theorems 1 – 3 by using some ingenious ideas which he collectively referred
to as “the ergodic method.” As Linnik pointed out (see, e.g., [Lin68, Chapter XI, comments on Chapters
IV–VI]) despite this name, this method remained rather ad hoc and did not fit into ergodic theory as it is
normally understood: that is to say, dynamics of a measure-preserving transformation. The joint work of
the authors with M. Einsiedler and E. Lindenstrauss, in [ELMV] and [ELMVb], remedies this, both putting
Linnik’s original work into a more standard ergodic context, and giving the first higher rank results.

Much of this joint work is based on the recent work of Einsiedler and Lindenstrauss on classification
of invariant measures for higher rank tori, which is discussed in their contribution to these proceedings
[EL06]. An important difference between the higher rank case and the rank 1 case considered by Linnik
is the phenomenon of measure rigidity; in general, the actions of higher rank tori are far more rigid (have
fewer invariant measures and closed invariant sets) than the actions of rank 1 tori. A hint of this distinction
between rank 1 and rank 2 actions may already be seen in a more elementary context: Although a real
number x can have an irregular expansion to base p, i.e. {pnx} can behave irregularly modulo 1, it is much
more difficult for {pnqmx} to behave irregularly mod 1, if p and q are coprime. This phenomenon was first
studied by Furstenberg; for a recent survey we refer the reader to [Lin].

A central concept here is that of entropy; we briefly reprise the definition. We recall that if P is a
partition of the probability space (X, ν), the entropy of P is defined as:

hν(P) :=
X
S∈P

−ν(S) log ν(S). (6.1)

This has the following basic subadditivity property: if P1,P2 are two partitions, then hν(P1 ∨P2) 6
hν(P1) + hν(P2), where ∨ denotes common refinement. If T is a measure-preserving transformation of
(X, ν), then the measure entropy of T is defined as:

h(T ) = sup
P

lim
n→∞

hν(P ∨ T−1P ∨ · · · ∨ T−(n−1)P)

n
(6.2)

where the supremum is taken over all finite partitions of X.

Here are two results that illustrate the importance of this concept. We denote by Haar the G-invariant
probability measure on a quotient space Γ\G.

Fact 1. Let µ on SL2(Z)\SL2(R) be invariant by the diagonal subgroup, and let a be a nontrivial diagonal
matrix. Then hµ(a) 6 hHaar(a), with equality if and only if µ = Haar.7

Fact 2. Let µ be a probability measure on SL3(Z)\SL3(R) invariant by the diagonal subgroup A and let
a ∈ A be nontrivial. If hµ(a) > 0 and µ is ergodic (w.r.t. A), then µ = Haar. This lies much deeper than
Fact 1 and is a result of Einsiedler, Katok and Lindenstrauss [EKL06].

The scheme of [ELMV] and [ELMVb] is to treat Linnik problems by combining results of the above
type – towards the classification of measures with positive entropy – with Diophantine ideas that establish
positive entropy.

The power of results such as Fact 2 for number-theoretic purposes becomes manifest in this context. The
reason that one obtains much stronger results in the SL3(R) context than the SL2(R) context is another
manifestation of “measure rigidity.”

In the subsequent sections we discuss some applications of this general scheme that are carried out in
these papers; we have aimed for concreteness, but we believe that these methods will be much more generally
applicable.

6.3. Linnik’s original proof: the “Linnik principle” and entropy. In [ELMVb]
we give a purely dynamical proof of Theorem 3, concerning equidistribution of geodesics of fixed discriminant.
Although, unlike the prior work of Skubenko, it requires no auxiliary prime splitting, this proof is still based
heavily on Linnik’s ideas. However, it introduces considerable conceptual simplification using the notion of
entropy discussed in the previous Section, and uses in particular Fact 1.

