PROBLEM-SOLVING MASTERCLASS WEEK 1

1. A game starts with four heaps of beans, containing 3, 4, 5 and 6 beans. The two players move alternately. A move consists of taking either
(a) one bean from a heap, provided at least two beans are left behind in that heap, or (b) a complete heap of two or three beans.

The player who takes the last heap wins. To win the game, do you want to move first or second? Give a winning strategy. (Nathan Pflueger, 1995B5)
2. Consider integers $1,2,3, \ldots, 2 n$ and pick more than n of them. Show that regardless of the choice made, one can find two integers picked such that one divides another. (Kiyoto Tamura, a problem from Erdos)
3. Let $S=\{1,2, \ldots, n\}$ and let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of S satisfying $\left|S_{i} \cap S_{j}\right| \leq 1$ for $\mathfrak{i} \neq j$. Show that max $\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{n}\right|\right)$ is asymptotically $n \sqrt{n}$. (Bob Hough)
4. Evaluate

$$
\int_{0}^{2}\left(\left(x^{3}+1\right)^{1 / 2}+\left(x^{2}+2 x\right)^{1 / 3}\right) d x
$$

(Natth Bejraburnin)
5. Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}
$$

Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c, d are integers. (Ravi Vakil, 1995B4)

[^0]
[^0]: Date: Monday, October 9, 2006.

