PROBLEM-SOLVING MASTERCLASS WEEK 4

1. For any positive integer n, let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

(Nathan Pflueger, 2001B3)
2. Let a, b, c, d be integers such that $a>b>c>d>0$. Suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c)
$$

Prove that $a b+c d$ is not prime. (Kiat Chuan Tan, IMO2001 \# 6)
3. Show that the set $1,2, \ldots, 2^{n}$ can be partitioned into two subsets which contain no arithmetic progressions of length 2 n . (Dragos Oprea, from an old Romanian Olympiad)
4. Let

$$
\begin{array}{cccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m, n}>m n$ for some pair of positive integers (m, n). (Siddhartha, 1985B3)
5. Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999 , then

$$
|p(0)| \leq C \int_{-1}^{1}|p(x)| d x
$$

(Bob Hough, 1999A5)
6. Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

(Nathan Pflueger, 2001B2)