7More generally, this result is true for the geodesic flow on the unit tangent bundle of a surface of constant negative
curvature: the Liouville measure is the unique measure of maximal entropy.
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Let d > 0 be a fundamental discriminant. The unit tangent bundle of Y0(1) is identified with
PGL2(Z)\PGL2(R), and so the subset Γd described in Theorem 3 may be regarded as a subset
Γd ⊂ PGL2(Z)\PGL2(R). Considered in this way, Γd is invariant by the subgroup

A = {a(t) =

„
et 0
0 e−t

«
, t ∈ R}

of diagonal matrices with positive entries. It supports a natural A-invariant probability µd (the one which
assigns the same mass to each connected component) and Theorem 3 asserts precisely that µd converge
weakly to the PGL2(R)-invariant probability measure on PGL2(Z)\PGL2(R).

The dynamical proof – which is based very much on Linnik’s ideas – uses Fact 1 together with a
Diophantine computation (based on “Linnik’s basic Lemma”) to show that any weak limit of the µd has
maximal entropy w.r.t. the action of a(1).

For now we shall merely briefly indicate how Diophantine considerations enter. In view of the definition
(6.1), a lower bound on the entropy hν(P) of a partition follows if one knows a lower bound for the mass
ν(S) of any S ∈P. Now, let µ∞ be a weak limit of the µd. We shall assume here (for simplicity) that µ∞ is
a probability measure, i.e. that there is no “escape of mass” in the noncompact space PGL2(Z)\PGL2(R).

To give a positive lower bound on the entropy of a(1) w.r.t. µ∞ it suffices to show that there is a sequence
of integers nd so that:

µd(P ∨ a(1)−1P ∨ · · · ∨ a(1)−(nd−1)P) > cnd

for some absolute constant c.
As it turns out, each piece of such a refined partition looks like a very small tube around a piece of an

A-orbit. A hint on how to bound the µd-mass of such a tube is already given by the following Lemma, which
shows that points in Γd are well-separated tranverse to the A-direction.

Lemma 6.1. Fix any compact subset Ω ⊂ PGL2(Z)\PGL2(R) and a Riemannian metric on
PGL2(Z)\PGL2(R). Then there is cΩ > 0 such that, for any y, y′ ∈ Ω ∩ Γd such that d(y, y′) < cΩd

−1/2,
there exists t 6 1 such that y = y′a(t).

The proof of this is very simple: it is a translation of the fact that any two distinct integral binary
quadratic forms ax2 + bxy+ cy2, considered as points in the affine space of (a, b, c), are separated by at least
1! (Recall that Γd was constructed from a set Qd(Z) of binary quadratic forms of discriminant d).

Thus even a relatively trivial Diophantine consideration (any two integer points are separated by > 1)
already gives a nontrivial bound on entropy. To apply Fact 1, however, one needs an optimal bound, and
this requires a slightly more sophisticated Diophantine argument; it requires a version of “Linnik’s basic
Lemma,” cf. [Lin68, Theorem III.2.1], which in turn may be deduced from Siegel’s mass formula.

6.4. A rank 3 version of Duke’s theorem. Supersparse equidistribution.
A natural “rank 2” version of Theorem 3 considers adelic torus orbits inside PGL3(Q)\PGL3(A). One
of the main theorems (part 1 of Theorem 11 below) of [ELMV] obtains a weak form of equidistribution
(“well-distribution”) in this context. A key ingredient in this theorem is Fact 2 mentioned above.

Let D be a R-split central simple algebra of rank 3 over Q, i.e. dimQ D = 9, so that D⊗Q R = M3(R).
Let OD be a fixed order in D. Let G be the algebraic group PG(D) = D×/Z(D)×; we fix a maximal split
torus A = (R×)2 inside G(R). Let U be the standard maximal compact subgroup

Q
p PG(OD,p) of G(Af ).

