DEFORMATION THEORY WORKSHOP: OLSSON 7

ROUGH NOTES BY RAVI VAKIL

Last day, we stated the following theorem.
Theorem. ch : $\tilde{\mathrm{C}}^{[-1,0]}(\mathrm{T}) \rightarrow$ (Picard stacks) is an equivalence of 2-categories.
What is an equivalence of 2-categories? Answer: it is equivalent to the content of the next three lemmas.

Lemma. Let \mathcal{P} be a Picard stack. Then there exists $K \in C^{[-1,0]}(T)$ and an equivalence $\operatorname{ch}(\mathrm{K}) \xrightarrow{\sim} \mathcal{P}$.

Lemma. $K, L \in C^{[-1,0]}(T)$ and let $F: c h(K) \rightarrow c h(L)$ be a morphism of Picard stacks. Then there exists a quasiisomorphism $\mathrm{K}: \mathrm{K}^{\prime} \rightarrow \mathrm{K}$ and a morphism $\mathrm{l}: \mathrm{K}^{\prime} \rightarrow \mathrm{L}$ such that $F \cong \operatorname{ch}(l) \circ \operatorname{ch}(k)^{-1}$.

In particular, if $K \in \tilde{C}^{[-1,0]}(T)$ then any morhpism $f: \operatorname{ch}(K) \rightarrow \operatorname{ch}(L)$ is isomorphism to $\operatorname{ch}(f)$ for some $f: K \rightarrow L$. (This isn't trivial; it is an exercise dealing with injectives.)

Sketch of proof of lemma. This is mainly one enormous construction.
Choose data $\left\{\left(U, k, l_{i}, \sigma_{i}\right)\right\}_{i \in I}$ such that
a) $U_{0} \subset T$ open set
b) $k_{i} \in K^{0}\left(U_{i}\right), l_{i} \in L^{0}\left(U_{i}\right), \sigma=F\left(k_{i}\right)$.
c) the $\operatorname{map} K^{\prime 0}:=\oplus_{i \in I} \mathbb{Z}_{U_{i}} \rightarrow K^{0}$ is surjective.

$$
\mathrm{K}^{\prime-1}:=\mathrm{K}^{-1} \times \mathrm{K}^{0} \mathrm{~K}^{\prime 0}
$$

Define $\mathrm{l}: \mathrm{K}^{\prime} \rightarrow \mathrm{L}$ by:
$l^{0}: \mathrm{K}^{\prime 0} \rightarrow \mathrm{~L}^{0}, \mathbb{Z}_{\mathrm{U}_{\mathrm{i}}} \rightarrow \mathrm{L}^{0}$ given by l_{i}.

Date: Wednesday August 1, 2007.

$$
\mathrm{l}^{-1}: \mathrm{K}^{\prime-1} \rightarrow \mathrm{~L}^{-1}\left(v,\left(\mathrm{U}_{i}, \mathrm{k}_{i}, \mathrm{l}_{\mathrm{i}}, \sigma_{i}\right)\right) \in \mathrm{K}^{-1} .
$$

Maps to the element $\mathrm{t} \in \mathrm{L}^{-1}$ such that

We now have to check that we get an isomorphism with $\left.\sigma: \mathrm{F} \longrightarrow \operatorname{ch}^{(\mathrm{l}}\right) \circ \mathrm{ch}(\mathrm{k})^{-1}$. There are a million details to check.

Now there is a third lemma.
Lemma. K_{1} and K_{2} are in $\tilde{C}^{[-1,0]}(T)$. For two morphisms of complexes $f_{1}, f_{2}: K_{1} \rightarrow K_{2}$ with associated morphisms $\mathrm{F}_{1}, \mathrm{~F}_{2}: \operatorname{ch}\left(\mathrm{K}_{1}\right) \rightarrow \operatorname{ch}\left(\mathrm{K}_{2}\right)$ and any isomorphism $\mathrm{H}: \mathrm{F}_{1} \rightarrow \mathrm{~F}_{2}$, there exists a unique homotopy $\mathrm{h}: \mathrm{K}_{1}^{0} \rightarrow \mathrm{~K}_{2}^{-1}$ such that $\mathrm{H}=\mathrm{ch}(\mathrm{h})$.

Let me just give you the idea. Remember that we proved the lemma that if the left guys are injective, then there is no stackification going on, so $\tilde{\mathcal{C}}=\mathcal{C}$.

Here's the idea. If $k \in K_{1}^{0}$ is a section.

$$
\mathrm{F}_{1}(\mathrm{k}) \xrightarrow{\mathrm{H}} \mathrm{~F}_{2}(\mathrm{k})
$$

is the same thing as a section $h(k) \in K_{2}^{-1}$ such that $d h(k)=f_{2}(k)-f_{1}(k)$.
Now all of this is supposed to lead up to a motivation for th cotangent complex.
Preliminary definition. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{S}$ be a morphism of schemes. The truncated tangent complex, denoted $\tau_{\leq 1} \mathbb{T}_{\mathrm{X} / \mathrm{S}}[1] \in \tilde{\mathcal{C}}^{[-1,0]}(|\mathrm{X}|)$ is the complex with

$$
\operatorname{ch}\left(\tau_{\leq 1} \mathbb{T}_{X / S}[1]\right) \xrightarrow{\sim} \underline{\operatorname{Exal}}_{s}\left(X, \mathcal{O}_{X}\right)
$$

Problems with this:

a) This doesn't see \mathcal{O}_{x}-module structure.
b) This is not the full complex. This isn't really a problem.

