
POLYA PROBLEM-SOLVING SEMINAR WEEK 3:
RECURRENCES

BOB HOUGH AND RAVI VAKIL

The Rules. These are way too many problems to consider. Just pick a few problems you
like and play around with them.

You are not allowed to try a problem that you already know how to solve. Otherwise,
work on the problems you want to work on. If you would like to practice with the Pi-
geonhole Principle or Induction (a good idea if you haven’t seen these ideas before), try
those problems.

The Hints. Work in groups. Try small cases. Plug in smaller numbers. Do examples.
Look for patterns. Draw pictures. Use lots of paper. Talk it over. Choose effective nota-
tion. Look for symmetry. Divide into cases. Work backwards. Argue by contradiction.
Consider extreme cases. Eat pizza. Modify the problem. Generalize. Don’t give up after
five minutes. Don’t be afraid of a little algebra. Sleep on it if need be. Ask.

Sample recurrence write-up.

Problem. Solve the linearly recurrent equation fn = 5fn−1 − 6fn−2, f0 = 0, f1 = 1.

Solution. The characteristic equation for this recurrence is t2 − 5t + 6 = 0, which has
solutions t = 2 and t = 3 (each with multiplicity 1. Thus the solutions to the recurrence
are all of the form A2n +B3n (for constants A and B). Using the values at n = 0 and n = 1,
we find that A = −1 and B = 1. Hence the solution is fn = 3n − 2n.

The Problems.

1. Here are a bunch of problems that show recurrences from different points of view.

(a) The sequence q1, q2, . . . satisfies qn = 3qn−2 − 2qn−3, and q0 = 0, q1 = 3, q2 = 11.
Find a general formula for qn.

(b) What is
(

1 1

1 0

)n

?

(c) The sequence r1, r2, . . . satisfies rn = (5/2)rn−1 − rn−2, and r1 = 2003. Suppose the
sequence converges to a finite real number. Find r2.

(d) The sequence G0, G1, G2, . . . consists of every other Fibonacci number. Show that
there is a linear recursion (e.g. of the form Gn = aGn−1+bGn−2). (Follow-up: How
about a sequence consisting of every tenth Fibonacci number. How do you know
there’s a recursion? Harder: With integer coefficients?)
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(e) Use the theory of linear recursive sequences to find a formula for the sequence
s0 = 1, s1 = 2, sn = sn−2. What do you observe? Now try a sequence with period
four, such as t0 = 1, t1 = 0, t2 = 0, t3 = 0.

(f) Find a recurrence satisfied by fn = 3n + 4n+1.
(g) Find a recurrence satisfied by all cubic polynomials.
(h) Suppose f2 = 2, and fn = −2fn−1 − 4fn−2. Find f2003. (It looks like there isn’t

enough information to solve this problem.)
(i) Find a length two recurrence satisfied by Cn = cos n◦.
(j) (Ordinary differential equations with constant coefficients — intended only for those who

haven’t seen these before!) Solve the differential equation f ′′(x) = 5f ′(x)− 6f(x), with
initial conditions f(0) = 0, f ′(0) = 1. (Translation: develop the general theory of
such equations.) Hint: use the characteristic equation to guess two solutions. To
guess a solution, examine a simpler equation of the same type, such as g ′(x) =

7g(x), and find its solutions. (What would happen if the differential equation had
a repeated root? Try it with f ′′(x) = 2f ′(x) − f(x).)

2. Suppose fn is a sequence of rational numbers, with f0 and f1 not both zero, such that
fn = fn−1 + fn−2. Show that fn is unbounded as n → ∞. Is this still true if the condition
of rationality is removed?