We will assume, for simplicity, that the class number of OD is 1, i.e. that G(Af ) = G(Q).U .
Let K ⊂ D be a totally real cubic field, together with an isomorphism θ : K ⊗R→ R3. We assume for

simplicity that K ∩OD is the maximal order OK of K. This yields, in particular, an embedding of the torus
TK = resK/QK

×/Q× into the algebraic group PG(D). The choice of θ determines a unique gθ ∈ G(R) so
that gθAg

−1
θ = TK(R).

Setting UT = TK(Af ) ∩ U , we consider

ΓK := (TK(Q)\TK(A)/UT )gθ ⊂ G(Q)\G(A)/U ∼= O×D\PGL3(R).

This is a collection of compact A-orbits on O×D\PGL3(R), indexed by the set

TK(Q)\TK(Af )/UT

which is precisely the class group Cl(OK).
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Thus we may associate to any subset S ⊂ Cl(OK) of the class group a collection of |S| closed A-orbits
on O×D\PGL3(R); call this ΓK,S . This supports a natural A-invariant probability measure (which assigns
the same mass to each of the constitutent orbits); call this measure µK,S . For S = Cl(OK) we write simply
µK .

Theorem 11. 1. There is an absolute constant c > 0 so that, as disc(K) → ∞, any weak limit of the
measures µK contains a Haar component of size > c.8

2. Suppose D is not Q-split. Fix δ < 1/2. There is a constant c = c(δ) > 0 such that, if each set

S ⊂ Cl(OK) satisfies |S|
|Cl(OK)| > disc(K)−δ, then any weak limit of µK,S contains a Haar component

of size > c(δ).

The condition “D is not Q-split” is used to avoid the difficulties associated with noncompactness. To
handle the case of D Q-split (i.e. the case of PGL3(Z)\PGL3(R)) for the first item requires, in addition to
the general strategy outlined at the end of Sec. 6.2, an analytic result that shows that any weak limit of the
µK is in fact a probability measure, i.e. that there is no “escape of mass” to ∞. The analytic result needed
is, in fact, precisely Corollary 5.2 in the case F = Q.

The second part of this theorem illustrates a major advantage of the ergodic approaches of [ELMV]
in comparison to harmonic-analysis methods: they allow nontrivial results about very small torus orbits
(“supersparse equidistribution”; the result allows any exponent δ < 1/2; since the size of the class group of
OK is at most disc(K)1/2+ε, this is as strong as could be hoped for). This seems to be a general advantage,
at present, of ergodic methods over harmonic analysis. It is not specific to torus orbits; it is also reflected in
many applications of Ratner’s theorems to questions that have not been successfully analyzed by harmonic
analysis; see also Section 7.

In any case, such small torus orbits arise naturally in arithmetic questions – for instance, in the
André/Oort conjecture, and we expect that measure rigidity results for actions of p-adic torii should
allow for partial progress towards Zhang’s measure-theoretic refinement of the André/Oort conjecture
[Zha04, “Equidistribution Conjecture”].

Remark 6.1. One should compare the result of the second part of Theorem 1 with Conjecture 1; indeed,
the Theorem is giving a result of the quality of Conjecture 1, but without the requirement that S be a
subgroup of the Picard group Cl(OK). We note that one can certainly formulate an analogous question to
the second part of this Theorem in the rank 1 context. However, it is very unlikely that anything as strong
as the above result holds; this is again the phenomenon of measure rigidity alluded to at the beginning of
the present Section.

6.4.1. The joinings theorem of Einsiedler and Lindenstrauss. We have indicated above some
examples of the power of ergodic methods to yield results about quite sparse orbits. We briefly return to an
earlier problem to give one more instance of this. As remarked after Conjecture 2, it is possible to consider
the analogous Conjecture on Y0(1) × S2 or more generally on products of quaternionic varieties associated
to distinct quaternion algebras. It seems that this analogue is an immediate corollary of a recent result of
Einsiedler and Lindenstrauss [EL06, Theorem 2.7], under a “stronger” Linnik type condition: if one varies d
through a sequence of admissible discriminants for which Q(

√
d) is split at two fixed primes p, q. The point

of this assumption is that it allows application of the Theorem of Einsiedler/Lindenstrauss to the rank 2
action of Td(Qp)×Td(Qq).

