1 Lieblich

Let S be a scheme locally of finite type over an excellent Dedekind scheme.
Z is a stack on Sgr, and we will assume that it is locally of finite presentation. That is, A = h_H)lAi is
a ring, then li_H)lfspec A, — Fspec 4 Is an equivalence of categories.

Brian said that if x admits an effective versal formal deformation then there exists Speck — X 4, F
such that f is formally smooth at = (X is of finite type over S)

_ Taking Y, Y to be local Artin schemes, we get
Yy — X
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pt of Y maps to z.
The content is the following:

1. Schlessinger implies that there exists a versal formal deformation (hull)

2. formal to effective via GET, using étale local existence.

Given X — S, a € Fx let .#, be the stack on Schx, f: X =Y, (%,)y = {a: a — b such that Im(«)
in Spris f} ={be€ Fy,p:a— fb}.
So %#,(Y) =isomorphism classes of (.%#,)y.

(S1)
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A’ LN ! Ao

Where the bottom row are small thickenings and ker(A’ — A) is an Ag-module.

Take a € ySpecA = cg.(A)

Fao(A x4 B) — F,(A") x F,(B) is an equivalence of categories.

(S2): M is of finite type as an Ag-module, Dg, (M) is a finite Ag-module, ag = algpec 4, -

Martin said that .Z,(Ag[M]) = D, (M) an Ag-module

Suppose we'’re given an obstruction (a la Martin) A — Ag a small thickening, a € ZF(A4), O, : (A9 —
Modyg;) — (Ao — mody:) such that A’ — A — Aj is a deformation situation, ker(A’ — A) = M is an
Ap-module, then o0,(A’) € 0,(M) such that 0,(A") = 0 iff a lifts to A’.

In addition, we assume (with A — Ay a small thickening) conditions called (4.1) (all tensor products
over Ayp)

1. Etale localization: if A — B is étale, then D, (Mo® By) < Dg,(Mp)® By isomorphism, By = Ag®4 B,
My € Ag —modyi, Oy, (My ® By) < Oqy(Mp) ® By is an isomorphism with by = ao|g,-

2. Completion: If m C Ao is maximal, then Dq, (M) ® A = lim Dq, (M /m™ M)

3. Constructibility: There exists a dense set of closed points p € Spec Ag such that D, (M) ® k(p) ~
D(ag), (M @ k(p)) and O, (M) @ k(p) = O(a,), (M @ k(p)).

Theorem 1 (Artin). Given %, 0 satisfying S1,52 and 4.1, if x € X EN F, X — S of finite type, f formally
smooth at x, then there exists U C X, x € U such that f|y : U — % is formally smooth.

Proposition 1 (Artin). % is an Artin stack locally of finite type over S if

1. &% — F x Z is representable by algebraic spaces, quasi compact, separated.



2. S1 and S2 hold.
3. If (A, m) is a complete local noetherian ring over S, then .Z(A) — @f(fl/m”) is an equivalence.
4. D, 0 satisfy 4.1
Example 1. .#, the stack of curves of genus g for g > 1.
1. My — My < My by Grothendieck’s Existence Theorem
2. Schlessinger
3. GET
4. Take a family of curves 4 — Spec A — Spec A’ with M = ker(A’ — A). Then

ﬁ%(M) = Hg((gA()?T(gAO/AO ®M)

, Doy (M) = Hl(%AngAU /A, @ M) and Ap-modules. We note that this is all compatible with etale
base change Ay — By (Hartshorne), completion (Hartshorne) and cohomology and base change (H).

So looking at %j EX Spec Ag. We want R' f, (T<gAO /Ao @ M) @k(p) — H (6, T¢,/p) to be isomorphisms.
Note that there are no nontrivial infinitesimal automorphisms H°(%,T), then we have a DM stack.

Theorem 2 (Artin). % is an Artin stack locally of finite type over S if
1. 81,52 hold and if ag € F(Ag)and M is a finite Ag-module, then Autng(Ao [M]) is a finite Ag-module.
2. F(A) — @ﬁ(ﬁ/m”) equivalence
3. D, 0, Auti (Ag[M)) satisfy (4.1)
4. If ¢ is an automorphism of ag such that ¢ = id at a dense set of points of Spec Ag, then ¢ = id.

