Lieblich

Definition 1 (Category Fibered in Groupoids). A functor F : D — C is a category fibered in groupoids if

1. For all B : ¢1 — co and for all dy € D such that F(ds) = co, there exists o : di — da such that
F(a) = 0.

2. For all
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That is, given (3, there exists a unique az such that F(ag) = B3 and everything commutes.

Definition 2 (Fiber Category). Given ¢ € C, the fiber category D. has objects d € D such that F(d) = ¢
and arrows « : dy — dy such that F(a) = id,

Definition 3 (Morphism of Categories Fibered in Groupoids). A I-morphism of categories fibered in
groupoids Fy : D1 — C and Fy : Dy — C is a functor F : D; — Dy which commutes with the functors
to C.

F is an equivalence (isomorphism) if Ve € C the induced F. : (D1). — (D2). is an equivalence.

Note: hom(D;,Ds) is a groupoid (arrows are natural isomorphisms of functors D; — Da)

So now take C = Schs. We have our old friend, Func(C®, Sets) and our even older friends Schemes over
S.

We note that our old(er) friends naturally define categories fibered in groupoids.
Example 1. D; = hx, X € Schg. So look at hom¢(hx,D2) =5 (D2)x is an equivalence of categories.

Remember that .#( is the moduli of varieties (we’ve been vague here, but it is some object such that
every X — #y determines and is determined by a flat family ¥ — X)

Example 2. X — QCoh(X) the category of quasicoherent sheaves on X with isomorphisms as the arrows
defines a category fibered in groupoids.
Bonus: Descent Theory = Gluing = Sheafiness

Gluing in general: Fix D — C = Schg thought of as a Site (say, big Etale)

Definition 4 (Category of Descent Data). Given a covering {Y; — X} the category of descent data with
respect to that covering is @{Yiﬂx} with objects (d;, pi;) where d; € Dy, and ¢;; : d; YixxY; = dilyixxv;,
that is, prid; — prsd;, an isomorphism, such that @ i 0 i; = @ir, on Y; X x Y; X x Yy, with the arrows being
(dis pij) — (d}, ¢i;) being di — d; compatible with pij, ;.

Observation: Any object of Zx gives rise to an object of Zy, . x} by d; = d|y, = ¢*(d) and Y;pri = ;prs
so we get a natural isomorphism priy; — pri¢; and so prid; ~ prid;, so the cocycle condition is built into
pseudofunctors.

Upshot: Get a functor Zx — Py, x}-

Definition 5 (Stack). D is a prestack on C if vyy, . xy is fully faithful for all {Y; — X} (descent morphisms)
D is a stack if vy, xy is an equivalence of categories for all {Y; — X} (effective descent morphism)

Prestack: A Reinterpretation
Given a,b € Dy, so now we define a presheaf I(a,b) on Schy as follows: given f : Y — X assign

I(av b)(f) = ISOIIIDY (f*aa f*b)
Lemma 1. D is a prestack iff VX, a,b, I(a,b) is a sheaf on Xgr.



Exercise 1. Prove this.

This is that the isomorphisms form a sheaf.
Just as one can sheafify a presheaf, one can stackify a prestack (or in fact, any category fibered in
groupoids)

Theorem 1. Given a fibered category D — C with C a site, there exists a stack D° and a I-morphism
D — D over C such that for all stacks S — C, the map hom(D*,S) — hom(D,S) is an equivalence of
groupoids.

Proposition 1. QCoh is a stack on (SpecZ)ppr = (Schz) rpps-
Proposition 2. Sheaves on (SpecZ)gr form a stack. (Shy = {sheaves on Tgr)

Our Problems: Is it a stack

5: The subspaces of a vector space V: STACK - because they’re a Sheaf, and a sheaf is a stack.

4: Closed subschemes of X: STACK - sheaf

3: hom(X,Y): STACK - sheaf

2: Line bundles on X: STACK, but not a sheaf (fails in as many ways as possible, but it is a stack due
to descent theory)

1: Curves of Genus g = 1: Stack, but not a sheaf (See Ravi’s second talk)

0: Varieties: Prestack (Isom(X,Y") is a sheaf), but not a stack.

Example 3. There exists X/C a smooth 3-fold, with a descent datum relative to Spec C — SpecR which
does NOT descent (so it is not quasi-projective)

Funny: A scheme X is a sheaf, so a family X — Y is a sheaf on Tgr. So {Schemes} C Sheaves, so why
not take the stacky closure of Sch in Sh?
Olsson

Definition 6 (Picard Category). A Picard Category is a groupoid P together with the following extra
structure:

1. A functor+: P x P — P

2. An isomorphism of functors:
PxPxP

+ x1 1x+
P x P/:\P x P
N4
P
Onyzt(@+y)tz=a+(y+2)
3. A natural transformation T, 1 x +y =y + x commuting with +.

