1 Lieblich

Let S be a scheme and $\mathcal{C}=S c h_{S}$ the big étale site.
For \mathbb{P}^{n}, there are two competing descriptions.
1: Take $h_{\mathbb{P}^{n}}(T)=\left\{\mathscr{O}_{T}^{n+1} \rightarrow \mathscr{L}\right.$ surjective with \mathscr{L} invertible on $\left.T\right\} / \simeq$.
2: \mathbb{P}^{n} should be $\mathbb{A}^{n+1} \backslash\{0\}$ modulo \mathbb{G}_{m} with $\mathbb{G}_{m}(T)=\Gamma\left(T, \mathscr{O}_{T}^{*}\right), \mathbb{G}_{m}=\operatorname{Spec} \mathbb{Z}\left[t, t^{-1}\right]$.
If 2 makes sense, then $\mathbb{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ is a \mathbb{G}_{m}-torsor.

Proposition 1. There is a natural equivalence of categories from Relatively Affine X-schemes with \mathbb{G}_{m} action and \mathbb{G}_{m}-equivariant maps and the opposite category of \mathbb{Z}-graded quasicoherent \mathscr{O}_{X}-algebras with graded maps.

Idea: Given $f: Y \rightarrow X$ a \mathbb{G}_{m} action on $f_{*} \mathscr{O}_{Y}$ over X, we get it to break up as a sum of eigensheaves induced by the character $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ by $t \rightarrow t^{n}$.

Example 1. Action of \mathbb{G}_{m} on $\mathbb{A}_{X}^{n+1}=\operatorname{Spec}_{X} \mathscr{O}_{X}\left[x_{1}, \ldots, x_{n+1}\right]$ graded by total degree.
Let $T \rightarrow X$ be a \mathbb{G}_{m}-torsor. Then it is relatively affine by descent theory. (\mathbb{G}_{m} is affine).
Proposition 2. Given a \mathbb{G}_{m}-torsor $T \rightarrow X$ there exists an invertible sheaf \mathscr{L} on X such that $T \simeq$ $\operatorname{Spec}_{X} \oplus_{i \in \mathbb{Z}} \mathscr{L}^{i}$, the action corresponds to the natural grading by i.

Proof. fppf locally on $X . T \simeq \operatorname{Spec}_{X}\left(\mathscr{O}_{X}\left[x, x^{-1}\right]\right)$. There is a descent datum given by the graded isomorphism $\mathscr{O}\left[x, x^{-1}\right] \simeq \mathscr{O}\left[x, x^{-1}\right]$.

Note that for each graded piece, it has the form $x^{i} \mathscr{O}$.
Etc.
A \mathbb{G}_{m} equivariant map $\operatorname{Spec}_{X} \oplus \mathscr{L}^{i}=T \rightarrow \mathbb{A}^{n+1} \backslash\{0\}$ is contained in $\bar{T} \rightarrow \mathbb{A}^{n+1}$ which is $\operatorname{Spec}_{X} \oplus \geq 0 \mathscr{L}^{i} \rightarrow$ $\operatorname{Spec}_{X} \mathscr{O}_{X}\left[x_{1}, \ldots, x_{n+1}\right]$ which is the same as a graded map $\mathscr{O}_{X}\left[x_{1}, \ldots, x_{n+1}\right] \rightarrow \oplus_{i \geq 0} \mathscr{L}^{i}$, and so it's enough to look at $\mathscr{O}_{X}^{n+1} \rightarrow \mathscr{L}$ surjective.

Conclusion: The functor of points tells us that in fact $\mathbb{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ is a \mathbb{G}_{m}-torsor.
Let G be a group scheme and X a scheme with a G-action. We would love to make a quotient X / G such that $X \rightarrow X / G$ is a G-torsor.

We will do that by allowing X / G to be a stack.
Definition 1 (Quotient Stack). The quotient stack $[X / G]$ has as fiber category over Y the following:
Objects are pairs $(T \rightarrow Y, \varphi)$ with $T \rightarrow Y$ a G-torsor and $\varphi: T \rightarrow X$ a G-equivariant morphism, with the arrows $\psi: T \rightarrow T^{\prime}$ commuting with the maps $T \rightarrow Y, T^{\prime} \rightarrow Y$ such that ψ is a G-equivariant isomorphism and $\varphi^{\prime} \psi=\varphi$.

