DEFORMATION THEORY WORKSHOP: OLSSON 1

ROUGH NOTES BY RAVI VAKIL

Here's the plan

Week 1:
(1) basic definition
(2) examples
(3) obstruction spaces
(4) examples

Week 2
(5) Picard categories
(6) Picard stacks
(7) truncated cotangent complex (rigorous to here)
(8) overview of the cotangent complex

Today we'll talk about tangent spaces, except from a functorial point of view.

1. Motivation

Suppose k is an algebraically closed field, and X / k is a scheme of finite type. Fix a closed point $x \in X(k)$. Then the tangent space of X at x is the dual of the k-vector space $\mathfrak{m} / \mathfrak{m}^{2}$ where $\mathfrak{m} \subset \mathcal{O}_{X, x}$ is the maximal ideal. That's the definition you'll find in Hartshorne for example.

But the X that will turn up for us will be a moduli space, and will be given to us as a functor. Then this definition is not so easy to use when you only have the functor.

But we can instead get a hold of the tangent space quite nicely in terms of the functor. To this end, let's introduce dual numbers.

2. DUAL NUMBERS

Let R be a ring, and I an R-module. Define $\mathrm{R}[\mathrm{I}]$, the ring of dual numbers, as follows. (Really, there should be some reference to R and I in the terminology, but they will be clear from the context.)

[^0]As a group: R / I is $R \oplus I$, and the multiplication rule (the algebra structure) is given by

$$
(r, i)\left(r^{\prime}, i^{\prime}\right)=\left(r r^{\prime}, r^{\prime} i+r i^{\prime}\right)
$$

I don't just get this ring, I get this diagram:

$$
(r, i) \longmapsto r
$$

Remark 1. $\mathrm{R}[\mathrm{I}]$ is functorial in $\mathrm{I}: \mathrm{g}: \mathrm{I} \rightarrow \mathrm{J}$ induces a map

Remark 2. $I=R$, write $R[\epsilon]$ for $R[I]$. (This really should be written $R[\epsilon] /\left(\epsilon^{2}\right)$.
Remark 3. If X is a topological space, \mathcal{O} a shaef of rings on X , and I is an \mathcal{O}-module, then I can define $\mathcal{O}[\mathrm{I}]$ in a similar way.

In particular, if X is a scheme, and I is a quasicoherent \mathcal{O}_{X}-module, then we get a ringed space $X[I]=\left(|X|, \mathcal{O}_{X}[I]\right)$.

Exercise. Show that $X[I]$ is a scheme, and we have a closed immersion $X \hookrightarrow X[I]$ and a projection $X[I] \rightarrow X$ composing to give the identity on X :

3. Relation with derivations

Suppose $A \rightarrow R$ is a ring homomorphism, and M is an R-module. Then an A-derivation from R to M is an A-linear map $\partial: R \rightarrow M$ such that $\partial(x y)=x \partial(y)+y \partial(x)$. This gives an R-module structure to $\operatorname{Der}(R, M)$, the set of all derivations.

So how should you think of it?

Define $A-A l g / R$ as the categorty, where the objects are pairs (C, f) (here C is an A algebra, and $f: C \rightarrow R$ is a map of A-algebras), and the morphisms are $g: C \rightarrow C^{\prime}$ that is compatible with projections to R, i.e. such that

commutes.
Lemma. For any A-derivation $\partial: R \rightarrow I$, the induced map $R \rightarrow R[I]$ given by $x \mapsto$ $x+\partial(x)$ (by which we really mean $(x, \partial(x))$) is a morphism in A-Alg/R and the induced map

$$
\operatorname{Der}_{A}(R, I) \rightarrow \operatorname{Hom}_{\mathcal{A}-\mathrm{Alg} / \mathrm{R}}(\mathrm{R}, \mathrm{R}[\mathrm{I}])
$$

is bijective.
We're taking something simple and making it complicated, but we're going to work a lot with this category, so we should get comfortable with how to manipulate it.

We remark that R is viewed as an $A-A l g / R$ by

Let's prove the lemma.
Proof. $R \xrightarrow{s} R[I]$ in A-Alg/R. Then this map must look like $x \mapsto(x, \partial(x))$ for some $\partial(x)$.
This must be a map of A-algebras, hence $\partial(x)=0$ if x is in the image of A.
It must also be compatible with multiplication. This is the same as saying that given $x, y \in R$, then their product is sent to

$$
(x y, \partial(x y))=(x, \partial(x))(y, \partial(y))=(x y, y \partial(x)+x \partial(y))
$$

The necessary compatibility is $\partial(x y)=y \partial(x)+x \partial(y)$ which is exactly the same as saying that δ is a derivation.

