PUTNAM PROBLEM SOLVING SEMINAR WEEK 4

The Rules. These are way too many problems to consider. Just pick a few problems in one of the sections and play around with them. You are not allowed to try a problem that you already know how to solve.

Generating functions.

1. Suppose $p(x)=\left(1+x+x^{2}\right)^{2001}$ is expanded out as a huge degree 4002 polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{4001} x^{4001}+a_{4002} x^{4002}
$$

(a) Find the sum of the coefficients of $p(x)$. (b) Find the sum of the even coefficients of $p(x)$. (Hint: What is $p(-1)$?) (A challenge: Find the sum of every third coefficient - it turns out to be a power of 3.)
2. Suppose

$$
x=0.12345 \ldots=\sum_{i=1}^{\infty} \frac{i}{10^{i}} .
$$

(a) What is the thousandth digit of x after the decimal place? (b) Show that x is a rational number. Find it.
3. Show that

$$
0.0001001600810256 \ldots=\sum_{i=1}^{\infty} \frac{i^{4}}{10^{4 i}}
$$

is a rational number. (Tip: Don't try to find it!)
4. $1 / 9899=0.0001010203050813 \ldots$ (As in the previous problem, the spaces were added to make the pattern clear.) Explain! Can you generalize it? For example, which rational number is $0.000001001002 \ldots$?
5. Notice that $e^{a x} e^{b x}=e^{(a+b) x}$. Consider both sides as power series. Write down the coefficient of x^{n} on each side. What equality have you just proved? (Recall that $e^{y}=\sum_{k=0}^{\infty} y^{k} / k!$.)
6. For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j}
$$

Date: October 23, 2001.
where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers a and b with $a \geq 0,\binom{a}{b}=\frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b}=0$ otherwise.) Here's a hint which may help: Note that $\left(1+x+x^{2}+x^{3}\right)$ factors.

Analysis on the real line: Handy facts to know (for the Putnam, and more generally for a long and happy life).

Convergence. The Dominated Convergence Theorem. The Monotone Convergence Theorem. Limit Comparison Test. Integral Comparison Test.

Continuity. The Intermediate Value Theorem. The Extreme Value Theorem. (More generally, a continuous function on a compact set attains its sup and inf.)

Descartes' Rule of Signs: If $p(x)=a_{1} x^{r_{1}}+a_{2} x^{r_{2}}+\cdots+a_{k} x^{r_{k}}$ is a polynomial with $a_{i} \in \mathbb{R}^{*}$ and $r_{1}>r_{2}>\cdots>r_{k}$, then the number of positive real zeros of $p(x)$ counted with multiplicity is the number of sign changes in the sequence $a_{1}, a_{2}, \ldots, a_{k}$ minus a nonnegative even integer.

Big O and little O notation: $O(g(n))$ is a stand-in for a function $f(n)$ for which there exists a constant C such that $|f(n)| \leq C|g(n)|$ for all sufficiently large n. (This does not necessarily imply that $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists.) Similarly " $f(t)=$ $O(g(t))$ as $t \rightarrow 0$ " means that there exists a constant C such that $|f(t)| \leq C|g(t)|$ for sufficiently small nonzero $t . o(g(n))$ is a stand-in for a function $f(n)$ such that $\lim _{n \rightarrow \infty} f(n) / g(n)=0$. One can similarly define " $f(t)=o(g(t))$ as $t \rightarrow 0$ ".

Calculus. Riemann Sums: if a function is Riemann-integrable, e.g. if it is continuous on a closed finite interval, then the integral is the limit of the Riemann sums.