Note, there exists a natural map $\nu: X \rightarrow[X / G]$ by

X

With $h(g, x) \mapsto h \cdot g x$ with the first mapping down to $(h g, x)$, and both map to $h g \cdot x$ because it is an action.

Claim: ν makes X a G-torsor over $[X / G]$.

What is a fiber product over a stack?
Definition 2. Given morphisms of stacks $\alpha: \mathscr{X} \rightarrow \mathscr{Z}$ and $\beta: \mathscr{Y} \rightarrow \mathscr{Z}$ the fiber product has fiber categories $(\mathscr{X} \times \mathscr{Z} \mathscr{Y})_{T}=\left\{(x, y, \varphi) \mid x \in \mathscr{X}_{T}, y \in \mathscr{Y}_{T}, \varphi: \alpha(x) \simeq \beta(y)\right.$ is an isomorphism in $\left.\mathscr{Z}_{T}\right\}$.
Example 2. $\left(X \times_{[X / G]} Y\right)_{T}$.

1. $x \in X(T), y \in Y(T), y: T \rightarrow Y$
2. $\nu(x) \in[X / G]$ corresponds to the pullback of $X \times X \rightrightarrows X$ to $y^{*} U \rightarrow U \rightarrow X$ and $y^{*} U \rightarrow T$.

to a choice of point $U(T)$. So the isomorphism $(x, y, \varphi) \rightarrow\left(x^{\prime}, y^{\prime}, \varphi^{\prime}\right)$ are precisely the identity maps because X and Y are schemes, so we get a discrete groupoid.

And so we get a G-torsor.
Note that if G acted freely, we don't need a stack, but we always get one, no matter how bad the G-action is.

\mathscr{Z}
Example 3. Then $(X \times \mathscr{Z} Y)_{T}$ is made up of triples $\alpha \in X(T), \beta \in Y(T)$ and $\varphi: f \circ \alpha \rightarrow g \circ \alpha$ an isomorphism and $\left(f \circ p r_{1}\right) \circ(\alpha \times \beta) \simeq\left(f \circ p r_{2}\right) \circ(\alpha \times \beta)$

So we get a map $X \times \mathscr{z} Y \rightarrow X \times Y$.
And then $\operatorname{Isom}\left(p r_{1}^{*} f, p r_{2}^{*} g\right)=X \times_{\mathscr{Z}} Y \rightarrow X \times Y$ is our map.
Definition 3 (Representable Morphism). A morphism of stacks $\mathscr{X} \rightarrow \mathscr{Y}$ is representable if $\forall T \rightarrow \mathscr{Y}$, $\mathscr{X}_{\mathscr{Y}} T \rightarrow T$ is equivalent to a scheme.

Example 4. $[* / G]_{T}$ is to set of maps $U \rightarrow T$, so this is the category of G-torsors, $[* / G]=B G$. So $* \mapsto[* /(\mathbb{Z} / 2)]$ is finite étale of degree 2. So we can think of it as half of a point.

2 Olsson

We're going to talk about Picard Stacks. Reminder of the definition [omitted, see Day 6]
$K^{*} \in C^{[-1,0]}(T)$ (that is, $K^{-1} \rightarrow K^{0}$)
So we get $p c h\left(K^{*}\right)$ by taking $p c h\left(K^{*}\right)_{U}$ to be objects $x \in K^{0}(U)$ and morphisms $x \rightarrow y$ is an element $z \in K^{-1}(U)$ such that $d z=y-x$.

