
Lieblich

Definition 1 (Category Fibered in Groupoids). A functor F : D → C is a category fibered in groupoids if

1. For all β : c1 → c2 and for all d2 ∈ D such that F (d2) = c2, there exists α : d1 → d2 such that
F (α) = β.

2. For all
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That is, given β3, there exists a unique α3 such that F (α3) = β3 and everything commutes.

Definition 2 (Fiber Category). Given c ∈ C, the fiber category Dc has objects d ∈ D such that F (d) = c
and arrows α : d1 → d2 such that F (α) = idc

Definition 3 (Morphism of Categories Fibered in Groupoids). A 1-morphism of categories fibered in
groupoids F1 : D1 → C and F2 : D2 → C is a functor F : D1 → D2 which commutes with the functors
to C.

F is an equivalence (isomorphism) if ∀c ∈ C the induced Fc : (D1)c → (D2)c is an equivalence.

Note: hom(D1,D2) is a groupoid (arrows are natural isomorphisms of functors D1 → D2)
So now take C = SchS . We have our old friend, Func(C◦, Sets) and our even older friends Schemes over

S.
We note that our old(er) friends naturally define categories fibered in groupoids.

Example 1. D1 = hX , X ∈ SchS. So look at homC(hX ,D2)
'→ (D2)X is an equivalence of categories.

Remember that M0 is the moduli of varieties (we’ve been vague here, but it is some object such that
every X → M0 determines and is determined by a flat family V → X)

Example 2. X 7→ QCoh(X) the category of quasicoherent sheaves on X with isomorphisms as the arrows
defines a category fibered in groupoids.

Bonus: Descent Theory = Gluing = Sheafiness

Gluing in general: Fix D → C = SchS thought of as a Site (say, big Étale)

Definition 4 (Category of Descent Data). Given a covering {Yi → X} the category of descent data with
respect to that covering is D{Yi→X} with objects (di, ϕij) where di ∈ DYi and ϕij : di|Yi×XYj → dj |Yi×XYj ,
that is, pr∗1di → pr∗2dj, an isomorphism, such that ϕjk ◦ϕij = ϕik on Yi×X Yj ×X Yk, with the arrows being
(di, ϕij) → (d′i, ϕ

′
ij) being di → d′i compatible with ϕij , ϕ

′
ij.

Observation: Any object of DX gives rise to an object of D{Yi→X} by di = d|Yi
= ψ∗(d) and ψipr1 = ψjpr2

so we get a natural isomorphism pr∗1ψ
∗
i → pr∗2ψ

∗
j and so pr∗1di ' pr∗2dj , so the cocycle condition is built into

pseudofunctors.
Upshot: Get a functor DX → D{Yi→X}.

Definition 5 (Stack). D is a prestack on C if ν{Yi→X} is fully faithful for all {Yi → X} (descent morphisms)
D is a stack if ν{Yi→X} is an equivalence of categories for all {Yi → X} (effective descent morphism)

Prestack: A Reinterpretation
Given a, b ∈ DX , so now we define a presheaf I(a, b) on SchX as follows: given f : Y → X assign

I(a, b)(f) = IsomDY
(f∗a, f∗b).

Lemma 1. D is a prestack iff ∀X, a, b, I(a, b) is a sheaf on XET .
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Exercise 1. Prove this.

This is that the isomorphisms form a sheaf.
Just as one can sheafify a presheaf, one can stackify a prestack (or in fact, any category fibered in

groupoids)

Theorem 1. Given a fibered category D → C with C a site, there exists a stack Ds and a 1-morphism
D → Ds over C such that for all stacks S → C, the map hom(Ds,S) → hom(D,S) is an equivalence of
groupoids.

Proposition 1. QCoh is a stack on (Spec Z)fppf = (SchZ)fppf .

Proposition 2. Sheaves on (Spec Z)ET form a stack. (ShT = {sheaves on TET )

Our Problems: Is it a stack
5: The subspaces of a vector space V : STACK - because they’re a Sheaf, and a sheaf is a stack.
4: Closed subschemes of X: STACK - sheaf
3: hom(X,Y ): STACK - sheaf
2: Line bundles on X: STACK, but not a sheaf (fails in as many ways as possible, but it is a stack due

to descent theory)
1: Curves of Genus g = 1: Stack, but not a sheaf (See Ravi’s second talk)
0: Varieties: Prestack (Isom(X,Y ) is a sheaf), but not a stack.