On the other hand, these techniques do not appear to yield Conjecture 2, because of the difficulty of
ruling out certain intermediate measures as possible limits. (How does one know that the limit measure
associated to H ′′

d is not concentrated on the diagonal of Y0(1)× Y0(1)?)

6.5. An application to Minkowski’s theorem in higher rank. We first recall
Minkowski’s theorem: if K is a number field of degree d and with maximal order OK , any ideal class for
OK possesses an integral representative J ⊂ OK of norm N(J) = O(

p
disc(K)) where the implicit constant

depends only on d. We conjecture that this is not sharp for totally real number fields of degree d > 3:

Conjecture 3. Suppose d > 3 is fixed. Then any ideal class in a totally real number fields of degree d has an
integral representative of norm o(

p
disc(K)).

8One certainly conjectures that the measures µK are approaching the Haar measure on O×D\PGL3(R); this would
be a true rank 3 analogue of Theorem 3.
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This conjecture can be seen as a result of the extra freedom that arises from having a large unit group,
and is actually a consequence of a stronger conjecture formulated by Margulis [Mar00]. It seems very unlikely
that it is true for d = 2; this is another manifestation of the difference between rank 1 and rank 2.

It will be convenient to denote by m(K) the maximum, over ideal classes of OK , of the minimal norm
of a representative. Thus the conjecture asserts that

lim
disc(K)→∞

m(K)

disc(K)1/2
= 0,

if K varies through totally real fields of fixed degree d > 3. Note, however, that Minkowski’s theorem is
rather close to sharp: it may be shown that for any d > 2 there exists a c′ > 0 such that there is an infinite
set of totally real fields of degree d for which m(K) > c′ · disc(K)1/2(log disc(K))1−2d. Thus one might
speculate that the true bound for m(K) is perhaps disc(K)1/2(log disc(K))−α for some small but positive
α.

We will call an ideal class of a field K δ-bad if it does not admit a representative of norm < δ ·disc(K)1/2.
Let hδ(K) be the number of δ-bad ideal classes and let RK denote the regulator of the field K.

In [ELMV] it is shown that:

Theorem 12. Let d > 3, and let K denote a totally real number field of degree d. For all ε, δ > 0 we have:X
disc(K)<X

RKhδ(K)� Xε (6.3)

In particular:

1. “Conjecture 3 is true for almost all fields”: The number of fields K with discriminant 6 X for which
m(K) > δ · disc(K)1/2 is Oε,δ(X

ε), for any ε, δ > 0;

2. “Conjecture 3 is true for fields with large regulator”: If Ki is any sequence of fields for which

lim infi
logRKi

log disc(Ki)
> 0, then m(Ki) = o(disc(Ki)

1/2).

This is connected to the considerations of Sec 6.4 in the following way: Consider the case d = 3.
To a real cubic field K and suitable additional data we have associated a collection of compact A-orbits
ΓK ⊂ PGL3(Z)\PGL3(R), indexed by the class group of K. The key point is the following: the question of
the minimal norm of a representative for a given ideal class is closely related to the question of how far the
associated A-orbit penetrates into the “cusp” of the noncompact space PGL3(Z)\PGL3(R). This allows a
geometric reformulation of Theorem 12 that is amenable to analysis by the methods of Sec. 6.4.

7. The roles of ergodic theory and harmonic analysis

In this concluding section, we briefly compare dynamical methods and harmonic analysis. We take the
period viewpoint (i.e. we shall phrase the aims and results in terms of periods, rather than L-functions; a
partial justification for this is that, although all L-functions are periods, there are periods of interest that
are not L-functions.)

Fundamentally, the most general context for the type of problem we are considering is the following: let
H ⊂ G be a subgroup of a semisimple Q-group G; understand the “distribution” of H(Q)\H(A) inside
G(Q)\G(A). Although we have not discussed it in the present article, such questions arise naturally in a
large number of arithmetic questions.

