PROBLEM-SOLVING MASTERCLASS WEEK 3

- **1.** Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
 - (1) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
 - (2) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$ (for a, b, c distinct);
 - (3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that g(a) < g(b) < g(c) implies $(a,b,c) \in S$. (1996A4, John Hegeman)

- **2.** Find all integer solutions to $a^2 + b^2 + c^2 = a^2b^2$. (Kiyoto Tamura)
- **3.** Let A_n be the number of elements in the nth row of Pascal's triangle that are congruent to 1 modulo 3, and let B_n be the number of elements that are congruent to 2 modulo 3. Show that $A_n B_n$ is always a power of 2. (Ravi Vakil)
- **4.** Given that $\{x_1, x_2, \dots, x_n\} = \{1, 2, \dots, n\}$, find, with proof, the largest possible value, as a function of n (with $n \ge 2$), of

$$x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n + x_nx_1$$
.

(1996B3, John Hegeman)

E-mail address: vakil@math.stanford.edu