PROBLEM-SOLVING MASTERCLASS WEEK 3

1. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
(1) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
(2) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$ (for a, b, c distinct);
(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that $g(a)<g(b)<g(c)$ implies (a, b, c) $\in S$. (1996A4, John Hegeman)
2. Find all integer solutions to $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$. (Kiyoto Tamura)
3. Let A_{n} be the number of elements in the nth row of Pascal's triangle that are congruent to 1 modulo 3 , and let B_{n} be the number of elements that are congruent to 2 modulo 3 . Show that $A_{n}-B_{n}$ is always a power of 2. (Ravi Vakil)
4. Given that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{1,2, \ldots, n\}$, find, with proof, the largest possible value, as a function of n (with $n \geq 2$), of

$$
x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1} .
$$

(1996B3, John Hegeman)
E-mail address: vakil@math.stanford.edu