The general approach to such questions have fallen into the following types:

1. Ergodic. Here we choose a suitable finite set of places S and apply results constraining H(QS)-invariant
measures on G(Q)\G(A).

2. Harmonic-analysis. Here we choose a suitable basis ϕi for functions on G(Q)\G(A) and compute the
“periods” Z

H(Q)\H(A)

ϕi. (7.1)
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As we have seen in this article, there is considerable interaction between the two methods that has arisen
in this context. In [ELMV] harmonic analysis is used to control escape of mass issues, which ergodic theory
at present cannot handle; in [Ven05] quantitative ideas from ergodic theory are used to give estimates on
periods such as (7.1).

It seems that in general, “good” quantitative upper bound for periods such as (7.1) should be considered
as a central goal of the analytic theory of automorphic forms. Part of the difficulty is finding the correct
notion of a “good” bound; one clear-cut case is when (7.1) is related to an L-function, in which case a “good”
bound should yield subconvexity for the L-function.

At this level of generality, the following principles tend to apply:

1. If H is “a large enough subgroup” of G (say if H acts with an open orbit on the flag variety of G),
the periods (7.1) will often have “arithmetic significance”, i.e. are often interpretable in terms of
quantities of arithmetic interest such as L-functions.

In this case, one can at least hope for complete, quantitative results via harmonic analysis. In addition
to “standard harmonic analysis,” one has one important trick in this context: one may make use
of equalities between periods on different groups. That is to say: often there will be another pair
(H′ ⊂ G′) with the property that, for all ϕi in some suitably chosen automorphic basis of functions
on G(Q)\G(A), one may associate functions ϕi on G′(Q)\G′(A) so thatZ

H(Q)\H(A)

ϕj =

Z
H′(Q)\H′(A)

ϕ′j

The correspondence ϕ↔ ϕ′ is usually related to functoriality. Thereby one can study the H-periods
on G by switching to G′.

2. If H is not a torus, one can almost always profitably apply Ratner’s theorem in the ergodic method
and get strong, although non-quantitative results. We have not discussed any examples of this in the
present article; a nice instance (not phrased adelically) is [EO03].

3. If H is a torus, the emerging theory of measure rigidity for torus actions (see in particular [EL06],
[EKL06]) can often substitute for Ratner theory. This requires an extra input, positive entropy, and
has two further disadvantages (compared to “Ratner theory”) that might be noted:

(a) At present there is no good general way to control escape of mass in the case when G(Q)\G(A)
is noncompact, or the related phenomenon of concentration on embedded subgroups.

(b) One needs to have “Linnik’s condition,” i.e. a fixed set of places S such that H(Qv) is noncompact
for v ∈ S.

As a rough rule, then, the strength of ergodic theory is that it can handle “small” orbits – orbits of
very small subgroups which at present seem far beyond the reach of traditional harmonic analysis – and the
weakness is that it is not quantitative.

On the other hand, the strength of harmonic analysis is that it imports all the rich internal structure of
automorphic forms. Let us give one example: “why” is it that harmonic-analysis approaches to Theorem
1 have been able to avoid a Linnik-type condition? We will give (one, probably contentious) attempt at a
philosophical answer to this question. The Waldspurger formula (2.5) expresses a period over a non-split
torus Td in terms of the L-function L(π, 1/2)L(π × χd, 1/2); when d varies, the quantity of interest is
L(π×χd, 1/2). But, by Hecke theory, this is expressible as a (χd-twisted) period of a form in π over a split!
torus in GL2(Q)\GL2(AQ). Thereby one has an equality of periods between a period over a nonsplit torus
Td and a twisted period over a split torus Tsplit. It seems to be that this equality of periods, which is
perhaps a reflection of functoriality, is part of the reason that one is able to sidestep the problem of small
split primes that plagues direct analysis of Td.
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