
PUTNAM PROBLEM SOLVING SEMINAR WEEK 2

The Rules. You are not allowed to try a problem that you already know how
to solve. These are way too many problems to consider. Just pick a few problems
in one of the sections and play around with them.

The Hints. Try small cases. Do examples. Look for patterns. Draw pictures.
Use lots of paper. Talk it over. Choose e�ective notation. Look for symmetry.
Divide into cases. Work backward. Argue by contradiction. Consider extreme
cases. Eat pizza. Modify the problem. Generalize. Don't give up after �ve minutes.
Don't be afraid of a little algebra. Sleep on it if need be. And ask!! If the problem
has a 2001 in it, what happens if you replace 2001 by 1, or 2, or 3? What's important
about 2001 | is it that it is odd, or divisible by 3, etc.?

Useful facts, in a nutshell. Mod. Unique factorization. s and t are relatively
prime if and only if you can �nd a and b such that as + bt = 1. Fermat's Little
Theorem ap � a (mod p). A7(b) and (c) below. Wilson's Theorem (p � 1)! � 1
(mod p). The Chinese Remainder Theorem: solving a bunch of equations modulo
n is the same as solving it modulo its prime power factors, e.g. x � 17 (mod 100)
is the same as x � 17 (mod 4) and x � 17 (mod 25). More serious stu�: If
gcd(a; n) = 1, then a�(n) � 1 (mod n), where �(n) is Euler's �-function | it is
the number of integers between 1 and n that are relatively prime to n. �(n) =
n(1 � 1=p1)(1 � 1=p2) � � � (1 � 1=pk) where p1, : : : , pk are the prime factors of n.
Hensel's Lemma: roughly, the reason you know you can solve x2 � �2 (mod 3n)
for all n. Primitive roots of n: generators of the group (Z=nZ)� (e.g. show that 2
is a primitive root (mod 3n) for all n).

The Problems. The �rst problems relate to the introductory number theory
mini-lecture.

A1. (a) Find integers x and y such that 754x + 221y = gcd(754; 221). (b)
Prove that (a+ b)=(c+ d) is irreducible if ad� bc = 1. (c) Prove that the fraction
(21n+ 4)=(14n+ 3) is irreducible for every natural number n.

A2. (a) If gcd(a; b) = 1, prove that gcd(a�b; a+b) � 2, (b) gcd(a�b; a+b; ab) =
1, (c) gcd(a2 � ab+ b2; a+ b) � 3.

A3. (a) Prove that some positive multiple of 21 has 241 as its �nal three digits.
(b) What are the last two digits of 31234?

A4. Suppose a, b, c, d, and m are integers, and m 6= 0. If (a � b)=m and
(c� d)=m are integers, show that (ac� bd)=m is also an integer. (This is the proof
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that if a � b (mod m) and c � d (mod m), then ac � bd (mod m) | so you aren't
allowed to use this fact!)

A5. (a) Show that a perfect square must leave a remainder of 0, 1, or 4 upon
division by 8. Show that it can't leave a remainder of 2 upon division by 3. (b)
Find all pairs of integers x and y such that x2 + y2 = 1999. With a minimum of
e�ort, �nd all pairs of integers x and y such that x2 + y2 = 1000. (Remarkable
fact: A positive integer n can be represented as the sum of two squares only if all
primes that are 3 modulo 4 appear to even power in its prime factorization. A
positive integer can be represented as the sum of three squares unless it is of the
form 4a(8b�1). All positive integers can be represented as the sum of four squares.)

A6.

(a) Show that 1000! ends with 249 zeros.
(b) (A useful fact!) Show that the highest power of p dividing n! is [n=p]+[n=p2]+

[n=p3]+ � � � , where [�] is the \greatest integer function". (Just ask if you don't
know what that means.)

(c) (Same useful fact!) Suppose the sum of the digits of n when written in base
p is np. Show that the highest power of p dividing n! is (n� np)=(p� 1).

A7. Find all functions f which satisfy the three conditions (i) f(x; x) = x, (ii)
f(x; y) = f(y; x), (iii) f(x; y) = f(x; x + y), assuming that the variables and the
values of f are positive integers.

A8. The measure of a given angle is 180=n degrees, where n is a positive integer
not divisible by 3. Prove that the angle can be trisected by Euclidean means
(straightedge and compass).

