1 Lieblich

Let S be a scheme and C = Schg the big étale site.
For P™, there are two competing descriptions.
1: Take hpn (T) = {OF! — £ surjective with .# invertible on T}/ ~.
2: P" should be A"\ {0} modulo G,, with G,,(T) = I'(T, 6%), G,, = SpecZ[t,t].
If 2 makes sense, then A"T1\ {0} — P" is a G,,-torsor.

Gjn—equivarig;y\ (0}

G,,, Torsor

X —Pp»
Forallt € T, o € G, f(at) = af(t).

Proposition 1. There is a natural equivalence of categories from Relatively Affine X-schemes with G, -
action and G, -equivariant maps and the opposite category of Z-graded quasicoherent Ox -algebras with graded
maps.

Idea: Given f:Y — X a G,, action on f.0y over X, we get it to break up as a sum of eigensheaves
induced by the character G,, — G,, by t — t™.

Example 1. Action of G, on A?fl = Specy Ox|[z1,...,%nt1] graded by total degree.
Let T — X be a G,-torsor. Then it is relatively affine by descent theory. (G, is affine).

Proposition 2. Given a G,,-torsor T — X there exists an invertible sheaf £ on X such that T ~
Specy Dicz-L", the action corresponds to the natural grading by i.

Proof. fppflocally on X. T =~ Specy (Ox [z, 27]). There is a descent datum given by the graded isomorphism
Olv,z71] ~ Oz, x71].

Note that for each graded piece, it has the form 2’&.

Etc. O

A Gy, equivariant map Specy ®.%% = T — A"1\{0} is contained in T — A™*! which is Spec y ®>¢L" —
Specy Ox|z1,...,Tns1] which is the same as a graded map Ox[z1,. .., Tn11] — Bi>0-L", and so it’s enough
to look at 0%t — & surjective.

Conclusion: The functor of points tells us that in fact A"*1\ {0} — P" is a G,,-torsor.

Let G be a group scheme and X a scheme with a G-action. We would love to make a quotient X/G such
that X — X/G is a G-torsor.

We will do that by allowing X/G to be a stack.

Definition 1 (Quotient Stack). The quotient stack [X/G] has as fiber category over Y the following:

Objects are pairs (T — Y, @) with T — 'Y a G-torsor and ¢ : T — X a G-equivariant morphism, with the
arrows v : T — T’ commuting with the maps T — Y, T' — Y such that ¥ is a G-equivariant isomorphism
and @' = .

Note, there exists a natural map v : X — [X/G] by



G><X<a—X

trivial torsor

X

With h(g,z) — h - gz with the first mapping down to (hg,x), and both map to hg - x because it is an
action.

Claim: v makes X a G-torsor over [X/G].

Proof. 1ff
X —Y X[X/G] X

Yy —— [X/G]
What is a fiber product over a stack?

Definition 2. Given morphisms of stacks a: X — % and 3 : % — % the fiber product has fiber categories
(2 X X )r ={(x,y,p)|x € X1,y € U, : a(x) ~B(y) is an isomorphism in Zr}.

Example 2. (X xx/q Y)r-
1.z2eX(T),yeY(T),y:T—-Y
2. v(z) € [X/G] corresponds to the pullback of X x X = X toy*U - U — X and y*U — T.

So ¢ takes the diagram
GxT y*U X

T

to a choice of point U(T). So the isomorphism (z,y,¢) — (z',y',¢’) are precisely the identity maps
because X and Y are schemes, so we get a discrete groupoid.

And so we get a G-torsor. O

Note that if G acted freely, we don’t need a stack, but we always get one, no matter how bad the G-action
is.

X)/QT\ﬁ\Y

\/

Example 3. Then (X Xz Y)r is made up of triples o € X(T), 8 € Y(T) and ¢ : foa — goa an
isomorphism and (f opry) o (a x 8) = (f opra) o (a x 3)

So we get a map X XY — X xXY.

And then Isom(pri f,prig) = X XY — X xX Y is our map.

Definition 3 (Representable Morphism). A morphism of stacks & — % is representable if VT — ¥,
ZayT — T is equivalent to a scheme.



Example 4. [x/G|r is to set of maps U — T, so this is the category of G-torsors, [x/G] = BG. So
x = [x/(Z/2)] is finite étale of degree 2. So we can think of it as half of a point.

2 QOlsson

We're going to talk about Picard Stacks. Reminder of the definition [omitted, see Day 6]

K* € OI=10(T) (that is, K—! — K©)

So we get pch(K*) by taking pch(K*)y to be objects x € K°(U) and morphisms x — y is an element
z € K~Y(U) such that dz = y — .

