PROBLEM-SOLVING MASTERCLASS WEEK 1

1. Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X^{\prime} 's in S minus the number of O's. For example, $\Delta($ XOOXOOX $)=-1$. We call a string S balanced if every substring T of (consecutive symbols of) S has $-2 \leq \Delta(T) \leq 2$. Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, the number of balanced strings of length n. (1996B5, John Hegeman)
2. Let a and b be two positive integers such that $a b \neq 1$. Find all integer values of

$$
\frac{a^{2}+a b+b^{2}}{a b-1}
$$

(Romanian IMO training, Florin Ratiu)
3. Two people are walking randomly on the number line, each taking a step of length 1 every second, choosing whether to go left or right at random (with equal probability). What is the probability that, after N steps, they are in the same place? (Reif's Statistical Mechanics, Andy Lutomirski)
4. Show that if $0<r<1$ and if the complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ are in the disk $\mathrm{D}=\{z:|z| \leq r\}$, then there exists z_{0} in D such that

$$
\left(1+z_{1}\right)\left(1+z_{2}\right) \cdots\left(1+z_{n}\right)=\left(1+z_{0}\right)^{n}
$$

(Bob Hough)
5. The sequence of digits

$$
123456789101112131415161718192021 \ldots
$$

is obtained by writing the positive integers in order. If the $10^{\text {nth }}$ digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define $f(n)$ to be m. For example, $f(2)=2$ because the $100^{\text {th }}$ digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987). (1987A2, Alex Chen)
6. Show that for every positive integer n,

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

(1996B2, John Hegeman)
E-mail address: vakil@math.stanford.edu

