
DEFORMATION THEORY WORKSHOP: OLSSON 2

ROUGH NOTES BY RAVI VAKIL

Without further ado, let’s get back to where we are. Suppose we have A → R, and the
category A-Alg/R, the category of diagrams

C
f // R

A

OO ??�������

and we have a functor F : A-Alg/R → Set a functor, and if for all I, J ∈ ModR the
natural map

F(R[I ⊗ J]) → F(R[I]) × F(R[J])

then we get a tagent space TF. (In fact we got a little bit mroe: for all I, F(R[I]) is an
R-module, and TF is by definition F(R[ε]).)

Let me remind you how we get the R-module structure. Sum is given by

+ : F(R[ε])× F(R[ε]) //

∼

**VVVVVVVVVVVVVVVVV
F(R[ε])

F left(R[ε1, ε2]/(ε2
1, ε

2
2, ε1ε2)

εi 7→ε
55jjjjjjjjjjjjjjjj

and multiplication is given by
×f : F(R[ε]) → F(R[ε])

induced by R[ε] → R[ε] given by a + bε 7→ a + fbε. That’s a ring homomorphism.

Problem 1. Suppose R is a ring, and X
g // Spec R is separated and smooth. (Separat-

edness isn’t necessary, but the assumption will simplify the exposition.)

Consider the function DefX : Alg/R → Set. (Really we should write Z-Alg/R.)

DefX( C
f // R ) is the set of isomorphism classes of Cartesian diagrams

X

g

��

// XC

gC smooth
��

Spec R // Spec C

We will be interested in the case when C → R is a nilpotent closed immersion (also known
as a nilpotent thickening).
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We now have to say what we mean by “isomorphism classes”. So we should say what
a morphism of such diagrams is (i.e. what the category of such diagrams is). Then we’ll
know what isomorphisms are. A morphism of diagrams (from a diagram with X ′

C in the
upper right corner to the diagram with XC in the upper right corner is a diagram an arrow

(1) X ′
C
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X
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g

��

// XC

gC smooth
��

Spec R // Spec C

(Really I shold draw a commuting cube here.)

Remark. If C = R[I] for some R-module I, then any morphism h as in (1) is an isomor-
phism. Here’s why. In this case, X and XC have the same underlying topological space.
We have an exact sequence of sheaves on this topological space

(2) 0 // I ⊗R OX
// OXC

//

h∗

��

OX
// 0

0 // I ⊗R OX
// OX ′

C
// OX

// 0

Then h∗ must be an isomorphism. We’ve only used flatness.

Proposition. For all I, J ∈ ModR, DefX(R[I ⊕ J]) → DefX(R[I]) × DefX(R[J]) is an isomor-
phism.

Brian Osserman will prove this tomorrow (see Osserman 3), so we will take it as given.

So how do we compute TDef X, or more generally the R-module DefX(R[I])?

There’s a fancy version, and a hands-on version. I’ll present the hands-on version now,
and we may discuss the fancy version next week.

We begin with a very special case, when X is affine (and smooth).

We recall some facts, which are related to the background lectures on smoothness.

(1) DefX(R[I]) consists of one element.

(2) For any deformation (well, there’s only one...)
X

��

�
� // X ′

��
Spec R // Spec R[I]

the set of maps h : X ′
→ X ′ as in (1) is in canonical bijection with H0(X, TX ⊗ I).

Here is some discussion as to why these are true.
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In fact X[I] → R[I] is a smooth lifting (as smoothness is preserved by base change).
Here’s why there is only one. If you have another X ′, then by the formal criterion for
smoothness, we get maps X ′

→ X[I] and X[I] → X ′. An argument like at (2) shows that
they are isomorphic.

For the second fact, recall that

T0

j

��

f0 // Y

��
T //

f

??�
�

�
�

S

where j is a closed immersion by a square zero ideal J, then the set of arrows f filling in
the diagram is a pseudo-torsor under Hom(f∗0Ω

1
Y/S, J). (Note: we are considering J as a

sheaf on T0, even though it is a sheaf on T1. We can do this, as J is square 0.)

(Definition of pseudo-torsor: if the set is non-empty, then there is a group action that
acts singly transitively on the set. In other words, the set is empty or a torsor.)

This recollection is possibly an exercise in Hartshorne, and depending on your defini-
tion, this is almost the definiton of Ω1. It may have been in the background exercises.

X � r

$$II
III

III
III

�
� j // X ′

���
�
�

X

��
Spec R[I]

We now understand our special case.

For a general X → Spec R (i.e. not necessarily affine), this also shows that (X[I] →

Spec R[I]) ∈ DefX(R[I]).

Choose a covering X = ∪iUi with each Ui affine. Let U = {Ui}.

For each i indexing our cover fix a smooth lifting U ′
i → Spec R[I]. (There is of course

only one up to isomorphism.)

We want to patch these together to get a lifting of X. This data is X ↪→ X ′, which is the
choice of a map

OX ′

I⊗ROX// OX

on |X|. We have such liftings over each Ui (call them U ′
i).
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On Uij = Ui ∩ Uj, we get a diagram

U ′
i|Uij

∃

���
�
�
�
�
�
�

Uij

-




<<yyyyyyyy

� q

""EE
EE

EE
EE

U ′
j |Uij

We thus get two elements of DefUij
(R[I]). For all i, j, fix an isomorphism σij : U ′

i|Uij
→

U ′
j |Uij

.

Note: any other choice of σij is given by composing with an automorphsm of
U ′

i|Uij
↔ H0(Uij, TX ⊗ I).

There is an obstruction for the σi’s to glue to an isomorphism X ′
∼ // X[I] . Define xij

as the composition

xij : Uij[I]
σ−1

j // U ′
ij

σi // Uij[I]

Thus xij ∈ H0(Uij, TX ⊗ I).

Now we need a little lemma.

Lemma. xik = xij + xjk in H0(Uijk, TX ⊗ I).

For this you, you have to just unwind the definition. Here’s a sketch of a proof of the
lemma.

Uijk[I]
σ−1

k // U ′
ijk

σj // Uijk[I]
σ−1

j // U ′
ijk

σi // Uijk[I]

commutes, and the map from the first term to the third is xjk, and the map from the third
to the fifth is xij, and finally the map from first to the last is xik. The commutativity is
pretty clear; but you should check that composition corresponds to addition.

Corollary. The {xij} define a Cech cocycle

[X ′] ∈ H∨1
(X, TX ⊗ I) = H1(X, TX ⊗ I)

(At this point we need separatedness to know that Cech cohomology can be computed
by this open cover.)

Theorem. The map
DefX(R[I]) → H1(X, TX ⊗ I)

given by X ′ 7→ [X ′] is an R-module isomorphism.
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This is sticky! The fact that the R-module structure is preserved is sticky too.
E-mail address: vakil@math.stanford.edu
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