PROBLEM-SOLVING MASTERCLASS WEEK 1

1. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

(Ryan Williams, 1999A4)
2. Find positive integers n and a_{1}, \ldots, a_{n} such that

$$
a_{1}+a_{2}+\cdots+a_{n}=1979
$$

and the product $a_{1} a_{2} \cdots a_{n}$ is as large as possible. (Ravi Vakil, from the Red Rock Cafe in Mountain View, and problem A1 on some Putnam, I forget which year)
3. Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\}
$$

(Kiat Chuan Tan, 2002A5)
4. Let $x_{1}, x_{2}, \ldots, x_{19}$ be positive integers each of which is less than or equal to 93 . Let $y_{1}, y_{2}, \ldots, y_{93}$ be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty) sum of some x_{i} 's equal to a sum of some y_{j} 's. (Daniel Le, 1993A4)
5. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

(Ryan Williams, 2005A5)

