
1 Lieblich

Let S be a scheme and C = SchS the big étale site.
For Pn, there are two competing descriptions.
1: Take hPn(T ) = {On+1

T → L surjective with L invertible on T}/ '.
2: Pn should be An+1 \ {0} modulo Gm with Gm(T ) = Γ(T,O∗

T ), Gm = Spec Z[t, t−1].
If 2 makes sense, then An+1 \ {0} → Pn is a Gm-torsor.
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For all t ∈ T, α ∈ Gm, f(αt) = αf(t).

Proposition 1. There is a natural equivalence of categories from Relatively Affine X-schemes with Gm-
action and Gm-equivariant maps and the opposite category of Z-graded quasicoherent OX-algebras with graded
maps.

Idea: Given f : Y → X a Gm action on f∗OY over X, we get it to break up as a sum of eigensheaves
induced by the character Gm → Gm by t→ tn.

Example 1. Action of Gm on An+1
X = SpecX OX [x1, . . . , xn+1] graded by total degree.

Let T → X be a Gm-torsor. Then it is relatively affine by descent theory. (Gm is affine).

Proposition 2. Given a Gm-torsor T → X there exists an invertible sheaf L on X such that T '
SpecX ⊕i∈ZL i, the action corresponds to the natural grading by i.

Proof. fppf locally onX. T ' SpecX(OX [x, x−1]). There is a descent datum given by the graded isomorphism
O[x, x−1] ' O[x, x−1].

Note that for each graded piece, it has the form xiO.
Etc.

A Gm equivariant map SpecX ⊕L i = T → An+1\{0} is contained in T̄ → An+1 which is SpecX ⊕≥0L i →
SpecX OX [x1, . . . , xn+1] which is the same as a graded map OX [x1, . . . , xn+1] → ⊕i≥0L i, and so it’s enough
to look at On+1

X → L surjective.
Conclusion: The functor of points tells us that in fact An+1 \ {0} → Pn is a Gm-torsor.
Let G be a group scheme and X a scheme with a G-action. We would love to make a quotient X/G such

that X → X/G is a G-torsor.
We will do that by allowing X/G to be a stack.

Definition 1 (Quotient Stack). The quotient stack [X/G] has as fiber category over Y the following:
Objects are pairs (T → Y, ϕ) with T → Y a G-torsor and ϕ : T → X a G-equivariant morphism, with the

arrows ψ : T → T ′ commuting with the maps T → Y, T ′ → Y such that ψ is a G-equivariant isomorphism
and ϕ′ψ = ϕ.

Note, there exists a natural map ν : X → [X/G] by

X

XT
..............................................................................................................
...
.........
...

................................................................................................................. ............
ϕ
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X

XG×X
.........................................................................................................................................................................

...
............

trivial torsor

........................................................................................................... a

With h(g, x) 7→ h · gx with the first mapping down to (hg, x), and both map to hg · x because it is an
action.

Claim: ν makes X a G-torsor over [X/G].

Proof. Iff

Y [X/G]

X Y ×[X/G] X

.................................................................................................. ............

.................................................................... ............

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

What is a fiber product over a stack?

Definition 2. Given morphisms of stacks α : X → Z and β : Y → Z the fiber product has fiber categories
(X ×Z Y )T = {(x, y, ϕ)|x ∈ XT , y ∈ YT , ϕ : α(x) ' β(y) is an isomorphism in ZT }.

Example 2. (X ×[X/G] Y )T .

1. x ∈ X(T ), y ∈ Y (T ), y : T → Y

2. ν(x) ∈ [X/G] corresponds to the pullback of X ×X ⇒ X to y∗U → U → X and y∗U → T .

So ϕ takes the diagram

T

G× T y∗U X
..............................................................................................................
...
.........
...

............................................................................................... ............

.....................................................................................................................................................................
...
............

.............................................................................................................. ............

to a choice of point U(T ). So the isomorphism (x, y, ϕ) → (x′, y′, ϕ′) are precisely the identity maps
because X and Y are schemes, so we get a discrete groupoid.

