PROBLEM-SOLVING MASTERCLASS WEEK 4

- **1.** A positive integer is alternating if every two consecutive digits in its decimal representation are of different parity. Find all positive integers n such that n has a multiple which is alternating. (IMO2004 # 6, Alok Aggarwal)
- **2.** Prove that, for any natural number n, there exists an arrangement of 1×1 squares in the plane that can be tiled with 1×2 dominoes in exactly n different ways. (Roger Grosse)
- 3. Sum the series

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$

(1999A4, Alex Chen)

4. Given x, y, z real numbers with

$$x + y + z = 3,$$

 $x^{2} + y^{2} + z^{2} = 25,$
 $x^{4} + y^{4} + z^{4} = 209,$

Find $x^{100} + y^{100} + z^{100}$. (Bob Hough)

5. Suppose x and y are integer solutions of the equation

$$2x^2 + x = 3y^2 + y.$$

Prove that x - y and 2x + 2y + 1 are perfect squares. (Ivan Ivan Janatra)

E-mail address: vakil@math.stanford.edu