DEFORMATION THEORY WORKSHOP: OLSSON 2

ROUGH NOTES BY RAVI VAKIL

Without further ado, let's get back to where we are. Suppose we have $A \rightarrow R$, and the category $A-A l g / R$, the category of diagrams

and we have a functor $F: A-A l g / R \rightarrow$ Set a functor, and if for all $I, J \in \operatorname{Mod}_{R}$ the natural map

$$
\mathrm{F}(\mathrm{R}[\mathrm{I} \otimes \mathrm{~J}]) \rightarrow \mathrm{F}(\mathrm{R}[\mathrm{I}]) \times \mathrm{F}(\mathrm{R}[\mathrm{~J}])
$$

then we get a tagent space T_{F}. (In fact we got a little bit mroe: for all $I, F(R[I])$ is an R-module, and T_{F} is by definition $F(R[\epsilon])$.)

Let me remind you how we get the R-module structure. Sum is given by

and multiplication is given by

$$
\times f: F(R[\epsilon]) \rightarrow F(R[\epsilon])
$$

induced by $R[\epsilon] \rightarrow R[\epsilon]$ given by $a+b \epsilon \mapsto a+f b \epsilon$. That's a ring homomorphism.
Problem 1. Suppose R is a ring, and $X \xrightarrow{\text { g }} \operatorname{Spec} R$ is separated and smooth. (Separatedness isn't necessary, but the assumption will simplify the exposition.)

Consider the function $\operatorname{Def}_{x}: \mathbf{A l g} / R \rightarrow$ Set. (Really we should write \mathbb{Z} - Alg / R.)
$\operatorname{Def}_{X}(C \xrightarrow{f} R)$ is the set of isomorphism classes of Cartesian diagrams

We will be interested in the case when $C \rightarrow R$ is a nilpotent closed immersion (also known as a nilpotent thickening).

[^0]We now have to say what we mean by "isomorphism classes". So we should say what a morphism of such diagrams is (i.e. what the category of such diagrams is). Then we'll know what isomorphisms are. A morphism of diagrams (from a diagram with X_{C}^{\prime} in the upper right corner to the diagram with X_{C} in the upper right corner is a diagram an arrow

(Really I shold draw a commuting cube here.)
Remark. If $C=R[I]$ for some R-module I, then any morphism h as in (1) is an isomorphism. Here's why. In this case, X and X_{C} have the same underlying topological space. We have an exact sequence of sheaves on this topological space

Then h^{*} must be an isomorphism. We've only used flatness.
Proposition. For all $I, J \in \operatorname{Mod}_{R}, \operatorname{Def}_{X}(R[I \oplus J]) \rightarrow \operatorname{Def}_{X}(R[I]) \times \operatorname{Def}_{X}(R[J])$ is an isomorphism.

Brian Osserman will prove this tomorrow (see Osserman 3), so we will take it as given.
So how do we compute $T_{\text {Def } X}$, or more generally the R-module $\operatorname{Def}_{x}(R[I])$?
There's a fancy version, and a hands-on version. I'll present the hands-on version now, and we may discuss the fancy version next week.

We begin with a very special case, when X is affine (and smooth).
We recall some facts, which are related to the background lectures on smoothness.
(1) $\operatorname{Def}_{X}(R[I])$ consists of one element.
(2) For any deformation (well, there's only one...)

the set of maps $h: X^{\prime} \rightarrow X^{\prime}$ as in (1) is in canonical bijection with $H^{0}\left(X, T_{X} \otimes I\right)$.
Here is some discussion as to why these are true.

In fact $\mathrm{X}[\mathrm{I}] \rightarrow \mathrm{R}[\mathrm{I}]$ is a smooth lifting (as smoothness is preserved by base change). Here's why there is only one. If you have another X^{\prime}, then by the formal criterion for smoothness, we get maps $X^{\prime} \rightarrow X[I]$ and $X[I] \rightarrow X^{\prime}$. An argument like at (2) shows that they are isomorphic.

For the second fact, recall that

where j is a closed immersion by a square zero ideal J, then the set of arrows f filling in the diagram is a pseudo-torsor under $\operatorname{Hom}\left(f_{0}^{*} \Omega_{Y / S}^{1}, J\right)$. (Note: we are considering J as a sheaf on T_{0}, even though it is a sheaf on T_{1}. We can do this, as J is square 0 .)
(Definition of pseudo-torsor: if the set is non-empty, then there is a group action that acts singly transitively on the set. In other words, the set is empty or a torsor.)

This recollection is possibly an exercise in Hartshorne, and depending on your definition, this is almost the definiton of Ω^{1}. It may have been in the background exercises.

We now understand our special case.
For a general $X \rightarrow$ Spec R (i.e. not necessarily affine), this also shows that (X[I] \rightarrow $\operatorname{Spec} R[I]) \in \operatorname{Def}_{X}(R[I])$.