And so we get $\operatorname{ch}(K)$.
If \mathscr{P} is a Picard stack, then $\operatorname{HOM}(\operatorname{ch}(K), \mathscr{P}) \rightarrow \operatorname{HOM}(p c h(K), \mathscr{P})$ is an isomorphism.
Remark 1. $p \operatorname{ch}(K) \rightarrow c h(K)$ is fully faithful
Remark 2. $f: K_{1}^{*} \rightarrow K_{2}^{*}$ induces a morphism of Picard stacks $\operatorname{ch}(f): \operatorname{ch}\left(K_{1}\right) \rightarrow \operatorname{ch}\left(K_{2}\right)$.
Suppose $f_{1}, f_{2}: K_{1}^{*} \rightarrow K_{2}^{*}$ and a homotopy h between f_{1}, f_{2}. (that is, $h: K_{1}^{0} \rightarrow K_{2}^{-1}$ such that $\forall x \in K_{1}^{0}, f_{1}(x)-f_{2}(x)=d h(x)$ and $f_{1}^{-1}-f_{2}^{-1}=h d$). Then we get an isomorphism of morphisms $\operatorname{ch}(h): \operatorname{ch}\left(f_{1}\right) \rightarrow \operatorname{ch}\left(f_{2}\right)$.

That is, for all $x \in \operatorname{pch}\left(K_{1}\right)$, we get an isomorphism $\operatorname{ch}\left(f_{1}\right)(x) \rightarrow \operatorname{ch}\left(f_{2}\right)(x)$. So for each $x \in K_{1}^{0}$ there is $a z \in K_{2}^{-1}$ such that $d z=f_{2}(x)-f_{1}(x)$.

Lemma 1. If K^{-1} is flasque, then pch (K) is a stack.
Proof. We have a map $\pi: \operatorname{pch}(K) \rightarrow \operatorname{ch}(K)$, and it is fully faithful. So all we must do is check essential surjectivity. Let $U \subset T$ be open and $x \in \operatorname{ch}(K)_{U}$. Let \mathscr{L} be the sheaf on U which to any any open set $V \subset U$ associates the set of pairs (y, ℓ) with $y \in K^{0}(V)$ and $\ell:\left.\pi(y) \rightarrow x\right|_{V}$ in $c h(K)_{V}$.

Claim: \mathscr{L} is a $\left.K^{-1}\right|_{V}$-torsor. The reason is that if we assume that we have $\left(y^{\prime}, \ell^{\prime}\right) \in \mathscr{L}$, and $\pi(y)$

And so \mathscr{L} is classified by an element $[\mathscr{L}] \in H^{1}\left(U,\left.K^{-1}\right|_{V}\right)=0$.
Observations:

1. The sheaf associated to the presheaf $U \mapsto$ the set of isomorphism classes in $c h\left(K^{*}\right)_{U}$. So then $\mathscr{H}^{0}\left(K^{*}\right)=K^{0} / \operatorname{Im}\left(K^{-1} \rightarrow K^{0}\right)$
2. What is the automorphism group of an object $\left.x \in \operatorname{ch}\left(K^{*}\right)\right|_{U}$? It is $\mathscr{H}^{-1}\left(K^{*}\right)$ because $x \in K^{0}(U)$ should have $\operatorname{Aut}(x)=\left\{z \in K^{-1}(U) \mid d z=x-x=0\right\}$.

Corollary 1. If $f: K_{1}^{*} \rightarrow K_{2}^{*}$ is a quasi-isomorphism, then $\operatorname{ch}(f): \operatorname{ch}\left(K_{1}\right) \rightarrow \operatorname{ch}\left(K_{2}\right)$ is an equivalence.
Define $\tilde{C}^{[-1,0]}(T) \subset C^{[-1,0]}(T)$ to be the full subcategory of complexes $K^{-1} \rightarrow K^{0}$ with K^{-1} injective.
Theorem 1. ch induces an equivalence to 2-categories $\tilde{C}^{[-1,0]}(T) \rightarrow$ (Picard Stacks over $\left.T\right)$.
Corollary 2. The category of Picard stacks with isomorphism classes of morphisms is equivalent to the category $D^{[-1,0]}(T)$ (Derived Category)

Lemma 2. $f: \mathscr{X} \rightarrow \mathscr{Y}$ a morphism of stacks and $\bar{f}: X \rightarrow Y$ is the corresponding map of sheaves of isomorphism classes. Assume that \bar{f} is an isomorphism and for all $U \subset T$ and $x \in \mathscr{X}_{U}$ the map of sheaves Aut $\mathscr{X}(x) \rightarrow$ Aut $_{\mathscr{Y}}(f(x))$ is an isomorphism. Then f is an isomorphism.

