DEFORMATION THEORY WORKSHOP: OLSSON 6

ROUGH NOTES BY RAVI VAKIL

Recall that we are talking about Picard stacks. I'll remind you of the most salient poitns. T is a topological space. We have $(\mathcal{P}, +, \sigma, \tau)$. We don't have commutativity and associtivity of + "on the nose", and σ and τ keep track of the isomorphisms that used to be equalities for usual addition.

Today, we'll consider a two-term complex $K^{\bullet} \in C^{[-1,0]}(T)$, where that superscript [-1,0] corresponds to the fact that our two terms are considered to be in gradings -1 and 0, i.e. our two-term complex is $K^{-1} \to K^0$.

We define $pch(K^{\bullet})$ ("pre-stack = pre-champs") as follows.

 $pch(K^{\bullet})_{U}$ is a category. Objects are $x \in K^{0}(U)$, and morphisms $x \to y$ is an element $z \in K^{-1}(U)$ such that dz = y - x.

You can "stackify" this to get $ch(K^{\bullet})$.

If \mathcal{P} is a Picard stack, then HOM(ch(K•), \mathcal{P}) \rightarrow HOM(pch(K•), \mathcal{P}) is an isomorphism. (HOM refers to the *category* of homomorphisms.)

Remark. $pch(K^{\bullet}) \rightarrow ch(K^{\bullet})$ is fully faithful: stackifying just introduces new objects and morphisms.

Remarks. i) $f: K_1^{\bullet} \to K_2^{\bullet}$ induces a mopphism of Picard stacks $ch(f): ch(K_1) \to ch(K_2)$.

ii) Suppose $f_1, f_2 : K_1^{\bullet} \to K_2^{\bullet}$ and a homotopy h between f_1 and f_2 .

 $h: K_1^0 \to K_2^{-1}$ such that for all $x \in K^0$, $f_1(x) - f_2(x) = dh(x)$ and $f_1^{-1} - f_2^{-1} = hd$.

Then we get an isomorphism of morphisms $ch(h) : ch(f_1) \to ch(f_2)$, i.e. for all $x \in pch(K_1)$, we get an isomorphism $ch(f_1)(x) \to ch(f_2)(x)$.

 $x \in K_1^0$, there exists $z \in K_2^{-1}$ such that $dz = f_2(x) - f_1(x)$. (That needs to be patched slightly.)

Lemma. If K^{-1} is flasque, then pch(K^{\bullet}) is a stack (i.e. it doesn't need to be stackified).

Proof. π : pch(K•) \rightarrow ch(K•).

Let $U \subset T$ open and $x \in ch(K^{\bullet})_{U}$.

Date: Tuesday July 31, 2007.

Let \mathcal{L} be the sheaf on U which to any open V associates the set of pairs $(y, , l), y \in K^{0}(V)$, and

$$l: \pi(y) \to x|_V$$

in $ch(K^{\bullet})_{V}$.

Claim. \mathcal{L} is a K⁻¹|_U-torsor.

Remark. $(y', l') \in \mathcal{L}$. $\pi(y) \xrightarrow{l} x|_V \xrightarrow{l^{-1}} \pi(y')$. Now my functor is fully faithful, so this comes from a unique element in my prestack, so this gives some element $z \in K^{-1}$.

 \mathcal{L} is classified by an element $[\mathcal{L}] \in H^1(U, K^{-1}|_U) = 0$. Question: why does \mathcal{L} locally have a section?

Observations. a) The sheaf associated to the presheaf

 $U \mapsto$ the set of isomorphism classes of $ch(K^{\bullet})_{U}$

The answer is $\mathcal{H}^{0}(\mathsf{K}^{\bullet}) := \mathsf{K}^{0}/\operatorname{im}(\mathsf{K}^{-1} \to \mathsf{K}^{0}).$

b) What is the automorphism group of an object $x \in ch(K^{\bullet})_{U}$? Answer: $\mathcal{H}^{-1}(K^{\bullet}) = ker(K^{-1} \operatorname{rightarrow} K^{0})$.

Idea: Consider the pre-stack. $x \in K^{0}(U)$, $Aut(x) = \{z \in K^{-1}(U) : dz = x - x = 0\}$.

Corollary. If $f : K_1^{\bullet} \to K_2^{\bullet}$ is a quasi-isomorphism, then $ch(f) : ch(K_1^{\bullet}) \to ch(K_2^{\bullet})$ is an equivalence of categories.

There is something to check here of course.

Let $\tilde{C}^{[-1,0]}(T) \subset C^{[-1,0]}(T)$ be the full subcateogry of complexes $K^{-1} \to K^0$ with K^{-1} injective. (This is nontraditional notation.)

