PROBLEM-SOLVING MASTERCLASS WEEK 4

1. A positive integer is alternating if every two consecutive digits in its decimal representation are of different parity. Find all positive integers n such that n has a multiple which is alternating. (IMO2004 \# 6, Alok Aggarwal)
2. Prove that, for any natural number n, there exists an arrangement of 1×1 squares in the plane that can be tiled with 1×2 dominoes in exactly n different ways. (Roger Grosse)
3. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

(1999A4, Alex Chen)
4. Given x, y, z real numbers with

$$
\begin{aligned}
x+y+z & =3 \\
x^{2}+y^{2}+z^{2} & =25 \\
x^{4}+y^{4}+z^{4} & =209
\end{aligned}
$$

Find $x^{100}+y^{100}+z^{100}$. (Bob Hough)
5. Suppose x and y are integer solutions of the equation

$$
2 x^{2}+x=3 y^{2}+y
$$

Prove that $x-y$ and $2 x+2 y+1$ are perfect squares. (Ivan Ivan Janatra)
E-mail address: vakil@math.stanford.edu