Proof. Given $x, y \in \mathscr{X}_{U}$ we want $\operatorname{Isom}_{\mathscr{X}}(x, y) \rightarrow \operatorname{Isom}_{\mathscr{Y}}(f(x), f(y))$ to be an isomorphism. Injectivity follows from $\alpha, \beta: x \rightarrow y, f(\alpha)=f(\beta): f(x) \rightarrow f(y)$ then $\alpha^{-1} \circ \beta \in \operatorname{ker}\left(\operatorname{Aut}_{\mathscr{Z}}(x) \rightarrow \operatorname{Aut} \mathscr{y}(f(x))\right.$ implies that $\alpha=\beta$

Surjectivity follows from $\sigma: f(x) \rightarrow f(y)$. It is enough to show that σ is in the image locally, so $x, y \mapsto$ the same thing in X. So locally there exists $\tau: x \rightarrow y$ such that $\sigma^{-1} \circ f(\tau): f(x) \rightarrow f(x)$.

Essential Surjectivity: $y \in \mathscr{Y}_{T}$, there exists a covering $T=\cup_{i} U_{i}$ and $\left(x_{i}, \ell_{i}\right)$ such that $x_{i} \in \mathscr{X}_{U_{i}}$ and $\ell_{i}:\left.f\left(x_{i}\right) \simeq y\right|_{U_{i}}$ in $\mathscr{Y}_{U_{i}}$. Then on U_{i} there exists a unique isomorphism $\sigma_{i j}:\left.\left.x_{i}\right|_{U_{i j}} \rightarrow x_{j}\right|_{U_{i j}}$ such that the following diagram commutes:
$\left.\left.f\left(x_{i}\right)\right|_{U_{i j}} \xrightarrow{f\left(\sigma_{i j}\right.} f\left(x_{j}\right)\right|_{U_{i j}}$

$\left.y\right|_{U_{i j}}$
With $\sigma_{i j} \circ \sigma_{j k}, \sigma_{i k}:\left.\left.x_{i}\right|_{U_{i j k}} \rightarrow x_{k}\right|_{U_{i j k}}$ are both equal to the unique morphism filling in the top of the above diagram after restricting to $U_{i j k}$.

Lemma 3. Let \mathscr{P} be a Picard stack over T. $\left\{U_{i}\right\}$ a collection of open subsets and $k_{i} \in \mathscr{P}\left(U_{i}\right)$. For all i, $K=\oplus_{i} \mathbb{Z}_{U_{i}}\left(\right.$ where $\mathbb{Z}_{u_{i}}=j_{!} \mathbb{Z}$ for $\left.j: U_{i} \hookrightarrow T\right)$

Then there exists a morphism $F: \operatorname{ch}(0 \rightarrow K) \rightarrow \mathscr{P}$ and isoms $\sigma_{i} ; F\left(1 \in \mathbb{Z}_{U_{i}}\left(U_{i}\right)\right) \simeq k$, and the data $\left(F,\left\{\sigma_{i}\right\}\right)$ is unique up to unique isomorphism.

Lemma 4. Let \mathscr{P} be a Picard stack over T. Then there exists $K \in C^{[-1,0]}(T)$ and an isomorphism $c h(K) \simeq \mathscr{P}$.
Proof. We choose data $\left\{U_{i} \subset T\right\}$ for all $i \in I$ and for all i we choose $k_{i} \in \mathscr{P}\left(U_{i}\right)$, making these choices such that for all $V \subset T, k \in \mathscr{P}_{V}$ and there exists a cover $V=\cup V_{j}$ such that $\left.k\right|_{V_{j}}=k_{i}$ for some i with $V_{j} \subset U_{i}$. Define $K^{0}=\oplus_{i} \mathbb{Z}_{U_{i}}$.