And so we get a G-torsor.

Note that if G acted freely, we don’t need a stack, but we always get one, no matter how bad the G-action
is.

X Y

Z

................................................................................................................................ ........
....

f

............................................................................................................................
....
............

g

T
...............................................................

...
............ α

.................................................................. .........
...
β

Example 3. Then (X ×Z Y )T is made up of triples α ∈ X(T ), β ∈ Y (T ) and ϕ : f ◦ α → g ◦ α an
isomorphism and (f ◦ pr1) ◦ (α× β) ' (f ◦ pr2) ◦ (α× β)

So we get a map X ×Z Y → X × Y .
And then Isom(pr∗1f, pr

∗
2g) = X ×Z Y → X × Y is our map.

Definition 3 (Representable Morphism). A morphism of stacks X → Y is representable if ∀T → Y ,
XY T → T is equivalent to a scheme.
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Example 4. [∗/G]T is to set of maps U → T , so this is the category of G-torsors, [∗/G] = BG. So
∗ 7→ [∗/(Z/2)] is finite étale of degree 2. So we can think of it as half of a point.

2 Olsson

We’re going to talk about Picard Stacks. Reminder of the definition [omitted, see Day 6]
K∗ ∈ C [−1,0](T ) (that is, K−1 → K0)
So we get pch(K∗) by taking pch(K∗)U to be objects x ∈ K0(U) and morphisms x → y is an element

z ∈ K−1(U) such that dz = y − x.
And so we get ch(K).
If P is a Picard stack, then HOM(ch(K),P) → HOM(pch(K),P) is an isomorphism.

Remark 1. pch(K) → ch(K) is fully faithful

Remark 2. f : K∗
1 → K∗

2 induces a morphism of Picard stacks ch(f) : ch(K1) → ch(K2).
Suppose f1, f2 : K∗

1 → K∗
2 and a homotopy h between f1, f2. (that is, h : K0

1 → K−1
2 such that

∀x ∈ K0
1 , f1(x) − f2(x) = dh(x) and f−1

1 − f−1
2 = hd). Then we get an isomorphism of morphisms

ch(h) : ch(f1) → ch(f2).
That is, for all x ∈ pch(K1), we get an isomorphism ch(f1)(x) → ch(f2)(x). So for each x ∈ K0

1 there is
a z ∈ K−1

2 such that dz = f2(x)− f1(x).

Lemma 1. If K−1 is flasque, then pch(K) is a stack.

Proof. We have a map π : pch(K) → ch(K), and it is fully faithful. So all we must do is check essential
surjectivity. Let U ⊂ T be open and x ∈ ch(K)U . Let L be the sheaf on U which to any any open set
V ⊂ U associates the set of pairs (y, `) with y ∈ K0(V ) and ` : π(y) → x|V in ch(K)V .

Claim: L is a K−1|V -torsor. The reason is that if we assume that we have (y′, `′) ∈ L , and
π(y)

x|V π(y′)

..............................................................................................................
...
.........
...

`

......................................................................................................... ............
`−1

............................................................................................................................................................. .........
...

z ∈ K−1

And so L is classified by an element [L ] ∈ H1(U,K−1|V ) = 0.

Observations:

1. The sheaf associated to the presheaf U 7→ the set of isomorphism classes in ch(K∗)U . So then
H 0(K∗) = K0/ Im(K−1 → K0)

2. What is the automorphism group of an object x ∈ ch(K∗)|U? It is H −1(K∗) because x ∈ K0(U)
should have Aut(x) = {z ∈ K−1(U)|dz = x− x = 0}.

Corollary 1. If f : K∗
1 → K∗

2 is a quasi-isomorphism, then ch(f) : ch(K1) → ch(K2) is an equivalence.

Define C̃ [−1,0](T ) ⊂ C [−1,0](T ) to be the full subcategory of complexes K−1 → K0 with K−1 injective.