3. A gambling graduate student tosses a fair coin and scores one point for each head that
turns up and two points for each tail. Prove that the probability of the student scoring
exactly n points at some time in a sequence of n tosses is (2 + (−1/2)n)/3. (Hint: Let Pn

denote the probability of scoring exactly n points at some time. Express Pn in terms of
Pn−1, or in terms of Pn−1 and Pn−2. Use this linear recursion to give an inductive proof.
Even better hint, useful in many circumstances: you’ve been given the answer, so reverse-
engineer the recursion, and then try to prove it.)

4. Solve the double recurrence

fn = fn−1 − 3gn−1

gn = −3fn−1 + 9gn−1

(One possible approach: find a recurrence involving just f or g.) If you solve this and
don’t use eigenvalues and eigenvectors (you don’t need them!), please tell me, and I’ll
teach you about them.

5. Show that m|n if and only if Fm|Fn. (This is useful. For example: (i) Show that if n

divides a single Fibonacci number that it will divide infinitely many Fibonacci numbers.
(ii) Let 0 < i1 < i2 < ... < in be n integers. Prove that there exists a Fibonacci number FN

so that the least common multiple, [Fi1, Fi2, ..., Fin] divides FN.)

6. (This isn’t a linear recurrence question, but it is a neat recurrence question.)

(a) Let In =
∫π/2

0
sin

n x dx. Find a recurrence relation for In.
(b) Show that

I2n =
1 × 3 × 5 × · · · × (2n − 1)

2 × 4 × 6 × · · · × (2n)
·
π

2
.
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(c) Show that

I2n+1 =
2 × 4 × 6 × · · · × (2n − 2)

1 × 3 × 5 × · · · × (2n − 1)
.

(Fun follow-up: Write these formulas in terms of factorials. Hint: Can you see why 1 ×
3× · · ·× (2n− 1) = (2n)!/(2nn!)? Then try plugging n = 1/2 into the formula you get for
(b); what do you get for (1/2)!? What’s that

√
π doing there?!)

7. Define a selfish set to be a set that has its own cardinality (number of elements) as an
element. Find, with proof, the number of subsets of {1, 2, ..., n} that are minimal selfish
sets, that is, selfish sets none of whose proper subsets are selfish. (Putnam 1996B1)

8. For a positive integer n and any real number c, define xk recursively by x0 = 0, x1 = 1,
and for k ≥ 0,

xk+2 =
cxk+1 − (n − k)xk

k + 1
.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms of n and
k, 1 ≤ k ≤ n. (1997A6)

(On a related note: a useful fancy theorem is the Perron-Frobenius Theorem. In its sim-
plest form, this theorem states that any matrix with positive entries has a unique eigen-
vector with positive entries, and that the corresponding eigenvalue has multiplicity one
and has absolute value strictly greater than that of any other eigenvalue. Here is a fun
application, which I heard from Mira Bernstein, director of the Canada-USA Mathcamp,
when she was a post-doc here: The Seven Dwarfs are sitting around the breakfast table;
Snow White has just poured them some milk. Before they drink, they perform a little
ritual. First, Dwarf #1 distributes all the milk in his mug equally among his brothers’
mugs (leaving none for himself). Then Dwarf #2 does the same, then Dwarf #3, #4, etc.,
finishing with Dwarf # 7. At the end of the process, the amount of milk in each dwarf’s
mug is the same as at the beginning! If the total amount of milk is 42 ounces, how much
milk did each of them originally have?)

9. Suppose there are 2n people in a circle; the first n are “good guys” and the last n are
“bad guys”. Show that there is always an integer m (depending on n) such that, if we
go around the circle executing every mth person, all the bad guys are first to go. (For
example, when n = 3 we can take m = 5; when n = 4 we can take m = 30.) (p.frm-e0 of
Graham-Knuth-Patashnik’s Concrete Mathematics)

10. Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an +
1

k
√

an

for n > 0. Evaluate

lim
n→∞

ak+1
n

nk
.

(Putnam 2006B6)
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This handout can be found at http://math.stanford.edu/˜vakil/putnam07/
E-mail address: vakil@math.stanford.edu
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