5. Because 1-4 imply that F — F x F is representable and separated, it makes sense to require that it
18 quasi-compact.

2 QOlsson

Let f: X — S be a morphism of schemes and set
GF(Ox) = f~YOx{F(0x)} —L— Ox

f710s
F is a functor from f~'0g algebras to sheaves of sets, and G is a functor in the other direction.
T>_1lx/s = (I1/1%* — Qé‘F(ﬁx)/fflﬁs) with I = ker .

Theorem 3. For any quasicoherent Ox-module M, ch(t<o(R# om(t>_1Lx/s, M)[1])) ~ Exals(X, M)

Where 7>_1Lx/5 is the truncated cotangent complex.

Lx/s is the full cotangent complex.

Given n > 0, GH ...GFGF(Ox) n + 1 times, which is an f~!0s-algebra, o7, — Ox is surjective from
the adjunction.

4, is a simplicial f~!@g-algebra, take a : GF — id, and b : id — FG, and we get d; : .1 — 7, and
Sd ¢ Gy — i1



oty = GFGFGF(Ox) — GFGF(0Ox) = o . We can get 3 maps down by taking natural transformations
of GF' — id

L. is (R, /f10s) ® Ox and it has n + 1 maps down at each point. These are simplicial &x-modules.
So we define the cotangent complex to be Lx,g, with [ omdatda fodozdh f o
Remark 1. This is an actual complex of flat Ox-modules.

1. (L x/s) is quasicoherent and coherent if S is locally noetherian and f is of finite type.

X/#X

f f

2. Call the following diagram (%) Y’ —Y >y

then there is a base change morphism u*Lx/y — Lx y-. If (*) is cartesian and tor independent, then
this map is a quasi-isomorphism and f'* Ly )y @u"Lx)y — Lx//y is a quasi-isomorphism.

3. X LY % Z then there is a distinguished triangle f*Ly,z — Lx/z — Lx/y — f*Ly/z[1].
4. 7>_1Lx,y is equal to our earlier defined object with the same notation.
Remark 2. 1. som(Lx/y) = Qk/y
2. If f is smooth, then Lx;y — Qﬁ(/y s a quasi-isomorphism
3. If X — Y is a closed immersion which is locally a complete intersection, then Lx/y = I/1%[1].

Theorem 4 (Illusie). ch(r>_1(Rom(Lx,y,I)[1])) ~ Exaly (X, I) implies that we have Extl(LX/y, I~
Exaly (X, 1), EXtO(Lx/y7I) = hom(Q}(/Y,I) 1s the automorphism group of any X — X' by I as a Y-
morphism.

Problem:
Xo— — L —> X
|
|
Jo [
v

S

With j a closed immersion defined by a square zero ideal J. Fill in the diagram as indicated with ¢
square-zero such that f§J ~ker(0x — Ox,).

Solution:

Xo — Yy — Y gives fiLy,/y — Lx,/v — Lx,/v, — fo Lv,/v[1], and so we get a long exact sequence

0 — Ext®(Lxy vy, £5J) = Ext®(Lx, v, f§J) — Ext®(f Ly, v, f§J) — Ext'(Lx, /vy, £57) —

* * * 0 *
Ext! (Lx, v, foJ) = Bxt! (f5 Lyy v, fo]) = Ext®(Lxo v, foJ) = -
We get that Exto(fS‘Lyo/y, f5J) =0, so we get



0 — Ext®(Lx, /vy, £5J) — Ext®(Lx, /v, fGJ) — 0 — Ext!(Lx, vy, £§J) — Exaly (Xo, f§J) —

£ * 0 *
hom(f§J, f5J) = Ext*(Lx, /vy, f3J) — - -

Theorem 5. 1. There exists an obstruction o(fo) = 0(id) € Ext2(LX0/yo, f§J) whose vanishing is nec-
essary and sufficient for a solution to the problem

2. If o(fo) = 0, then the set of isomorphism classes of solution form a torsor under Extl(LXO/yo, 5

3. Aut = Ext®(Lx, /vy, 5 ).

9o g

ZO (L} Z
With maps hg : Xg — Zp and h : X — Z making everything commute, and each horizontal map a small
thickening (I for X, J for Y, K for Z) and g*K ~ J

Theorem 6 (Illusie). There is a canonical class o(fy) € Extl(fS‘Lyo/Zo, I) such that f exists iff o(fo) = 0.
If i(fo) = O then the set of maps f is a torsor under ExtO(fS‘Lyo/Zo, I).