Theorem 1. ch induces an equivalence to 2-categories C̃ [−1,0](T ) → (Picard Stacks over T ).

Corollary 2. The category of Picard stacks with isomorphism classes of morphisms is equivalent to the
category D[−1,0](T ) (Derived Category)

Lemma 2. f : X → Y a morphism of stacks and f̄ : X → Y is the corresponding map of sheaves of
isomorphism classes. Assume that f̄ is an isomorphism and for all U ⊂ T and x ∈ XU the map of sheaves
AutX (x) → AutY (f(x)) is an isomorphism. Then f is an isomorphism.
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Proof. Given x, y ∈ XU we want IsomX (x, y) → IsomY (f(x), f(y)) to be an isomorphism. Injectivity
follows from α, β : x → y, f(α) = f(β) : f(x) → f(y) then α−1 ◦ β ∈ ker(AutZ (x) → AutY (f(x)) implies
that α = β

Surjectivity follows from σ : f(x) → f(y). It is enough to show that σ is in the image locally, so x, y 7→
the same thing in X. So locally there exists τ : x→ y such that σ−1 ◦ f(τ) : f(x) → f(x).

Essential Surjectivity: y ∈ YT , there exists a covering T = ∪iUi and (xi, `i) such that xi ∈ XUi and
`i : f(xi) ' y|Ui

in YUi
. Then on Ui there exists a unique isomorphism σij : xi|Uij

→ xj |Uij
such that the

following diagram commutes:

y|Uij

f(xi)|Uij
f(xj)|Uij

..............................................................................................................
...
.........
...

`i

....................................................... ............
f(σij

.......................................................................................................................................................
...
............

`j

With σij ◦ σjk, σik : xi|Uijk
→ xk|Uijk

are both equal to the unique morphism filling in the top of the
above diagram after restricting to Uijk.

Lemma 3. Let P be a Picard stack over T . {Ui} a collection of open subsets and ki ∈ P(Ui). For all i,
K = ⊕iZUi (where Zui = j!Z for j : Ui ↪→ T )

Then there exists a morphism F : ch(0 → K) → P and isoms σi;F (1 ∈ ZUi(Ui)) ' k, and the data
(F, {σi}) is unique up to unique isomorphism.

Lemma 4. Let P be a Picard stack over T . Then there exists K ∈ C [−1,0](T ) and an isomorphism
ch(K) ' P.

Proof. We choose data {Ui ⊂ T} for all i ∈ I and for all i we choose ki ∈ P(Ui), making these choices such
that for all V ⊂ T , k ∈ PV and there exists a cover V = ∪Vj such that k|Vj

= ki for some i with Vj ⊂ Ui.
Define K0 = ⊕iZUi

.
So we have F : ch(0 → K0) → P.
Define K−1(V ) = {(x, `), x ∈ K0(V ), ` : F (0) ' F (x)}. We then take the map K−1 → K0 to be (x, `) 7→

x and define (x, `)+(x′, `′) = (x+x′, ?) where ? is the map F (0) ' F (0)+F (0) `+`′

→ F (x)+F (x′) ' F (x+x′).
So we get a map pch(K−1 → K0) → P, and it remains to check equivalence.

Example 5. Pic(X) the groupoid of line bundles if ch(O∗
X → 0)

3 Osserman

Dimensions of Hulls
Mori used a lower bound on dimension of a space of morphisms (in terms of tangent and obstruction

spaces) as a key technical tool to prove good theorems about the existence of rational curves on varieties.
Background on obstruction theories:

Definition 4 (Thickening). Let π : A′ → A in Art(Λ, k). Then π is a thickening if it is surjective with
kerπmA′ = 0. ie, kerπ has a k-vector space structure.

Definition 5 (Obstruction Theory). Given a predeformation functor F , an obstruction theory for F is a
vector space V/k and ∀π : A′ → A thickenings, and all η ∈ F (A) an element ob(η,A′) ∈ V ⊗k kerπ such that

1. ob(η,A′) = 0 ⇐⇒ ∃η′ ∈ F (A′) such that η′|A = η.

