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ROUGH NOTES BY RAVI VAKIL

Suppose X is a scheme. Then the associated contravariant functor hX is a sheaf, in the
following sense. By this we mean the following. Fix Y. Then if we associate Hom(U, X) =

hX(U) for each o pen set U ⊂ Y, then this defines a sheaf in the Zariski topology. This says
nothing more than the fact that morphisms to X glue.

We can say this in a more convenient matter. If {Ui ⊂ Y} is an open cover, then

hX(Y)
a //

∏
j hX(Ui)

b //
c

//
∏

i,j hX(Ui ∩ Uj)

is exact, by which we mean that a is injuective, and im(a) = {α | b(α) = c(α)}.

Now there is a ‘problem with the Zariski topology: it is not “geometric”. What do
we mean by this? In Serre’s FAC, for example, we learned that that coherent sheaves in
the Zariski topology behave like the coherent sheaves in the classical topology. But for
example, the Zariski topology can’t see: the fundamental group.

Grothendieck had the insight that we can generalize the notion of topology. Notice: if
X is a topological space, then we can understand the topology in terms of the “category
of open sets”. The objects are the open sets U ⊂ X. We have one arrow U → V for each
inclusion U ⊂ X. (In particular, | Hom(U, V)| ≤ 1 — there is at most one morphism from
U to V .)

Then already we can say what a presheaf is: it is a contravariant functor to Set.

For sheaves, we need more information: we need to remember what covering is. So we
retain the information {Vi ⊂ U}, some set of arrows, that we declare to be a covering.

There are three silly properties of coverings that we need:

(i) Each open set covers itself: {U ⊂ U} is a cover.
(ii) Coverings pull back: If {Vi ⊂ U} is a covering, and W ⊂ U, then {Vi ∩ W ⊂ W} is a

cover.
(iii) Coverings compose: If {Wij ⊂ Vi} are coverings, and {Vi ⊂ U} is a covering, then

{Wij ⊂ U} is a covering.

Based on this, we generalize the notion of topology so that sheaves still make sense.

Definition. Given a category C, a Grothendieck topology iis a collection of sets of arrows
{Vi → U} for each U ⊂ C (called “coverings”) such that:
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(i) Any isomorphism is a coverinng.
(ii) Coverings pull back: If {Vi → U} is a covering and W → U, then Vi ×U W exists for

each i, and {Vi ×U W → W} is a covering.
(iii) Coverings compose: If {Wij → Vi} are coverings, and {Vi → U} is a covering, then

{Wij → U} is a covering.

A site is a category wiht a Grothendieck topology.

Example. Suppose X is a scheme. XZar, the small Zariski topology, is defined as follows.
The objects are open immersions into X, and the arrows are maps that commute with the
immersion maps. The coverings are collections of arrows Vi → X such that the images of
the Vi cover the target. This is precisely our earlier definition.

Example. XZAR, the big Zariski topology, is defined as follows. The objects are X-schemes,
and the arrows are maps that are open immersions that cover the target.

One example of the a difference between the big Zariski site and the small Zariski site
is the following. Consider the closed immersion of a point Y into A

1 = X. Then hY is a
presheaf on both the big and small Zariski-sites. It is representable in XZAR, but not in
XZar.

Example. Xét, the small étale site, is defined as follows.

C = {Z → X étale} ⊂ SchX.

The coverings are






Yi

��?
??

??
??

φi // Z

����
��

��
�

X

| ∪φi(Yi) = Z






Note: Each φi is forced to be étale.

Example. The big étale site is defined analogously.

The mother of sites is the following.

Example. Xfppf, the “fppf” site, is the following. (“fppf” means “faithfully flat and locally
of finite presentation”.)

C = SchX,
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and coverings are






Yi

��?
??

??
??

φi // Z

����
��

��
�

X

| ∪φi(Yi) = Zand φi is flat and locally of finite presentation






Interesting question: This is the “big fppf site”. Why don’t we consider the “small fppf
site”? One problem with that site: There aren’t arbitrary fiber products in that category.

Definition. Given a site C, a sheaf (of sets) on C is a functor F : Copp → Set such that for
all coverings {Yi ⊂ Z} in C, the diagram

hX(Y)
a //

∏
j hX(Ui)

b //
c

//
∏

i,j hX(Ui ∩ Uj)

is exact.

Warning: unlike the Zariski topology, we do not require i 6= j in the above diagram.

Given a functor, you could ask: is it a sheaf in the Zariski topology? Is it a sheaf in the
étale topology? Is it a sheaf in the fppf topology? These are increasingly strict conditions.
We have already seen that hX is a sheaf in the Zariski topology. In fact:

Theorem (Grothendieck). For any X-scheme Y, the functor hY : Schopp
X → Set is an

fppf-sheaf.

You’ll see that we never use the “locally of finite presentation” part of the definition,
only the “faithfully flat” part.

Let’s prove this now.

Let’s first understand the simplest possible case. Suppose the cover {Yi → Z} is Spec B →
Spec A, i.e. A → B is a faithfully flat ring extension. Suppose also Y = Spec C. The dia-
gram becomes

Hom(C, A)
a // Hom(C, B)

b //
c

// Hom(C, B ⊗A B)

This can be interpreted as

Hom(C, A // B
b //
c

// B ⊗A B ).
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Lemma.
b_OO b ⊗ 1

A // B
//// B ⊗A B

b
�// 1 ⊗ b

is exact.

Thiis is equivalent to: 0 → B → B ⊗A B is an exact sequence of A-modules, where that
latter map is b 7→ b ⊗ 1 − 1 ⊗ b.

We first deal with the special case where there exsits a map σ : B → A such that the
composition A → B →σ A is the identity.

Then we get B ⊗A B → B given by b ⊗ c 7→ σ(b)c. Then show: if b ⊗ 1 = 1 ⊗ b, then
b ∈ A. That implies σ(b) = b, and if the first is in A then so is the second, and we’re done.
So if we could only be in that case, we’d be very happy!

But observe: to prove that 0 → A → B → B ⊗A Bis exact, it suffices to prove it after
a faithflly flat base change A → D. There’s only one faithfully flat map in our picture:
A → B. So we’ll take D = B. Then A → B turns into B → B ⊗A B, given by b 7→ b ⊗ 1.
This has an augmentation: multiplication!

(To make this complete, you have to check that if you take the base change of the dia-
gram, you get the diagram of the base change.)

So we’re done this lemma!

Lemma. F : Schopp
X → Set is an fppf sheaf iff (1) F is a Zariski sheaf.

(2) For all Spec B → Spec B, A → B fppf, the sequence is exact.

We’ll omit this. But we have an immediate

Corollary. If Y is affine, then hY is an fppf sheaf.

Sketch of general case (Y arbitrary). Let Yi ⊂ Y be an affine covering. Suppose U → V

is an fppf covering. We want to check that

hS(V) // hS(U) //// hS(V)

is exact. fppf-ness comes up here.

Max sketched what to do here.
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