Rolle's Theorem: Let $[a, b]$ be a closed interval in \mathbb{R}. Let $f(t)$ be a function that is continuous on $[a, b]$ and differentiable on (a, b), and suppose that $f(a)=f(b)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Inequalities of integrals: $f \leq g$ means $\int_{a}^{b} f \leq \int_{a}^{b} g$ if $a \leq b$.
Taylor's Formula with Remainder: if h has continuous nth derivatives, then for any $x>0$ and integer $n>0$, there exists $\theta_{n} \in[0, x]$ such that

$$
h(x)=h(0)+h^{\prime}(0) x+\cdots+h^{(n-1)}(0) x^{n-1} /(n-1)!+h^{(n)}\left(\theta_{n}\right) x^{n} / n!.
$$

Mean Value Theorem for integrals: If f is continuous on $[a, b]$, then for some c in $[a, b]$ we have $\int_{a}^{b} f(x) d x=f(c)(b-a)$. For derivatives: If f is continuous on $[a, b]$ and has a derivative at each point of (a, b), then there is a point c of (a, b) for which $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Always good to know. Ordinary differential equations

Random other facts.

Rouché's Theorem: If f and g are analytic functions on an open set of \mathbb{C} containing a closed disc, and if $|g(z)-f(z)|<|f(z)|$ everywhere on the boundary of the disc, then f and g have the same number of zeros inside the disc.

Euler-Maclaurin Summation Formula: for any fixed $k>0$,
$\sum_{j=a}^{b} f(j)=\int_{a}^{b} f(t) d t+\frac{f(a)+f(b)}{2}+\sum_{i=1}^{k} \frac{B_{2 i}}{(2 i)!}\left(f^{(2 i-1)}(b)-f^{(2 i-1)}(a)\right)+R_{k}(a, b)$,
where the Bernoulli numbers $B_{2 i}$ are given by the power series

$$
\frac{x}{e^{x}-1}=1-x / 2+\sum_{i=1}^{\infty} \frac{B_{2 i}}{(2 i)!} x^{2 i}
$$

and the error term $R_{k}(a, b)$ is given by

$$
R_{k}(a, b)=\frac{-1}{(2 k+2)!} \int_{a}^{b} B_{2 k+2}(t-\lfloor t\rfloor) f^{(2 k+2)}(t) d t
$$

Application 1: Sum of k th powers. Application 2: Stirling's approximation to n !,

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

where the tilde indicates that the ratio of the two sides tends to 1 as $n \rightarrow \infty$.

Problems I'll discuss.

7. Let f be an infinitely differentiable real-valued function defined on the real numbers. If

$$
f\left(\frac{1}{n}\right)=\frac{n^{2}}{n^{2}+1}, \quad n=1,2,3, \ldots
$$

compute the values of the derivatives $f^{(k)}(0), k=1,2,3, \ldots$.
8. For any pair (x, y) of real numbers, a sequence $\left(a_{n}(x, y)\right)_{n \geq 0}$ is defined as follows:

$$
\begin{aligned}
a_{0}(x, y) & =x \\
a_{n+1}(x, y) & =\frac{\left(a_{n}(x, y)\right)^{2}+y^{2}}{2}, \quad \text { for } n \geq 0
\end{aligned}
$$

Find the area of the region $\left\{(x, y) \mid\left(a_{n}(x, y)\right)_{n \geq 0} \quad\right.$ converges $\}$.
9. Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$
a^{x} b^{1-x} \leq a \frac{\sinh u x}{\sinh u}+b \frac{\sinh u(1-x)}{\sinh u}
$$

for all u with $0<|u| \leq c$ and for all $x, 0<x<1$. (Note: $\sinh u=\left(e^{u}-e^{-u}\right) / 2$.)

Other problems.

10. Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
11. Cauchy's Lemma. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $f(x+y)=f(x)+f(y)$. Show that $f(x)=c x$ for some $c \in \mathbb{R}$.
12. A first approximation to Stirling's formula. Prove that $e(n / e)^{n}<n!<$ $e n(n / e)^{n}$. (Hint: Use Riemann sums on $y=\ln x$.)
13. Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=1,2,3, \ldots$ the polynomial

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

has exactly n distinct real roots?
14. Let N be the positive integer with 1998 decimal digits, all of them 1 ; that is,

$$
N=1111 \cdots 11 .
$$

Find the thousandth digit after the decimal point of \sqrt{N}.
This handout, and other useful things, can (soon) be found at
http://math.stanford.edu/~ vakil/stanfordputnam.html