2. If A′ → B → A with ker(A′ → A) = I, ker(A′ → B) = J then ob(η,B) is induced by ob(η,A′) by
V ⊗ I → V ⊗ I/J .

Theorem 2. Suppose F has a hull (R, ξ) and an obstruction theory taking values in V . Then dim Λ +
dimTF − dimV ≤ dimR ≤ dim Λ + dimTF ..

If Λ is regular, and the first inequality is an equality, then R is a complete intersection in Λ[[t1, . . . , tr]].
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Lemma 5. Suppose that f : F1 → F2 is a smooth morphism of predeformation functors and we have an
obstruction theory for F2 taking values in V . Then we obtain an obstruction theory for F1 taking values in
V .

Proof. Given A′ → A, η ∈ F1(A) set ob(η,A′) = ob(f(η), A′). By smoothness, this satisfies (i) and (ii) is a
diagram chase.

Proof of Theorem:
The lemma reduces to the case F = h̄R, since by definition of a hull, h̄R → F is smooth and induces an

isomorphism TR ' TF .
Let d = dimTR. Schlessinger constructs R as S/J where S = Λ[[t1, . . . , td]], so it is enough to prove that

J can be generated by ≤ dimV elements.
By the Artin-Rees lemma, we have J ∩ mn

S ⊆ JmS for some n. Set A′ = Λ[[t1, . . . td]]/(mSJ + mn
S) and

A = Λ[[t1, . . . , td]]/(J+mn
S). This gives a thickening 0 → I → A′ → A→ 0 where I = (J+mn

S)/(mSJ+mn
S) =

J/mSK.
We have an object ξA ∈ h̄R(A) and an obstruction ob(ξA, A′) to lifting to a map R→ A′.
We can write ob(ξA, A′) =

∑dim V
j=1 vj ⊗ x̄j where the vj form a basis for V and x̄j are images of some

xj ∈ J . We want to show that the xj generate J .
It is enough to see that the x̄j generate I = J/mSJ by Nakayama. Consider B := A′/(x̄i), this surjects

onto A with kernel I ′. We get ob(ξA, B) ∈ V ⊗ I ′, but by functoriality, this must be 0, so we have a lift
R→ B.

S B A

S R

................................................................................................................. ............ ................................................................................................................. ............

................................................................................................................. ............

............................................................................................................................................................................ .........
...

..............................................................................................................
...
.........
...

.............

.............

.............

.............

.........
...
.........
...

So we now want J ⊆ mSJ + (xi) + mn
S = ker(S → B)

We can choose some ϕ : S → S making the above commute by choosing ϕ(ti) appropriately. ϕ commutes
with the two maps to A, so is the identity modulo J + mn

S . In particular ϕ is the identity on mS/m
2
S , so ϕ

is an isomorphism.
So ϕ−1(J) ⊆ J + mn

S and so we get that J ⊆ ϕ(J) + ϕ(mn
S) = ϕ(J) + mn

S . By commutativity of the
square, ϕ(J) ⊆ mSJ + (xi) + mn

S , and so we have established the theorem.

Example 6. Say X,Y smooth varieties and let f : X → Y a morphism. We want to consider Deff

Fact: The tangent space is H0(X, f∗TY ) and there is an obstruction theory in H1(X, f∗TY ). If X is a
curve, then H0 −H1 of f∗TY is χ(f∗TY ) which is computed by Riemann-Roch.

Example 7 (Deformations of a Smooth Surface). Tangent space is H1(X,TX) and there is an obstruction
theory in H2(X,TX). If we understand H0(X,TX) then we can compute H1 − H2 of TX by computing
χ(TX), and we can use Riemann-Roch For Surfaces to do this.

eg, if X has finite (discrete) automorphism group in characteristic zero, then H0(X,TX) = 0.
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