Example 3. There exists X/C a smooth 3-fold, with a descent datum relative to Spec C → Spec R which
does NOT descent (so it is not quasi-projective)

Funny: A scheme X is a sheaf, so a family X → Y is a sheaf on TET . So {Schemes} ⊂ Sheaves, so why
not take the stacky closure of Sch in Sh?

Olsson

Definition 6 (Picard Category). A Picard Category is a groupoid P together with the following extra
structure:

1. A functor + : P × P → P

2. An isomorphism of functors:

P × P

P
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σx,y,z : (x+ y) + z ' x+ (y + z)

3. A natural transformation τx,y : x+ y ' y + x commuting with +.

4. For all x ∈ P , the functor P → P by y 7→ x+ y is an equivalence

5. Pentagon Axiom: The following diagram commutes
x+ ((y + z) + w)

x+ (y + (z + w))

(x+ y) + (z + w)

((x+ y) + z) + w

(x+ (y + z)) + w
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6. τx,x = id for all x ∈ P

7. ∀x, y ∈ P , τx,y ◦ τy,x = id
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8. Hexagon Axiom: The following diagram commutes:
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Example 4. If X is a scheme, then Pic(X), the groupoid of all line bundles on X with ⊗ : Pic(X)×Pic(X) →
Pic(X)

Example 5. f : X → Y a morphism of schemes, and I a quasicoherent OX-module. Then an I-extension
of X over Y is a diagram

Y

X X ′
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where j is square zero together with an isomorphism I
ι→ ker(OX′ → OX). Let ExalY (X, I) to be the

category of I-extensions of X over Y .
Remark: I → OX′ → OX over f−1OY

If A→ B is a morphism of sheaves of algebras on a topological space T and I is a B-module, we get the
category ExalA(B, I) (Extensions of Algebras)

So now, ExalY (X, I) is a groupoid. Take
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Such that it commutes with the isomorphisms of I with ker(OX′
i
→ OX), and so we get an isomorphism.

If U ⊆ X, then there is a restriction functor ExalY (X, I) → ExalY (U, IU )
For u : I → J , a maps of OX-modules, there is a functor u∗ : ExalY (X, I) → ExalY (X, J) so we get

I ↪→ OX′ → OX as a morphism of f−1OY algebras. OX′
u

= OX′ ⊕I J = (OX′ [J ])/{(i,−u(i))|i ∈ I}.
So we get a map X → X ′

u from J which commutes with the map X → X ′ by I as morphisms over Y .

Lemma 2. If I and J are two quasi-coherent OX-modules, then

(pr1∗, pr2∗) : ExalY (X, I ⊕ J) → ExalY (X, I)× ExalY (X, J)

is an equivalence of categories.

Take Σ : I × I → I to be the summation map, so we define the + map + : ExalY (X, I)×ExalY (X, I) by
taking first the isomorphism with ExalY (X, I ⊕ I) and then Σ∗. σ, τ are determined by taking more or less
the canonical isomorphisms, and then everything works out.
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Example 6. Let f : A→ B be a homomorphisms of abelian groups. Define Pf to have objects the elements
x ∈ B and morphisms x→ y elements h ∈ A with f(h) = y − x

Let T be a topological space (or a site)

Definition 7 (Picard Stack). A Picard (pre-)Stack over T is a (pre)Stack P with morphisms of stacks
(+, σ, τ) such that for all U ⊆ T , the fiber (PU ,+, σ, τ) is a Picard category.

Example 7. Pic(−) defines a Picard Stack on |X|.

Example 8. ExalY (−, I) gives a Picard stack on |X|

Example 9. f : A→ B is a homomorphism of sheaves of abelian groups on a topological space T , then get
Picard prestack pch(A→ B)

Definition 8 (Morphism of Picard Stacks). Let T be a topological space and P1,P2 Picard Stacks over T .
Then a morphism of Picard Stacks P1 → P2 is a pair (F, ι) where F : P1 → P2 is a morphism of stacks and
ι : F (x+ y) ' F (x) + F (y) such that the following commute
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We get another Picard stack HOM(P1,P2) with an identity element, kernels and ⊗.
Osserman
Continuing the Proof of Schlessinger’s Criterion.
Already shown that (H1)-(H3) imply that we have a Hull. Suppose that F has a hull (R, ξ). Then (H3)

follows from TR ' TF and R noetherian of finite dimension.
Now suppose that we have p′ : A′ → A and p′′ : A′′ → A in Art(Λ, k) with p′′ a surjection. For

(H1), we want (*) F (A′ ×A A′′) → F (A′) ×F (A) F (A′′) to be surjective. Suppose that we have η′ ∈ F (A′)
and η′′ ∈ F (A′′) both restricting to η ∈ F (A). Since h̄R → F is smooth (by exercise) is it surjective, so
∃u′ : R→ A′ such that u′(ξ) = η′.