So we have $F: \operatorname{ch}\left(0 \rightarrow K^{0}\right) \rightarrow \mathscr{P}$.
Define $K^{-1}(V)=\left\{(x, \ell), x \in K^{0}(V), \ell: F(0) \simeq F(x)\right\}$. We then take the map $K^{-1} \rightarrow K^{0}$ to be $(x, \ell) \mapsto$ x and define $(x, \ell)+\left(x^{\prime}, \ell^{\prime}\right)=\left(x+x^{\prime}, ?\right)$ where $?$ is the map $F(0) \simeq F(0)+F(0) \xrightarrow{\ell+\ell^{\prime}} F(x)+F\left(x^{\prime}\right) \simeq F\left(x+x^{\prime}\right)$.

So we get a map $p \operatorname{ch}\left(K^{-1} \rightarrow K^{0}\right) \rightarrow \mathscr{P}$, and it remains to check equivalence.
Example 5. $\operatorname{Pic}(X)$ the groupoid of line bundles if $\operatorname{ch}\left(\mathscr{O}_{X}^{*} \rightarrow 0\right)$

3 Osserman

Dimensions of Hulls
Mori used a lower bound on dimension of a space of morphisms (in terms of tangent and obstruction spaces) as a key technical tool to prove good theorems about the existence of rational curves on varieties.

Background on obstruction theories:
Definition 4 (Thickening). Let $\pi: A^{\prime} \rightarrow A$ in $\operatorname{Art}(\Lambda, k)$. Then π is a thickening if it is surjective with $\operatorname{ker} \pi \mathfrak{m}_{A^{\prime}}=0$. ie, $\operatorname{ker} \pi$ has a k-vector space structure.

Definition 5 (Obstruction Theory). Given a predeformation functor F, an obstruction theory for F is a vector space V / k and $\forall \pi: A^{\prime} \rightarrow A$ thickenings, and all $\eta \in F(A)$ an element ob $\left(\eta, A^{\prime}\right) \in V \otimes_{k}$ ker π such that

1. ob $\left(\eta, A^{\prime}\right)=0 \Longleftrightarrow \exists \eta^{\prime} \in F\left(A^{\prime}\right)$ such that $\left.\eta^{\prime}\right|_{A}=\eta$.
2. If $A^{\prime} \rightarrow B \rightarrow A$ with $\operatorname{ker}\left(A^{\prime} \rightarrow A\right)=I$, $\operatorname{ker}\left(A^{\prime} \rightarrow B\right)=J$ then $o b(\eta, B)$ is induced by ob $\left(\eta, A^{\prime}\right)$ by $V \otimes I \rightarrow V \otimes I / J$.

Theorem 2. Suppose F has a hull (R, ξ) and an obstruction theory taking values in V. Then $\operatorname{dim} \Lambda+$ $\operatorname{dim} T_{F}-\operatorname{dim} V \leq \operatorname{dim} R \leq \operatorname{dim} \Lambda+\operatorname{dim} T_{F}$.

If Λ is regular, and the first inequality is an equality, then R is a complete intersection in $\Lambda\left[\left[t_{1}, \ldots, t_{r}\right]\right]$.

Lemma 5. Suppose that $f: F_{1} \rightarrow F_{2}$ is a smooth morphism of predeformation functors and we have an obstruction theory for F_{2} taking values in V. Then we obtain an obstruction theory for F_{1} taking values in V.

Proof. Given $A^{\prime} \rightarrow A, \eta \in F_{1}(A)$ set $o b\left(\eta, A^{\prime}\right)=o b\left(f(\eta), A^{\prime}\right)$. By smoothness, this satisfies (i) and (ii) is a diagram chase.

Proof of Theorem:
The lemma reduces to the case $F=\bar{h}_{R}$, since by definition of a hull, $\bar{h}_{R} \rightarrow F$ is smooth and induces an isomorphism $T_{R} \simeq T_{F}$.

Let $d=\operatorname{dim} T_{R}$. Schlessinger constructs R as S / J where $S=\Lambda\left[\left[t_{1}, \ldots, t_{d}\right]\right]$, so it is enough to prove that J can be generated by $\leq \operatorname{dim} V$ elements.