And so we get ch(K).

If & is a Picard stack, then HOM(ch(K), &) — HOM(pch(K), &) is an isomorphism.

Remark 1. pch(K) — ch(K) is fully faithful

Remark 2. f: Kf — K; induces a morphism of Picard stacks ch(f) : ch(K1) — ch(Ka).

Suppose fi1,fo : Ki — K3 and a homotopy h between fi, fo. (that is, h : KY — K;l such that
Ve € K9, fi(z) — folx) = dh(x) and fi' — f5' = hd). Then we get an isomorphism of morphisms
ch(h) : ch(f1) — ch(f2).

That is, for all x € pch(K1), we get an isomorphism ch(f1)(z) — ch(f2)(z). So for each x € K there is
az€ Kyt such that dz = fa(z) — fi(x).

Lemma 1. If K1 is flasque, then pch(K) is a stack.

Proof. We have a map 7 : pch(K) — ch(K), and it is fully faithful. So all we must do is check essential
surjectivity. Let U C T be open and x € ch(K)y. Let £ be the sheaf on U which to any any open set
V C U associates the set of pairs (y,¢) with y € K°(V) and £ : 7(y) — x|y in ch(K)y.

Claim: . is a K~ !|y-torsor. The reason is that if we assume that we have (y/,¢') € &, and
m(y)

ze K1

-1
zly ———7(y)

And so & is classified by an element [.#] € HY (U, K~1|y) = 0. O

Observations:

1. The sheaf associated to the presheaf U — the set of isomorphism classes in ch(K*)y. So then
HOK*) =K’/ Im(K~! — KY)

2. What is the automorphism group of an object # € ch(K*)|y? It is S ~1(K*) because z € K°(U)
should have Aut(x) = {z € K~ 1(U)|dz = v — z = 0}.

Corollary 1. If f : Ki — K3 is a quasi-isomorphism, then ch(f) : ch(K1) — ch(Ks) is an equivalence.
Define CI=19(T) ¢ CI=1%(T) to be the full subcategory of complexes K~ — K with K~ injective.
Theorem 1. ch induces an equivalence to 2-categories C1=1:0) (T') — (Picard Stacks over T).

Corollary 2. The category of Picard stacks with isomorphism classes of morphisms is equivalent to the
category DI=2ONT) (Derived Category)

Lemma 2. f: 2 — % a morphism of stacks and f: X — Y is the corresponding map of sheaves of
isomorphism classes. Assume that f is an isomorphism and for oll U C T and x € Zy the map of sheaves
Aut g (x) — Autey (f(z)) is an isomorphism. Then f is an isomorphism.



Proof. Given x,y € Zy we want Isomg (z,y) — Isomg (f(x), f(y)) to be an isomorphism. Injectivity
follows from «, 8 : z — vy, f(a) = f(B) : f(x) — f(y) then o' o 3 € ker(Autx(z) — Autey (f(z)) implies
that a =

Surjectivity follows from o : f(z) — f(y). It is enough to show that o is in the image locally, so x,y —
the same thing in X. So locally there exists 7 :  — y such that o1 o f(7) : f(z) — f(z).

Essential Surjectivity: y € %7, there exists a covering 7' = U;U; and (x;,¥;) such that z; € 2y, and
i : f(xs) ~ ylu, in Zy,. Then on U; there exists a unique isomorphism oy; : x;|y,; — ;|v,; such that the
following diagram commutes:

f(xl) Uwf@f(lﬁ) Uij
l; 0
Ylu,,

With oy 0 oy, 0ix * xilu,,, — Zk|v,,, are both equal to the unique morphism filling in the top of the
above diagram after restricting to Usjy. O

Lemma 3. Let & be a Picard stack over T. {U;} a collection of open subsets and k; € P(U;). For all i,
K = ®,Zy, (where Zy,, = HZ for j:U; = T)

Then there exists a morphism F : ch(0 — K) — & and isoms o;; F(1 € Zy,(U;)) ~ k, and the data
(F,{0;}) is unique up to unique isomorphism.

Lemma 4. Let & be a Picard stack over T. Then there exists K € CI7VONT) and an isomorphism
ch(K)~ 2.

Proof. We choose data {U; C T} for all ¢ € T and for all ¢ we choose k; € &(U;), making these choices such
that for all V' C T, k € &y and there exists a cover V' = UV} such that k[y, = k; for some i with V; C U;.
Define K° = &,Zy,.