Also, using smoothness applied to p′′, ∃u′′ : R→ A′′ with u′′(ξ) = η′′. Set ζ = u′×uu
′′(ξ) ∈ F (A′×AA

′′),
this lifts (η′, η′′) and this proves (H1).

For (H2), assume that A = k, A′′ = k[ε]. We want (*) injective. Suppose that v ∈ F (A′ ×A A′′) also
restricts to η′ and η′′, we want v = ζ. Keeping the same u′ : R → A′, apply smoothness to the map
A′×k k[ε] → A′ and obtain to obtain q′′ : R→ k[ε] such that u′× q′′(ξ) = v. Because TR ' TF , and we have
u′× u′′(ξ) = ζ, we have u′′, q′′ ∈ TR so since u′′(ξ) = ζ|A′′ = v|A′′ = q′′(ξ) so u′′ = q′′ so ζ = v. This is (H2),
and so done.

So now assume that (H1)-(H4) are satisfied. We already have a hull (R, ξ). We want to show that it
prorepresents F . That is, for all Artin rings A, we have a bijection hR(A) → F (A). It’s always a surjection
by smoothness, so injectivity must be checked.

We prove this by induction on the length of A. Let p′ : A′ → A be a small thickening and let I be the
kernel. Suppose hR(A) → F (A) is a bijection. We want to deduce that we have a bijection for A′ as well.
For all η ∈ F (A), we have hR(p)−1(η) and F (p)−1(η) (the −1’s denote inverse images, not inverse functions),
and both are pseudotorsors under TF ⊗ I ' TR ⊗ I. By functoriality, they are compatible.

But we have injection, so they must be in bijection. Since this holds for all η ∈ F (A), we have a bijection
hR(A′) ' F (A′). So (R, ξ) prorepresents F , by induction.
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If F is prorepresentable, then (*) is always bijective because A′ ×A A′′ is a categorical fiber product in
Ârt(Λ, k).

And so Schlessinger’s Criterion is established.
More Examples:

Example 10 (Deformations of a quotient scheme). Let XΛ be a scheme over Λ and EΛ a quasicoherent
sheaf on XΛ. Write X,E for the restrictions to k.

Fix E → F surjective as a quasicoherent quotient. Then DefF ,E sends A to {EΛ|A → FA flat restricting
to E → F after ⊗k}.

Note: No automorphism to worry about, so we could even have a notion of equality of quotients via
equality of kernels.

Theorem 2. DefF ,E is a deformation functor, and satisfies (H4). If XΛ is proper and E is coherent, then
DefF ,E also satisfies (H3), and so is prorepresentable.

Note: For representability of the global version (Quot Scheme) need projective. But we see that the local
behavior is still scheme-like under properness hypothesis. This hints at algebraic spaces.

Sketch of proof:
Given A′ → A, A′′ → A and FA′ ,FA′′ both restricting to FA on A, set B = A′ ×A A′′ and set

FB = FA′ ×FA
FA′′ and get a surjection EB := EΛ|B → FB by EB → EA′ ×EA

EA′′ → FB . This is not
necessarily an isomorphism.

This gives (H1), but we actually constructed an inverse to (*), so we get (H2) and (H4) also.
The tangent space DefF ,E is H0(X,H om(G ,F )) where G = ker(E → F ). (this is an exercise)
Under our extra hypothesis, this is finite dimensional, and so (H3) is satisfied.

Corollary 1. Given XΛ/Λ and Z ⊆ X, then DefZ,X is a deformation functor and satisfies (H4). If further
XΛ is proper over Λ, then (H3) is satisfied and so prorepresentable.

Proof. Set EΛ = OXΛ , then closed subschemes are just the quasicoherent quotients of this. Apply the
Theorem

Example 11. Given XΛ, YΛ over Λ, f : X → Y over k, and Deff sends A to {fA : XΛ|A → YΛ|A over A
restricting to f on A}.

Corollary 2. If XΛ, YΛ are locally of finite type, XΛ is flat over Λ and YΛ separated over A, then Deff is
a deformation functor and satisfies (H4). If XΛ, YΛ are proper, then also get (H3).
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