PROBLEM-SOLVING MASTERCLASS WEEK 1

- **1.** Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X's in S minus the number of O's. For example, $\Delta(XOOXOOX) = -1$. We call a string S balanced if every substring T of (consecutive symbols of) S has $-2 \le \Delta(T) \le 2$. Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, the number of balanced strings of length n. (1996B5, John Hegeman)
- **2.** Let a and b be two positive integers such that $ab \neq 1$. Find all integer values of

$$\frac{a^2 + ab + b^2}{ab - 1}.$$

(Romanian IMO training, Florin Ratiu)

- **3.** Two people are walking randomly on the number line, each taking a step of length 1 every second, choosing whether to go left or right at random (with equal probability). What is the probability that, after N steps, they are in the same place? (Reif's *Statistical Mechanics*, Andy Lutomirski)
- **4.** Show that if 0 < r < 1 and if the complex numbers z_1, z_2, \ldots, z_n are in the disk $D = \{z : |z| \le r\}$, then there exists z_0 in D such that

$$(1+z_1)(1+z_2)\cdots(1+z_n)=(1+z_0)^n.$$

(Bob Hough)

5. The sequence of digits

is obtained by writing the positive integers in order. If the 10^{nth} digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define f(n) to be m. For example, f(2) = 2 because the 100^{th} digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987). (1987A2, Alex Chen)

6. Show that for every positive integer n,

$$\left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}} < 1 \cdot 3 \cdot 5 \cdots (2n-1) < \left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}}.$$

(1996B2, John Hegeman)

E-mail address: vakil@math.stanford.edu