Sketch: e(X) € Ext}fxo (Lx,/z,1I)and e(Y) € Ext}jyo (Ly,)z,J) and we have a map Ext}jxo (Lxy/z,1) —

EXt}é’XO (fob * Ly, /z,1) by e(X) = zx.
Ethﬁyo (Ly,/z,J) —>Extlﬁx0 (f6Lyy z: £5)

.

Exte, (f5Lyvo/z: 1

With the composition being e(Y) — zy.
We want zx = zy.
hoLz,)z — foLyy/z — fi Ly, z, — --- and this gives an exact sequence

Ext(h§Lz, 2. 1) — Ext'(f§ Ly, /2y, I) — Ext" (fi Ly, ,z,1) — Ext" (h§ Lz, /2, 1)

and the first term is 0, the last term is hom(h§ K, I). The difference of the maps goes to zero in hom, and
so must come from an element of the second term, and so that’s how we get o(fo) = zx — 2y.

3 Osserman

Groupoid Perspective
One nice property: when working with categories fibered in groupoids, we can restrict naturally from
global to local and get the right results (eg, we can specify pairs (X4, ¢) with X4 flat over A, o : X — X4

inducing X S5 X404 k).




Definition 1 (Category Cofibered in Groupoids). A category cofibered in groupoids over C is a category
fibered in groupoids over C°.

Definition 2 (Trivial Groupoid). A groupoid is trivial if there exists exactly one morphism from any object
to any other.

We can refer to ”the trivial groupoid” because any trivial groupoid is equivalent to the one with a single
object and a single morphism.

Remark 3. Artin uses S1, Rim uses “"homogeneous groupoids.”

Definition 3 (Deformation Stack). A category S cofibered in groupoids over Art(A,k) is a deformation
stack if Sy is trivial and for all A" — A, A" — A with the second surjective, we have

1. Ym,n2 € Sarx 4 a7, the natural map

Morarx yar(11,m2) — Morar(ni|ar,m2147) X Mora(milamala) Morar(ni]ar,nalar)
is a bijection
2. Genn' € Sar and ' € San and ¢ : n'|a — 1’| ar, there exists I € Sarx ,ar inducing n',n", ¢ on

restriction.

Given S, we write Fs : Art(A, k) — Set for the functor of isomorphism classes.
Proposition 2. Let S be a deformation stack, then Fs is a deformation functor.

Proof. Fg(k) is the one element set because Sy, is trivial.
(H1) follows from 2, and (H2) follows from 1. In fact, get injectivity of (*) as long as A = k, since
Mora(m|a,n2]a) has exactly one element. O

Remark 4. Although being a deformation stack is formally a stronger condition than satisfying (H1) and
(H2), it seems that in practice, that any proof of (H1) and (H2) is really a proof of the deformation stack.
eg, Def x, earlier proposition actually proves the deformation stack conditions.

Lemma 1. If S is a local deformation problem at a point of an algebraic stack, then S is a deformation
stack.

Remark 5. The argument for the lemma directly involves the asymmetry of only A" — A being surjective,
because we have to use the formal criterion for smoothness applied to the smooth cover by a scheme.
Lemma 1.4.4 of a paper by Olsson called ” Crystalline Cohomology of Stacks and Hyodo-Kato Cohomol-
Ogy.”
More good properties of deformation stacks:

1. AA = Ay ker=1,n€ Sa, {(n,0)|n € Sar,p:n'|an}/ ~ is a pseudotorsor over Ts = Tp, @ I.

2. A= A, € Sar, p € Aut(n]a), {¢ € Aut(n')|¢'|a = ¢} is a torsor over Aut((.) ® I, where (. is the
trivial deformation over kle|.

Proposition 3. If . is a deformation stack, then Fo satisfies (H4) iff for A — A surjecitve and all
n € Sas, the map Aut(n’) — Aut(n'|a) is surjective.

In fancier language, in a global setting, (H4) iff the Isom functor is smooth at the identity.
Why deformation ”stack”?
Why all these ring fiber products?



AT —— A x4 A"
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Lemma 2. are in bijection with
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B// s B/ ®B BI/
with B — B’ x B"” and ¢'(kerq") is an ideal.
B — B’ x B" iff Spec B’ [ Spec B” — Spec B is scheme theoretically surjective.

The tensor product corresponds to fiber product of schemes, ie, intersections from the point of view of
descent theory.



