
DEFORMATION THEORY WORKSHOP: OLSSON 1

ROUGH NOTES BY RAVI VAKIL

Here’s the plan

Week 1:

(1) basic definition
(2) examples
(3) obstruction spaces
(4) examples

Week 2

(5) Picard categories
(6) Picard stacks
(7) truncated cotangent complex (rigorous to here)
(8) overview of the cotangent complex

Today we’ll talk about tangent spaces, except from a functorial point of view.

1. MOTIVATION

Suppose k is an algebraically closed field, and X/k is a scheme of finite type. Fix a
closed point x ∈ X(k). Then the tangent space of X at x is the dual of the k-vector space
m/m2 where m ⊂ OX,x is the maximal ideal. That’s the definition you’ll find in Hartshorne
for example.

But the X that will turn up for us will be a moduli space, and will be given to us as a
functor. Then this definition is not so easy to use when you only have the functor.

But we can instead get a hold of the tangent space quite nicely in terms of the functor.
To this end, let’s introduce dual numbers.

2. DUAL NUMBERS

Let R be a ring, and I an R-module. Define R[I], the ring of dual numbers, as follows.
(Really, there should be some reference to R and I in the terminology, but they will be
clear from the context.)
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As a group: R/I is R ⊕ I, and the multiplication rule (the algebra structure) is given by
(r, i)(r ′, i ′) = (rr ′, r ′i + ri ′).

I don’t just get this ring, I get this diagram:

(r, i) � // r

(r, 0) R[I] // // R

r
_

OO

R

OO

id

=={{{{{{{{{

Remark 1. R[I] is functorial in I: g : I → J induces a map

R

~~}}
}}

}}
}}

  A
AA

AA
AA

A

R[I]

  A
AA

AA
AA

A

(r,i)7→(r,g(i))
// R[J]

~~}}
}}

}}
}}

R

Remark 2. I = R, write R[ε] for R[I]. (This really should be written R[ε]/(ε2).

Remark 3. If X is a topological space, O a shaef of rings on X, and I is an O-module, then
I can define O[I] in a similar way.

In particular, if X is a scheme, and I is a quasicoherent OX-module, then we get a ringed
space X[I] = (|X|,OX[I]).

Exercise. Show that X[I] is a scheme, and we have a closed immersion X ↪→ X[I] and a
projection X[I] → X composing to give the identity on X:

X

BB
BB

BB
BB

B

BB
BB

BB
BB

B

�

� // X[I]

��
X

3. RELATION WITH DERIVATIONS

Suppose A → R is a ring homomorphism, and M is an R-module. Then an A-derivation
from R to M is an A-linear map ∂ : R → M such that ∂(xy) = x∂(y) + y∂(x). This gives an
R-module structure to Der(R, M), the set of all derivations.

So how should you think of it?
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Define A-Alg/R as the categorty, where the objects are pairs (C, f) (here C is an A-
algebra, and f : C → R is a map of A-algebras), and the morphisms are g : C → C ′ that is
compatible with projections to R, i.e. such that

C
g //

f ��?
??

??
??

C ′

f ′

��~~
~~

~~
~~

R

commutes.

Lemma. For any A-derivation ∂ : R → I, the induced map R → R[I] given by x 7→

x + ∂(x) (by which we really mean (x, ∂(x))) is a morphism in A-Alg/R and the induced
map

DerA(R, I) → HomA-Alg/R(R, R[I])

is bijective.

We’re taking something simple and making it complicated, but we’re going to work a
lot with this category, so we should get comfortable with how to manipulate it.

We remark that R is viewed as an A-Alg/R by

R
id // R

A

OO ??�������

Let’s prove the lemma.

Proof. R
s // R[I] in A-Alg/R. Then this map must look like x 7→ (x, ∂(x)) for some ∂(x).

This must be a map of A-algebras, hence ∂(x) = 0 if x is in the image of A.

It must also be compatible with multiplication. This is the same as saying that given
x, y ∈ R, then their product is sent to

(xy, ∂(xy)) = (x, ∂(x))(y, ∂(y)) = (xy, y∂(x) + x∂(y)).

The necessary compatibility is ∂(xy) = y∂(x) + x∂(y) which is exactly the same as saying
that δ is a derivation. �

There is a special case: as you know from Hartshorne, you have a universal derivation.