So we have F : ch(0 — K°) — 2.

Define K~1(V) = {(x,£),2 € K%(V),{: F(0) ~ F(x)}. We then take the map K~! — K° to be (z,/) —
x and define (x,£)+ (2, ') = (x+2',?) where 7 is the map F(0) ~ F'(0)+ F(0) g F(z)+F(z') ~ F(z+2').

So we get a map pch(K~! — K%) — 2, and it remains to check equivalence. O

Example 5. Pic(X) the groupoid of line bundles if ch(0% — 0)

3 Osserman

Dimensions of Hulls
Mori used a lower bound on dimension of a space of morphisms (in terms of tangent and obstruction
spaces) as a key technical tool to prove good theorems about the existence of rational curves on varieties.
Background on obstruction theories:

Definition 4 (Thickening). Let w7 : A’ — A in Art(A, k). Then w is a thickening if it is surjective with
kermm 4. = 0. de, ker m has a k-vector space structure.

Definition 5 (Obstruction Theory). Given a predeformation functor F, an obstruction theory for F is a
vector space V/k and ¥V : A" — A thickenings, and alln € F(A) an element ob(n, A') € V @y ker 7 such that

1. ob(n, A") =0 <= 3 € F(A) such that /|4 = 1.

2. If A - B — A with ker(A" — A) = I, ker(A’ — B) = J then ob(n, B) is induced by ob(n, A’) by
Vel-Velll.

Theorem 2. Suppose F has a hull (R,€) and an obstruction theory taking values in V. Then dim A +
dimTr —dimV <dim R < dimA +dimTF..
If A is regular, and the first inequality is an equality, then R is a complete intersection in A[[t1,. .., t.]].



Lemma 5. Suppose that f : Fy — F5 is a smooth morphism of predeformation functors and we have an
obstruction theory for Fy taking values in V. Then we obtain an obstruction theory for Fi taking values in
V.

Proof. Given A’ — A, n € F1(A) set ob(n, A") = ob(f(n), A’). By smoothness, this satisfies (i) and (ii) is a
diagram chase. O

Proof of Theorem:

The lemma reduces to the case F = hp, since by definition of a hull, kg — F is smooth and induces an
isomorphism Tr ~ TF.

Let d = dim Tg. Schlessinger constructs R as S/J where S = A[[t1,...,t4]], so it is enough to prove that
J can be generated by < dim V' elements.

By the Artin-Rees lemma, we have J Nm% C Jmg for some n. Set A’ = A[[t1,...t4]]/(mgJ + m%) and
A= A[[t1,...,tq]]/(J+m%). This gives a thickening0 — I — A" — A — 0 where I = (J4+m%)/(mgJ+m}%) =
J/msK.

We have an object £4 € hp(A) and an obstruction ob(£4, A’) to lifting to a map R — A’.

We can write ob(£4, A') = Z;h:niv vj; @ T; where the v; form a basis for V and Z; are images of some
z; € J. We want to show that the x; generate J.

It is enough to see that the Z; generate I = J/mgJ by Nakayama. Consider B := A’/(Z;), this surjects
onto A with kernel I’. We get ob(4, B) € V ® I, but by functoriality, this must be 0, so we have a lift
R — B.

___>_R

S
|
|
|
v
S B A
So we now want J C mgJ + (z;) + m% = ker(S — B)
We can choose some ¢ : S — S making the above commute by choosing ¢(¢;) appropriately. ¢ commutes
with the two maps to A, so is the identity modulo J + m%. In particular ¢ is the identity on ms/m%, SO
is an isomorphism.

So o7 1(J) C J +m? and so we get that J C p(J) + ¢(m?) = ¢(J) + m%. By commutativity of the
square, ¢(J) C mgJ + (x;) + m%, and so we have established the theorem.

Example 6. Say X,Y smooth varieties and let f : X — Y a morphism. We want to consider Def ¢
Fact: The tangent space is HO(X, f*Ty) and there is an obstruction theory in H (X, f*Ty). If X is a
curve, then HO — H' of f*Ty is x(f*Ty) which is computed by Riemann-Roch.

Example 7 (Deformations of a Smooth Surface). Tangent space is H'(X,Tx) and there is an obstruction
theory in H*(X,Tx). If we understand H°(X,Tx) then we can compute H' — H? of Tx by computing
x(Tx), and we can use Riemann-Roch For Surfaces to do this.

eg, if X has finite (discrete) automorphism group in characteristic zero, then H°(X,Tx) = 0.



