PROBLEM-SOLVING MASTERCLASS WEEK 2

1. You have an infinite quarter plane chessboard, with three tokens in the corner:

You can make one sort of move: take a token, and replace it with 2 tokens, one directly to the right and one directly below the token you remove:

$$
\begin{array}{cccc}
\mathrm{O} & \cdot \\
\cdot & \cdot & \cdot & \mathrm{O} \\
\mathrm{O} &
\end{array}
$$

(You may never have two tokens in the same square.) Using this move, is it possible to clear the starting three squares? (Henry Segerman)
2. Let $a_{1}, a_{2}, \ldots a_{n}$ be n positive real numbers, and b_{1}, \ldots, b_{n} be n distinct positive real numbers ($n \geq 2$). Let

$$
S=a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad T=b_{1} b_{2} \cdots b_{n} .
$$

Show that

$$
\frac{\sum_{j=1}^{n} b_{j}\left(1-a_{j} / S\right)}{n-1}>\left(\frac{T}{S} \sum_{j=1}^{n} \frac{a_{j}}{b_{j}}\right)^{\frac{1}{n-1}}
$$

(2002 Korean Mathematical Olympiad, final round, Hae Kang Lee)
3. Show that for every positive integer n,

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

(1996B2, John Hegeman)
4. The sequence of digits

$$
123456789101112131415161718192021 \ldots
$$

is obtained by writing the positive integers in order. If the $10^{\text {nth }}$ digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define $f(n)$ to be m. For example, $f(2)=2$ because the $100^{\text {th }}$ digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987). (1987A2, Alex Chen)
5. Prove that if n has at least two distinct prime divisors then there is some permutation, ϕ, of $\{1,2, \ldots, n\}$ such that

$$
\phi(1) \cos (2 \pi / n)+\phi(2) \cos (4 \pi / n)+\cdots+\phi(n) \cos (2 \pi)=0 .
$$

(Bob Hough)
6. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
(1) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
(2) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$ [for a, b, c distinct];
(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that $g(a)<g(b)<g(c)$ implies (a, b, c) \in S. (1996A4, John Hegeman)

E-mail address: vakil@math.stanford.edu