There is a special case: as you know from Hartshorne, you have a universal derivation.
Remark. Suppose we have an object $(f: C \rightarrow R) \in A-A l g / R$ such that $I=\operatorname{ker}(f)$ is square-zero, and that f is surjective. Then any section s:R $\rightarrow C$ over A (an A-algebra section), i.e. a morphism from R to C in this category, induces an isomorphism in this
category

This is from

As a special case, $C=R \otimes_{A} R / J^{\frac{f}{2}} \longrightarrow R$ where $J=\operatorname{ker}\left(R \otimes_{A} R \rightarrow R\right.$. $I=J / J^{2}$. Define $s: R \rightarrow C$ by $x \mapsto x \otimes 1$. Then s induces an isomorphism

$$
\mathrm{R} \otimes_{\mathrm{A}} \mathrm{R} / \mathrm{J}^{2} \cong \mathrm{R}\left[\Omega_{\mathrm{R} / \mathrm{A}}^{1}\right] .
$$

Thus the following map is a canonical bijection

$$
\operatorname{Der}_{A}\left(R, \Omega_{R / A}^{1}\right) \longrightarrow \text { sections of the diagonal mapR } \otimes_{A} R / J^{2} \rightarrow R
$$

Question: What is the universal derivation $R \xrightarrow{d} \Omega_{R / A}^{1}$?
Possible answers:
a) $x \mapsto 1 \otimes x-x \otimes 1$,
b) $x \mapsto x \otimes 1$.
c) $x \mapsto 1 \otimes x$.

Which (if any) is it? It's not obvious! So let's work it out.
According to Hartshorne, $\Omega_{\mathrm{R} / \mathrm{A}}^{1}=\mathrm{J} / \mathrm{J}^{2}$, and

$$
\begin{aligned}
\mathrm{d}: \quad & \mathrm{R} \longrightarrow \Omega_{\mathrm{R} / \mathrm{A}}^{1}=\mathrm{J} / \mathrm{J}^{2} \\
& \mathrm{x} \longmapsto \mathrm{x} \otimes 1-1 \otimes \mathrm{x}
\end{aligned}
$$

Now let's translate this into our language of dual numbers.

Then $1 \otimes x=x \otimes 1+(1 \otimes x-x \otimes 1)$.

The answer is (c).
Exercise. Sort this out.
So that's a little bit about dual numbers. Now let's talk about the tangent space of a functor.

4. THE TANGENT SPACE OF A FUNCTOR

$\operatorname{Mod}_{\mathrm{R}}$ the category of finitely generated R-modules. (Interesting question: why restrict to finitely generated R-moodules? Answer: that gets imposed in some applications.) H : $\operatorname{Mod}_{\mathrm{R}} \rightarrow$ Sets a functor that commutes with finite products. In other words, $\mathrm{H}(\mathrm{I} \times \mathrm{J}) \rightarrow$ $H(I) \times H(J)$ is an isomorphism for any two modules I and J.

Proposition. Then there is a canonical factorization of my functor H

In other words, with this little extra condition, we get not just sets, but also R-modules. It seems a little miraculous.

Sketch of proof:
Here's the additive structure. $\mathrm{H}(\mathrm{I}) \times \mathrm{H}(\mathrm{I}) \cong \mathrm{H}(\mathrm{I} \times \mathrm{I})$ induced by $(\mathrm{i}, \mathfrak{j}) \mapsto \mathfrak{i}+\mathfrak{j}$. We pull back to $\mathrm{H}(\mathrm{I})$.

Multiplicative strucutre: $r \in R$. Then we get a homomorphism of R-modules

$$
\cdot f: H(I) \xrightarrow{H(\times f)} H(I)
$$

Exercise: Check that this actually gives an R-module structure.
Suppose $A \rightarrow$ is a ring homoorphism. Then $A-A l g / R$ has finite products. Here's why/how:

where $(C, f) \times\left(C^{\prime}, f^{\prime}\right)=\left(C \times_{R} C^{\prime},(x, y) \mapsto f(x)=f^{\prime}(y)\right)$.
Lemma. The functor

$$
\operatorname{Mod}_{R} \rightarrow A-A l g / R
$$

given by $I \mapsto(R[I], \pi: R[I] \rightarrow R)$ commutes with finite products.

Proof. I, J $\in \operatorname{Mod}_{\mathrm{R}}$, first take the product in the category of modules and then apply my functor, or else first take my functor and then take product:

The claim is that this should be an isomorphism. This was omitted due to the lack of time.

Thus we get this nice R-module structure.
Corollary. If we are given $F: A-A \lg / R \rightarrow$ Set such that for $I, J \in \operatorname{Mod}_{R}$, the map

$$
F\left(R[I] \times{ }_{R} R[J]\right) \rightarrow F(R[I]) \times F(R[J])
$$

is an isomorphism. Then for all $I \in \operatorname{Mod}_{R}$, the set $F(R[I])$ has a canonical R-module structure.

Reason: $\mathrm{F}(\mathrm{R}[\mathrm{I}])$ is the image of I under the composition

$$
\mathrm{I} \longmapsto \mathrm{R}[\mathrm{I}]
$$

$$
\operatorname{Mod}_{R} \longrightarrow A-\operatorname{Alg} / R \xrightarrow{F} \text { Sets }
$$

commutes with finite products.
We'll conclude with a definition and then stop.
Definition. Let $F: A-A l g / R \rightarrow$ Sets be a functor satisfying that condition in the Corollary. Then the tangent space of F, denoted T_{F}, is the R-module $F(R[\epsilon])$.

Remark. We don't really need all of A-Alg/R. We only need a full subcategory that contains the image of $\operatorname{Mod}_{\mathrm{R}}$ (in the map given in the Reason above) and is closed under finite products.

E-mail address: vakil@math.stanford.edu

[^0]: Date: July 23, 2007.