Primitive Pythagorean Triples

A primitive Pythagorean triple is an ordered triple of positive integers (a; b; c),
pairwise relatively prime, that are the sides of a right-angled triangle, i.e. a2+ b2 =
c2. Familiar examples are (3,4,5), (5,12,13), (7,24,25), and (8,15,17).

B1. If (a,b,c) is a primitive Pythagorean triple, show that exactly one of fa; bg
is odd. (Hint: check modulo 4.) Without loss of generality, say a is odd.

B2. Then a2 = c2 � b2 = (c � b)(c + b). Show that c � b and c + b have no
common factor.

B3. Show that two relatively prime numbers multiplying to a perfect square
must both be perfect squares. In the previous problem, show that c � b and c + b
can be taken to be (m+n)2 and (m�n)2 respectively, where m and n are positive
integers, m > n, and exactly one of m and n is even. (Remember that we're
assuming a is odd!)
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B4. In the previous problem, show that m and n are relatively prime. (Hint: If
they have a common factor d, show that d is a factor of both b and c, which are
relatively prime.)

B5. Solve for b and c to get b = 2mn, c = m2+n2. Then show that a = m2�n2.

In conclusion, any primitive Pythagorean triple is of the form

(a; b; c) = (m2 � n2; 2mn;m2 + n2)

or (2mn;m2 � n2;m2 + n2), where m and n are relatively prime positive integers,
one of which is even, with m > n. (Plug in small values of m and n | what do
you get?)

With this result, you can now do lots of interesting things involving Pythagorean
triples. For example:

B6. Plug in some large values of m and n to get ridiculously huge Pythagorean
triples.

B7. Show that any Pythagorean triple (a; b; c) can be written as a multiple k of
a primitive Pythagorean triple.

B8. 3122 + 4592 = 5552. Which k, m, and n give this triple?

B9. (a) How many Pythagorean triangles are there with hypotenuse 60? (b)
Show that the product of the sides of a right angled triangle with integer sides is
always divisible by 60.

B10. Suppose (a; b; c) is a primitive Pythagorean triple, and a is odd. Show
that c�a

2 , c+a
2 , c+ b, and c� b are all perfect squares.

B11. Try \breaking the rules" and substituting m = cos �, n = sin � in the
formula for primitive Pythagorean triples. What formula do you get? (Remember
the double angle formulas: cos 2� = cos2 � � sin2 � and sin 2� = 2 sin � cos �.)

B12. Find a right triangle with rational sides and area 5. (Hint: try to scale
well-known Pythagorean triples.) One such triangle was discovered by Fibonacci,
among others. In fact, 5 is the smallest integer which is the area of a right tri-
angle with rational sides. (Serious math fact: It's a classical unsolved problem to
determine all of the integers which are areas of right triangles with rational sides.
In 1983, it was shown that a solution to one of the most important conjectures in
number theory, the Birch-Swinnerton-Dyer conjecture, would give a solution to this
problem as well. If you solve the BSD conjecture, you'll win a million dollars | see
http://www.claymath.org/prizeproblems/birchsd.htm, or the link on the Stanford
Putnam webpage.)

B13. Fermat's Last Theorem! (In some cases...) Show that there are
no solutions to the equation k2000 + l2000 = m2000 where k, l, and m are positive
integers, as follows.
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(a) Show that if there is a solution, then there is a solution where k, l, and m are
pairwise relatively prime.

(b) Show that if there is a solution, then there is a solution of

x4 + y4 = z2(1)

where x, y, and z are pairwise relatively prime positive integers.
(c) (This is the big one!) Assume there is a solution (x; y; z) = (a; b; c) to equa-

tion (1). Then (a2; b2; c) is a primitive Pythagorean triple, so you can use
what you know about such triples. Play around with the algebra. (Another
primitive Pythagorean triple may come up.) You will hopefully end up with
another solution to equation (1) that is in some sense smaller than the solution
(x; y; z) = (a; b; c). (Make that precise.) Then the argument by contradiction
will go as follows: suppose (x; y; z) is the \smallest" solution of equation (1).
Then this method produces a smaller solution | contradiction.

(d) Hence prove a quarter of the cases of Fermat's Last Theorem (when n is
divisible by 4).

The rest of the problems all appeared on the Putnam. Don't be intimidated |
many are quite gettable!