By the Artin-Rees lemma, we have $J \cap \mathfrak{m}_{S}^{n} \subseteq J \mathfrak{m}_{S}$ for some n. Set $A^{\prime}=\Lambda\left[\left[t_{1}, \ldots t_{d}\right]\right] /\left(\mathfrak{m}_{S} J+\mathfrak{m}_{S}^{n}\right)$ and $A=\Lambda\left[\left[t_{1}, \ldots, t_{d}\right]\right] /\left(J+\mathfrak{m}_{S}^{n}\right)$. This gives a thickening $0 \rightarrow I \rightarrow A^{\prime} \rightarrow A \rightarrow 0$ where $I=\left(J+\mathfrak{m}_{S}^{n}\right) /\left(\mathfrak{m}_{S} J+\mathfrak{m}_{S}^{n}\right)=$ $J / \mathfrak{m}_{S} K$.

We have an object $\xi_{A} \in \bar{h}_{R}(A)$ and an obstruction $\operatorname{ob}\left(\xi_{A}, A^{\prime}\right)$ to lifting to a map $R \rightarrow A^{\prime}$.
We can write $o b\left(\xi_{A}, A^{\prime}\right)=\sum_{j=1}^{\operatorname{dim} V} v_{j} \otimes \bar{x}_{j}$ where the v_{j} form a basis for V and \bar{x}_{j} are images of some $x_{j} \in J$. We want to show that the x_{j} generate J.

It is enough to see that the \bar{x}_{j} generate $I=J / \mathfrak{m}_{S} J$ by Nakayama. Consider $B:=A^{\prime} /\left(\bar{x}_{i}\right)$, this surjects onto A with kernel I^{\prime}. We get $o b\left(\xi_{A}, B\right) \in V \otimes I^{\prime}$, but by functoriality, this must be 0 , so we have a lift $R \rightarrow B$.

So we now want $J \subseteq \mathfrak{m}_{S} J+\left(x_{i}\right)+\mathfrak{m}_{S}^{n}=\operatorname{ker}(S \rightarrow B)$
We can choose some $\varphi: S \rightarrow S$ making the above commute by choosing $\varphi\left(t_{i}\right)$ appropriately. φ commutes with the two maps to A, so is the identity modulo $J+\mathfrak{m}_{S}^{n}$. In particular φ is the identity on $\mathfrak{m}_{S} / \mathfrak{m}_{S}^{2}$, so φ is an isomorphism.

So $\varphi^{-1}(J) \subseteq J+\mathfrak{m}_{S}^{n}$ and so we get that $J \subseteq \varphi(J)+\varphi\left(\mathfrak{m}_{S}^{n}\right)=\varphi(J)+\mathfrak{m}_{S}^{n}$. By commutativity of the square, $\varphi(J) \subseteq \mathfrak{m}_{S} J+\left(x_{i}\right)+\mathfrak{m}_{S}^{n}$, and so we have established the theorem.

Example 6. Say X, Y smooth varieties and let $f: X \rightarrow Y$ a morphism. We want to consider Def_{f}
Fact: The tangent space is $H^{0}\left(X, f^{*} T_{Y}\right)$ and there is an obstruction theory in $H^{1}\left(X, f^{*} T_{Y}\right)$. If X is a curve, then $H^{0}-H^{1}$ of $f^{*} T_{Y}$ is $\chi\left(f^{*} T_{Y}\right)$ which is computed by Riemann-Roch.
Example 7 (Deformations of a Smooth Surface). Tangent space is $H^{1}\left(X, T_{X}\right)$ and there is an obstruction theory in $H^{2}\left(X, T_{X}\right)$. If we understand $H^{0}\left(X, T_{X}\right)$ then we can compute $H^{1}-H^{2}$ of T_{X} by computing $\chi\left(T_{X}\right)$, and we can use Riemann-Roch For Surfaces to do this.
eg, if X has finite (discrete) automorphism group in characteristic zero, then $H^{0}\left(X, T_{X}\right)=0$.

