PROBLEM-SOLVING MASTERCLASS WEEK 6

1. Find the smallest term in the sequence $\left\{a_{n}\right\}$ where $a_{1}=1993^{1994^{1995}}, a_{n+1}=a_{n} / 2$ if a_{n} is even, and $a_{n}+7$ if a_{n} is odd. (Dragos Oprea)
2. Find all rational x, y such that $x^{y}=y^{x}$. (Nathan Pflueger, Larson 3.3.25a)
3. Let $B(n)$ be the number of ones in the base two expression for the positive integer n. For example, $\mathrm{B}(6)=\mathrm{B}\left(110_{2}\right)=2$ and $\mathrm{B}(15)=\mathrm{B}\left(1111_{2}\right)=4$. Determine whether or not

$$
e^{\sum_{n=1}^{\infty} \frac{B(n)}{n(n+1)}}
$$

is a rational number. (John Le, 1981B5)
4. Prove that

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} \frac{1}{\sqrt{(2 N-k)(2 N-k-1)}}=\ln 2 .
$$

(Ching Hua Lee)
5. For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively prime to m, which satisfy $\left(x^{2}+y^{2}\right)^{m}=(x y)^{n}$. (Kiyoto Tamura, 1992A3)
6. You are given a circle of diameter 1 in the plane, and n infinite strips of paper of lengths $\ell_{1}, \ldots, \ell_{n}$ respectively. Show that you can cover the circle with the strips of paper if and only if $\sum \ell_{i} \geq 1$. (Ravi Vakil)

[^0]
[^0]: Date: Monday, November 13, 2006.

