DEFORMATION THEORY WORKSHOP: LIEBLICH 5

ROUGH NOTES BY RAVI VAKIL

Let’s review the definition of a category fibered in groupoids, but using some different
language that you might find more appealing.

Definition. A functor F : D — C is a category fibered in groupoids (or as some call it, a
groupoid over C) if

(i) Forall § : ¢y — ¢ € C and for all d; € D such that F(d,) = c, , there exists
«: d; — d; such that F(a) = 3.
(ii) For all
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Given 33 : ¢c3 — ¢ (making the diagram commute), there exists a unique o3 such
that F(OCg) = [33.

C3

Definition. Given ¢ € C, the fiber category D, (or F.) has objects d € D such that
F(d) = ¢, and the arrows « : d; — d, such that F(«) = idc.

The last definition I'll write is the following.

Definition. A 1-morphism of cateogires fibered in groupoids F1: Dy = CtoF,: D, — C
is a functor F : D; — D; such that diagram below commutes.
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We say Fis an equivalence if for all c € Cif forall c € C, theinduced F. : (D;). — (D;)cisan
equivalence of categories. (Maybe it is the same as just requiring that F is an equivalence
of categories. Martin and Anton both said yes.)

You'll observe that since maps of fibers categories are functors, there are maps between
maps. So Hom(D;, D,) is a category, and indeed it is a groupoid. Here arrows are natural
isomoprhisms between functors.

Now let C = Schemess. We have our old friend func(C°P?, Sets), and our other old
friend Schemes/S.

Now Sets C Gpoid. Thiis means that our old friends naturally define categories fibered
in groupoids.

Example: D; = hx, X € Schemess. Then we have an equivalence of categories

Home (hyx, D;) — (D>)x

Now M ) = moduli of varieties.

X scheme, then {X — M o)} <

flat families of varieties

Example. X — QCoh(X) defines a category fibered in groupoids. (This is the category
of quasicoherent sheaves on X, with isomorphisms as the arrows.)

These are supposed to be geometric objects. Do they have some sheaf-like properties?
Indeed they do: they satisfy “sheafiness” = gluing = descent theory.

Gluing in general.
Fix D — C = Schg. Think of the latter as the (big) étale site.

Definition. Given a covering {V; — X}. The category of descent data (with respect to
this covering) is Dyy, -, x;, where the objects are (d, ¢;) where d; € Dx,, ¢y : dilvixxy, — dilvixxy;

(prijdi — prid;) such that ¢jk o ¢y; = duc for all i,j, k on Y; xx Yj xx Yi. The arrows are
what you think they are.



Observation. Any object d of D, gives rise to an object of Dy, v, ,x;: di = dly, =V*(d).
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Pipr = Py = pry gives prip; —— pr3Y; which gives pridi —— prid; . Thus the
cocycle condition is built in to pseudofunctors.

The upshot is that we actually get a functor Dx — Dy, x;-

Now let’s say what it means too glue. The additional wrinkle comes because we could
glue objects, or we could glue morphisms.

Definition. D is a prestack on C if vx,_,x is fully faithful for all coverings {Y; — X}
(“descend morhpisms”), and D is a stack if you can glue objects together if vy, ,x; is an
equivalence of cateogires for all {Y; — X}. (“efective descent morhpisms”).

The notion of “prestack” will come up in Martin’s next lecture. Why remember this
notion? Answer: It’s kind of like remembering the notion of a “separated presheaf”.

Let’s reinterpret prestacks. Given a,b € Dy, define a presheaf I(a, b) on Schemesx as
follows. Given f: Y — X, let

I(a,b)(f) := Isomp, (f*a, f*b)
This defines a presheaf.

“Lemxercise.” D is a prestack iff for all X, a, b, I(a, b) is a sheaf on Xgr. “isomoprhisms
form a sheaf.”

Just as one can sheafify a presheaf, one can stackify a prestack. (In fact, any fibered
category:.)

Theorem. Given a prestack D — C, there exists as tack D° and a 1-morphism

N

such that for all stacks S — C, the map Hom(D* ) — Hom(D, S) is an equivalence of
groupoids.

Proposition. QCoh is a stack on (Spec Z) ¢, = Schemes/Z.

From this you can deduce a host of other things, as you'll see in your exercises.
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Proposition. Sheaves on (Spec Z)gt form a stack.

This just means that we can glue sheaves together. We’ve seen this in the Zariski topol-
ogy, in a Hartshorne exercise.

Let’s recall our moduli problems. Are they stacks are not?!!

(5) Subspaces of V. They are a stack, because they are a sheaf. (Remark: a sheaf is a
stack. A stack is a fancier version of a sheaf. This is an enlightening point, but there is one
thing which may confuse you: a sheaf is a stack, and there is a stack of sheaves. The two
uses of the words “sheaf” in the previous sentence are completely different uses.)

(4) Closed subschemes of X. This is a stack because it is a sheaf.

(3) How about Hom(X, Y)? Answer: with some work, this is a sheaf, hence a stack.

So why have I given the last few lectures?! Well, because:

(2) Line bundles on X do not form a sheaf!!! But it is a stack because of descent theory!
(1) Curves of genus not 1: we showed that it is a stack. It is not a sheaf.

(0) Varieties. This is a prestack (as Isom(X, Y) is a sheaf). But it is not a stack!

There are schemes that don’t descend.

Exercise: There exists X/C a smooth threefold (not quasiprojecive), with a descent da-
tum relative to Spec C — Spec R, which does not descend.

(Throughout, we are thinking in the BIG ETALE TOPOLOGY for the purposes of con-
creteness.)

Let me say one last thing here. That last example is kind of funny, as schemes are
sheaves. So a family X — T is a sheaf. But this obsctructed descent data says we can’t
glue them toeghter as schemes. But we can glue them together as sheaves, as sheaves
form a stack! So why not just allow us to think of sheaves that are locally like schemes?
Why not take the “stacky closure” of Schemes in Sheaves. Their local structure is just that
of schemes. You have just defined the notion of an algebraic space! These are the spaces
(sheaves) that are etale-locally schemes.
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