C1. A composite (positive integer) is a product ab with a and b not necessarily
distinct integers in f2; 3; 4; : : :g. Show that every composite is expressible as xy +
xz + yz + 1, with x, y, and z positive integers.

C2. How many primes among the positive integers, written as usual in base 10,
are such that their digits are alternating 1's and 0's, beginning and ending with 1?

C3. Let k be the smallest positive integer with the following property:

There are distinct integersm1,m2,m3,m4,m5 such that the polynomial

p(x) = (x�m1)(x�m2)(x �m3)(x�m4)(x �m5)

has exactly k nonzero coeÆcients.

Find, with proof, a set of integers m1, m2, m3, m4, m5 for which this minimum k
is achieved.

C4. For any integer a, set

na = 101a� 100 � 2a:

Show that for 0 � a; b; c; d � 99, na + nb � nc + nd (mod 10100) implies fa; bg =
fc; dg.

C5. Let � consist of all polynomials in x with integer coeÆcients. For f and
g in � and m a positive integer, let f � g (mod m) mean that every coeÆcient of
f � g is an integral multiple of m. Let n and p be positive integers with p prime.
Given that f , g, h, r, and s are in � with rf+sg � 1 (mod p) and fg � h (mod p),
prove that there exist F and G in � with F � f (mod p), G � g (mod p), and
FG � h (mod pn).
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C6. Let A1 = 0 and A2 = 1. For n > 2, the number An is de�ned by concate-
nating the decimal expansions of An�1 and An�2 from left to right. For example
A3 = A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, and so forth. Determine
all n such that 11 divides An.

C7. Let p be an odd prime and let Fp denote (the �eld of) integers modulo p.

How many elements are in the set

fx2 : x 2 Fpg \ fy
2 + 1 : y 2 Fpg?

Some comments left over from last week. Last week, I asked: The latest
calculator has a button, which when pressed, replaces a number x by x+1=x. You
type in some positive number, and then start pressing the button repeatedly. What
happens? Prove it! The problem, as several people pointed out, should have had
1 + 1=x instead. Many people showed that if a limit exists, then it is the golden

mean � = 1+
p
5

2 , which is approximately 1.618. But few people could actually
prove it. Here are two approaches. (If you are reading this, ask me | it is easier
to explain in person than on the printed page.)

First of all, you could show that x + 1=x is closer to � than x was. This isn't
enough; for example, the sequence 1, 1+ 1

2 , 1+
1
2 +

1
4 , 1+

1
2 +

1
4 +

1
8 , : : : gets closer

and closer to 3, but its limit is 2. So instead, you could show that x+1=x is r times
closer to � than x was, where r < :9. Do you see why that helps? And in fact you
could replace :9 by any number less than 1. (Caution: the number you pick can't
depend on x | do you see why, using the \3" example? Also, r can't be 1 | do
you see why, using the same example?)

Second, you could use the following important fact: If x1, x2, : : : is an increasing
sequence of reals, bounded above by some numberM , then the sequence approaches
a limit. Once you know that the sequence has a limit, you're home free, by the
comments above. (This sounds like a hard theorem, but I prefer to see it as one
of the de�nitions of the real numbers. In fact, I'm betting that most of you think
you know what the real numbers are, but aren't really sure | this is the result of
brainwashing in the school system. It's useful brainwashing to be sure: most people
don't need to know what real numbers are; they just need to think they know. As
an example of this confusion, try to sort out if :999::: = 1. A better way to think of
real numbers is axiomatically. For example, �rst describe the rules of addition and
multiplication, which you can do in six axioms. Then add axioms describing the
idea of magnitude; this requires three more. Finally, the tenth and sometimes most
mysterious axiom is just the fact above: if x1, x2, : : : is an increasing sequence of
reals, bounded above by some number M , then the sequence approaches a limit.
From this you can show that the real numbers behave the way you think they do.
If you want to here more about this story, just ask me.)

To see how happy you are with these ideas, you can try the following Putnam
problem:
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C8. For any pair (x; y) of real numbers, a sequence (an(x; y))n�0 is de�ned as
follows:

a0(x; y) = x;

an+1(x; y) =
(an(x; y))

2 + y2

2
; for n � 0:

Find the area of the region f(x; y)j(an(x; y))n�0 convergesg.

This handout, and other useful things, can (soon) be found at

http://math.stanford.edu/~vakil/stanfordputnam.html
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