Theorem. This ch constructions induces an equivalence of 2-categories $\tilde{C}^{[-1,0]}(T) \rightarrow ($ Picard stacks over T).

You certainly shouldn't know what an equivalence of 2-categories is, but in the course of the proof, when we say what we need to prove, it will become clear.

Lemma. Suppose $f : \mathcal{X} \to \mathcal{Y}$ is a morphism of stacks, and $\overline{f} : X \to Y$ is the corresponding map on sheaves of isomorphism classes. Assume \overline{f} is an equivalence and for all $U \subset T$ and $x \in \mathcal{X}_U$ the map of sheaves $\operatorname{Aut}_{\mathcal{X}}(x) \to \operatorname{Aut}_{\mathcal{Y}}(f(x))$ is an isomorphism then f is an isomorphism.

Sketch of proof (that you should feel free to ignore). Given $x, y \in X_{U}$ we want

 $\underline{\operatorname{Isom}}_{\mathcal{X}}(x,y) \to \underline{\operatorname{Isom}}_{\mathcal{V}}(f(x),f(y))$

to be an isomorphism. We may as well show that the map on sheaves is an isomorphism. So we'll need to show injectivity and surjectivity. First, injectivity: given α , β : $x \to y$. $f(\alpha) = f(\beta)$, $f(x) \to f(y)$. $\alpha^{-1} \circ \beta \in \ker(\operatorname{Aut}_{\mathcal{X}}(x) \to \operatorname{Aut}_{\mathcal{Y}}(f(x)))$. This implies $\alpha = \beta$.

Next we deal with surjectivity. This is a bit trickier, and we'll use injectivity. $\sigma : f(x) \rightarrow f(y)$. By injectivity, it is enough to show that σ is in the image locally. Now x, y map to the same thing in X. So locally there exists $\tau : x \rightarrow y$, $\sigma^{-1} \circ f(\tau) : f(x) \rightarrow f(x)$.

Essential surjectivity: $y \in \mathcal{Y}_T$. There exists a covering $T = \bigcup_i \mathcal{U}_i$ and (x_i, l_i) with $x_i \in \mathcal{X}_{U_i}$, $l_i : f(x_i) \xrightarrow{\sim} y|_{U_i}$ in \mathcal{Y}_{U_i} . Then on U_{ij} , there exists a *unique* isomorphism $\sigma_{ij} : x_i|_{U_{ij}} \to x_j|_{U_{ij}}$ such that

This ends the sketch of the proof of the lemma.

Let's now try to prove that theorem about this equivalence of 2-categories.

But first, a philosophical remark: why am I doing all this? Most of our deformation problems come to us as Picard stacks. That means that there is some two-term complex around. That's the idea.

Lemma. Suppose \mathcal{P} is a Picard stack over T, and $\{U_i\}$ is a collection of open subsets, $k_i \in \mathcal{P}(U_i)$ for all i. Let me define $K = \bigoplus_i \mathbb{Z}_{U_i}$. (Recall that \mathbb{Z}_{U_i} is the extension by 0 of the constant sheaf on U_i , i.e. $j_!\mathbb{Z}$ where $j : U \hookrightarrow T$.) Then there is a morphism $F : ch(0 \to K) \to \mathcal{P}$ and isomorphisms $\sigma_i : F(1 \in \mathbb{Z}_{U_i}(U_i)) \to k_i$ and any choice is unique up to unique isomorphism.

Example. $\operatorname{Pic}(X) = \operatorname{ch}(\mathcal{O}_X^{\times} \to 0).$

Proof. Choose data a) $\{U_i \subset T\}_{i \in I}$, b) for all i, $k_i \in \mathcal{P}(U_i)$, $K^0 = \bigoplus_i \mathbb{Z}_{U_i}$ such that for all $V \subset$, $k \in \mathcal{P}_V$, there exists a covering $V = \bigcup V_j$ such that $k|_{V_j} \cong k_i$ some i wit $V_j \subset U_i$.

$$F: ch(0 \rightarrow K^0) \rightarrow \mathcal{P}.$$

$$\mathsf{K}^{-1}(\mathsf{V}) = \{(\mathsf{x}, \mathfrak{l}), \mathsf{x} \in \mathsf{K}^{0}(\mathsf{V}), \mathfrak{l} : \mathsf{F}(\mathfrak{0}) \xrightarrow{\sim} \mathsf{F}(\mathsf{x}) \}, \mathsf{K}^{-1} \to \mathsf{K}^{0} \text{ given by } (\mathsf{x}, \mathfrak{l}) \mapsto \mathsf{x}.$$

Let's figure out addition.

The rest I'll leave for you to think through.

E-mail address: vakil@math.stanford.edu