Choose a covering $X=\cup_{i} U_{i}$ with each U_{i} affine. Let $\mathcal{U}=\left\{U_{i}\right\}$.
For each i indexing our cover fix a smooth lifting $U_{i}^{\prime} \rightarrow$ Spec $R[I]$. (There is of course only one up to isomorphism.)

We want to patch these together to get a lifting of X. This data is $X \hookrightarrow X^{\prime}$, which is the choice of a map

$$
\mathcal{O}_{\mathrm{X}^{\prime}} \xrightarrow{\mathrm{I} \otimes_{\mathrm{R}} \mathcal{O}_{\mathrm{X}}} \mathcal{O}_{\mathrm{X}}
$$

on $|X|$. We have such liftings over each $U_{i}\left(\right.$ call them $\left.U_{i}^{\prime}\right)$.

On $\mathrm{U}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{i}} \cap \mathrm{U}_{\mathrm{j}}$, we get a diagram

We thus get two elements of $\operatorname{Def}_{u_{i j}}(R[I])$. For all i, j, fix an isomorphism $\sigma_{i j}: U_{i}^{\prime} \mid u_{i j} \rightarrow$ $u_{j}^{\prime} \mid u_{i j}$.

Note: any other choice of $\sigma_{i j}$ is given by composing with an automorphsm of

$$
\mathrm{u}_{\mathrm{i}}^{\prime} \mid \mathrm{u}_{\mathrm{ij}} \leftrightarrow \mathrm{H}^{0}\left(\mathrm{U}_{\mathrm{ij}}, \mathrm{~T}_{\mathrm{X}} \otimes \mathrm{I}\right) .
$$

There is an obstruction for the σ_{i} 's to glue to an isomorphism $X^{\prime} \xrightarrow{\sim} X[I]$. Define $x_{i j}$ as the composition

$$
\mathrm{x}_{\mathrm{ij}}: \mathrm{u}_{\mathrm{ij}}\left[\mathrm{I} \xrightarrow{\sigma_{j}^{-1}} \mathrm{u}_{\mathrm{ij}}^{\prime} \xrightarrow{\sigma_{i}} \mathrm{u}_{\mathrm{ij}}[I]\right.
$$

Thus $x_{i j} \in H^{0}\left(U_{i j}, T_{\mathrm{x}} \otimes I\right)$.
Now we need a little lemma.
Lemma. $\mathrm{x}_{\mathrm{ik}}=\mathrm{x}_{\mathrm{ij}}+\mathrm{x}_{\mathrm{jk}}$ in $\mathrm{H}^{0}\left(\mathrm{U}_{\mathrm{ijk}}, \mathrm{T}_{\mathrm{x}} \otimes \mathrm{I}\right)$.
For this you, you have to just unwind the definition. Here's a sketch of a proof of the lemma.

$$
\mathrm{u}_{i j \mathrm{j} k}[I] \xrightarrow{\sigma_{\mathrm{k}}^{-1}} \mathrm{u}_{i j \mathrm{k}}^{\prime} \xrightarrow{\sigma_{j}} \mathrm{u}_{i \mathrm{ijk}}[I] \xrightarrow{\sigma_{j}^{-1}} \mathrm{u}_{\mathrm{ijk}}^{\prime} \xrightarrow{\sigma_{i}} \mathrm{u}_{i \mathrm{ijk}}[I]
$$

commutes, and the map from the first term to the third is $x_{j k}$, and the map from the third to the fifth is $x_{i j}$, and finally the map from first to the last is $x_{i k}$. The commutativity is pretty clear; but you should check that composition corresponds to addition.

Corollary. The $\left\{\mathrm{X}_{\mathrm{ij}}\right\}$ define a Cech cocycle

$$
\left[\mathrm{X}^{\prime}\right] \in \mathrm{H}^{\vee 1}\left(\mathrm{X}, \mathrm{~T}_{\mathrm{X}} \otimes \mathrm{I}\right)=\mathrm{H}^{1}\left(\mathrm{X}, \mathrm{~T}_{\mathrm{X}} \otimes \mathrm{I}\right)
$$

(At this point we need separatedness to know that Cech cohomology can be computed by this open cover.)

Theorem. The map

$$
\operatorname{Def}_{\mathrm{X}}(\mathrm{R}[\mathrm{I}]) \rightarrow \mathrm{H}^{1}\left(\mathrm{X}, \mathrm{~T}_{\mathrm{X}} \otimes \mathrm{I}\right)
$$

given by $\mathrm{X}^{\prime} \mapsto\left[\mathrm{X}^{\prime}\right]$ is an R -module isomorphism.

This is sticky! The fact that the R-module structure is preserved is sticky too.
E-mail address: vaki1@math.stanford.edu

[^0]: Date: July 24, 2007.

