## PROBLEM SOLVING MASTERCLASS WEEK 1

- **1.** Let A and B be  $2 \times 2$  matrices with integer entries such that A, A + B, A + 2B, A + 3B, and A + 4B are all invertible matrices whose inverses have integer entries. Show that A + 5B is invertible and that its inverse has integer entries. (Paul, Putnam 1994A4)
- **2.** Find the smallest integer n such that if n squares of a  $1000 \times 1000$  chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board. (Chee Hau, USAMO 2000)
- 3. Let

$$a_{1,1}$$
  $a_{1,2}$   $a_{1,3}$  ...  $a_{2,1}$   $a_{2,2}$   $a_{2,3}$  ...  $a_{3,1}$   $a_{3,2}$   $a_{3,3}$  ...  $\vdots$   $\vdots$   $\vdots$   $\vdots$ 

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that  $a_{m,n} > mn$  for some pair of positive integers (m, n). (Frank, Putnam 1985B3)

**4.** Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \ge 0.$$

(Alex, Putnam 1998A3)

**5.** Prove that for  $n \geq 2$ ,

$$2^{2^{n-2}} \right\}_n \equiv 2^{2^{n-2}} \right\}_{n-1} \pmod{n}.$$

(Yuanli, Putnam 1997B5)

- **6.** Let  $n \ge 2$  be an integer and  $T_n$  be the number of non-empty subsets S of  $\{1, 2, 3, \ldots, n\}$  with the property that the average of the elements of S is an integer. Prove that  $T_n n$  is always even. (Youngjun, Putnam 2002A3)
- 7. Let A be a matrix in SO(n), i.e. an  $n \times n$  matrix with determinant 1, whose n column vectors are orthonormal. If 0 < k < n, show that the determinant of the  $k \times k$  matrix in the upper-left corner equals the determinant of the  $(n-k) \times (n-k)$  matrix in the lower-right corner. (One interesting consequence: Show that the area of the shadow of a unit cube is equal to its "height" (the difference in height between its highest and lowest points). Hence find the area of the largest possible shadow of a unit cube, and of the smallest.) (Ravi)

E-mail address: vakil@math.stanford.edu