So what is this complex? Let's try to figure it out.
Proposition. Let $\mathfrak{j}: X \hookrightarrow S$ be a closed immersion defined by an ideal I. Then $\tau \leq 1 \mathbb{T}[1]$ is quasiisomorphic to $\mathcal{N}_{\mathrm{X} / \mathrm{S}}[1]$ where $\mathcal{N}_{\mathrm{S} / \mathrm{S}}:=\underline{\operatorname{Hom}}\left(\mathrm{j}^{*} \mathrm{I}, \mathcal{O}_{\mathrm{X}}\right)$.

Proof. Translate $X \longrightarrow X^{\prime}$ this into more sheaf-theoretic language:

Proposition. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{S}$ be a smooth morphism. Then $\tau_{\leq 1} \mathbb{T}_{\mathrm{X} / \mathrm{S}}[1] \cong \mathrm{T}_{\mathrm{X} / \mathrm{S}}[1]=\left(\mathrm{T}_{\mathrm{X} / \mathrm{S}} \rightarrow\right.$ $0)$.

Proof. We already know that $\mathcal{H}^{0}\left(\tau_{\leq 1} \mathbb{T}_{\mathrm{X} / \mathrm{S}}[1]\right)=0$. Hence this complex is quasiisomorphic to $\mathcal{H}^{1}\left(\tau_{\leq 1} \mathbb{T}_{X / S}[1]\right)=T_{X / S}$.

Proposition. Suppose we are given a commutative diagram

where g is smooth and j is an immersion. Then

$$
\tau_{\leq 1} \mathbb{T}_{\mathrm{X} / \mathrm{S}}[1] \cong\left(j^{*} T_{\mathrm{P} / \mathrm{S}} \rightarrow \mathcal{N}_{\mathrm{X} / \mathrm{P}}\right) .
$$

If I is the ideal of X in P, then this is dual to $I / I^{2} \xrightarrow{d} j^{*} \Omega_{P / S}^{1}$.
Proof. $z: \mathrm{j}^{*} \mathrm{I} \rightarrow \mathcal{O}_{\mathrm{X}}$ (section of $\mathcal{N}_{\mathrm{X} / \mathrm{P}}$), I have to produce for you an extension of x .
Consider this diagram

Construct the pushout

which gives us

We then get a noncommutative (!) diagram:

where the composition of the two vertical maps is called f^{\prime}.
Then for $z, z^{\prime} \in \mathcal{N}_{\mathrm{X} / \mathrm{P}}$. Then we get $\left(\mathrm{f} \circ \mathrm{h}-\mathrm{f}^{\prime}\right) \in \mathfrak{j}^{*} \mathrm{~T}_{\mathrm{P} / \mathrm{s}}$.
The upshot is that there is a fully faithful functor

$$
\operatorname{pch}\left(j^{*} \mathrm{~T}_{\mathrm{P} / \mathrm{S}} \rightarrow \mathcal{N}_{\mathrm{X} / \mathrm{P}}\right) \rightarrow \underline{\operatorname{Exal}}_{\mathrm{S}}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right)
$$

Claim. The induced morphism of stacks

$$
\operatorname{ch}\left(\mathfrak{j}^{*} \mathrm{~T}_{\mathrm{P} / \mathrm{S}} \rightarrow \mathcal{N}_{\mathrm{X} / \mathrm{P}}\right) \rightarrow \operatorname{Exal}_{\mathrm{S}}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right)
$$

is an equivalence.
(The proof was sketched in words.)
Now we have some problems.
a) choice of factorization of f (not a big deal - you can show you always get a quasiisomorphic result)
b) factorization doesn't always exist (see Ravi's webpage for examples).

Replacement for factorization.

Suppose we have $f: X \rightarrow S$. Then we have a forgetful functor F from (sheaves of $\mathrm{f}^{-1}\left(\mathcal{O}_{s}\right)$-algebras) to (sheaves of sets). Then F has a left-adjoint $\Omega \mapsto \mathrm{f}^{*} \mathcal{O}_{\times}\{\Omega\}$.

What's the idea? Well, if $X=\operatorname{Spec} A$ and $S=\operatorname{Spec} B$. Well, we just choose a bunch of elements of A such that

Do the analogous thing for sheaves.
Definition. The truncated tangent complex of \mathcal{O}_{x}-modules of f is the complex

$$
\underline{\operatorname{Hom}}\left(\Omega_{\mathrm{f}^{-1} \mathcal{O}_{S}\left\{\mathrm{~F}\left(\mathcal{O}_{X}\right)\right\} / \mathrm{f}^{-1} \mathcal{O}_{S}}^{1}, \mathcal{O}_{\mathrm{X}}\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathrm{I} / \mathrm{I}^{2}, \mathcal{O}_{X}\right)
$$

E-mail address: vakil@math.stanford.edu