Remark. Suppose we have an object (f : C → R) ∈ A-Alg/R such that I = ker(f) is
square-zero, and that f is surjective. Then any section s : R → C over A (an A-algebra
section), i.e. a morphism from R to C in this category, induces an isomorphism in this
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category

R[I]

  A
AA

AA
AA

A

∼
(r,i)7→s(r)+i

// C

����
��

��
��

R

This is from
0 // I //

id

��

R[I] //

∴∼

��

R //

��

0

0 // I // C // R // 0

As a special case, C = R ⊗A R/J2f // R where J = ker(R ⊗A R → R. I = J/J2. Define
s : R → C by x 7→ x ⊗ 1. Then s induces an isomorphism

R ⊗A R/J2 ∼= R[Ω1
R/A].

Thus the following map is a canonical bijection

DerA(R, Ω1
R/A)

∼// sections of the diagonal mapR ⊗A R/J2
→ R

Question: What is the universal derivation R
d // Ω1

R/A ?

Possible answers:
a) x 7→ 1 ⊗ x − x ⊗ 1,
b) x 7→ x ⊗ 1.
c) x 7→ 1 ⊗ x.

Which (if any) is it? It’s not obvious! So let’s work it out.

According to Hartshorne, Ω1
R/A = J/J2, and

d : R // Ω1
R/A = J/J2

x � // x ⊗ 1 − 1 ⊗ x

Now let’s translate this into our language of dual numbers.

R[Ω1
R/A] // R ⊗A R/J2

R

sd

OO

sd(x) = (x, dx)

Then 1 ⊗ x = x ⊗ 1 + (1 ⊗ x − x ⊗ 1).
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The answer is (c).

Exercise. Sort this out.

So that’s a little bit about dual numbers. Now let’s talk about the tangent space of a
functor.

4. THE TANGENT SPACE OF A FUNCTOR

ModR the category of finitely generated R-modules. (Interesting question: why restrict
to finitely generated R-moodules? Answer: that gets imposed in some applications.) H :

ModR → Sets a functor that commutes with finite products. In other words, H(I × J) →

H(I) × H(J) is an isomorphism for any two modules I and J.

Proposition. Then there is a canonical factorization of my functor H

ModR

H

''NNNNNNNNNNN

H // Sets

R-modules

forget
88qqqqqqqqqqq

In other words, with this little extra condition, we get not just sets, but also R-modules. It
seems a little miraculous.

Sketch of proof:

Here’s the additive structure. H(I) × H(I) ∼= H(I × I) induced by (i, j) 7→ i + j. We pull
back to H(I).

Multiplicative strucutre: r ∈ R. Then we get a homomorphism of R-modules

·f : H(I)
H(×f)

// H(I)

Exercise: Check that this actually gives an R-module structure.

Suppose A → is a ring homoorphism. Then A-Alg/R has finite products. Here’s
why/how:

C

f ��?
??

??
??

C ′

f ′

��~~
~~

~~
~~

R

where (C, f) × (C ′, f ′) = (C ×R C ′, (x, y) 7→ f(x) = f ′(y)).

Lemma. The functor
ModR → A-Alg/R

given by I 7→ (R[I], π : R[I] → R) commutes with finite products.
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Proof. I, J ∈ ModR, first take the product in the category of modules and then apply my
functor, or else first take my functor and then take product:

R[I × J] //

##G
GG

GG
GGG

G
R[I] ×R R[J]

yytttttttttt

R

The claim is that this should be an isomorphism. This was omitted due to the lack of
time. �

Thus we get this nice R-module structure.

Corollary. If we are given F : A-Alg/R → Set such that for I, J ∈ ModR, the map
F(R[I] ×R R[J]) → F(R[I])× F(R[J])

is an isomorphism. Then for all I ∈ ModR, the set F(R[I]) has a canonical R-module
structure.

Reason: F(R[I]) is the image of I under the composition

I
� // R[I]

ModR
// A-Alg/R

F // Sets
commutes with finite products.

We’ll conclude with a definition and then stop.

Definition. Let F : A-Alg/R → Sets be a functor satisfying that condition in the Corol-
lary. Then the tangent space of F, denoted TF, is the R-module F(R[ε]).

Remark. We don’t really need all of A-Alg/R. We only need a full subcategory that
contains the image of ModR (in the map given in the Reason above) and is closed under
finite products.

E-mail address: vakil@math.stanford.edu
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