4. For all x € P, the functor P — P by y — x + y is an equivalence
(z+9) + (2 4+ w)

O-x,y,erw/ \\0-w+y,z,w
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5. Pentagon Aziom: The following diagram commutes (v )Tw,y-irw,u(/y )

6. Ty =1d for allz € P

7. Vx,y € P, T,y 0Ty =1id



8. Hexagon Axiom: The following diagram commutes:
T4 (y+2) ———a+ (2 +y)

o o
(z+y)+2 (z+2)+y
T T

2+ (z+y) —T—(z+2)+y

Example 4. If X is a scheme, then Pic(X), the groupoid of all line bundles on X with @ : Pic(X)xPic(X) —
Pic(X)

Example 5. f: X — Y a morphism of schemes, and I a quasicoherent Ox-module. Then an I-extension
of X overY is a diagram

X(%X/
f f/
Y

where j is square zero together with an isomorphism I = ker(Ox: — Ox). Let Exaly (X, 1) to be the
category of I-extensions of X over Y.
Remark: I — Ox — Ox over {10y
If A — B is a morphism of sheaves of algebras on a topological space T and I is a B-module, we get the
category Exal (B, I) (Extensions of Algebras)
So now, Exaly (X, I) is a groupoid. Take
X5

Y
Such that it commutes with the isomorphisms of I with ker(ﬁX; — Ox), and so we get an isomorphism.
IfU C X, then there is a restriction functor Exaly (X, I) — Exaly (U, Iy)
For u: I — J, a maps of Ox-modules, there is a functor u, : Exaly (X,I) — Exaly(X,J) so we get
I — Ox: — Ox as a morphism of f 1Oy algebras. Ox: = Ox: ©1J = (Ox/[J])/{(i, —u(i))]i € I}.

So we get a map X — X, from J which commutes with the map X — X' by I as morphisms overY.
Lemma 2. If I and J are two quasi-coherent Ox-modules, then
(pri«, pros) : Exaly (X, I @ J) — Exaly (X, ) x Exaly (X, J)
is an equivalence of categories.

Take ¥ : I x I — I to be the summation map, so we define the + map + : Exaly (X, I) x Exaly (X, I) by
taking first the isomorphism with Exaly (X, 7 @ I) and then X,. o, 7 are determined by taking more or less
the canonical isomorphisms, and then everything works out.



Example 6. Let f: A — B be a homomorphisms of abelian groups. Define Py to have objects the elements
x € B and morphisms © — y elements h € A with f(h) =y —«

Let T be a topological space (or a site)

Definition 7 (Picard Stack). A Picard (pre-)Stack over T is a (pre)Stack P with morphisms of stacks
(4+,0,7) such that for all U C T, the fiber (Py,+,0,7) is a Picard category.

Example 7. Pic(—) defines a Picard Stack on |X]|.
Example 8. Exaly (—,I) gives a Picard stack on | X]|

Example 9. f: A — B is a homomorphism of sheaves of abelian groups on a topological space T, then get
Picard prestack pch(A — B)

Definition 8 (Morphism of Picard Stacks). Let T' be a topological space and Py, Py Picard Stacks over T.
Then a morphism of Picard Stacks Py — Pa is a pair (F, 1) where F : Py — Pa is a morphism of stacks and
v: F(x+y) ~ F(x) + F(y) such that the following commute

F(y) + F(z) «~————F(2) + F(y)
Fly+x) ) F(x+vy)

F((z+y) + 2) ————F(z +y) + F(z) —— (F(z) + F(y)) + F(2)

F(o) o

Flz+ (y+2) ——>F(z) + Fy + 2) ——> F(2) + (F(y) + F(2))

We get another Picard stack HOM(Py, P2) with an identity element, kernels and ®.

Osserman

Continuing the Proof of Schlessinger’s Criterion.

Already shown that (H1)-(H3) imply that we have a Hull. Suppose that F has a hull (R, ). Then (H3)
follows from Tk ~ Tr and R noetherian of finite dimension.

Now suppose that we have p' : A — A and p” : A” — A in Art(A, k) with p” a surjection. For
(H1), we want (*) F'(A" x4 A”) — F(A") xpay F(A") to be surjective. Suppose that we have ' € F(A’)
and 1" € F(A") both restricting to n € F(A). Since hg — F is smooth (by exercise) is it surjective, so
Ju' : R — A’ such that v'(§) =1n'.

Also, using smoothness applied to p”, Ju” : R — A” with v/ (§) = 1. Set { = u' x,u"(§) € F(A x4 A"),
this lifts (n’,n") and this proves (H1).

For (H2), assume that A = k, A” = k[e]. We want (*) injective. Suppose that v € F(A’ x4 A”) also
restricts to ' and n”, we want v = (. Keeping the same v’ : R — A’, apply smoothness to the map
A’ X kle] — A’ and obtain to obtain ¢” : R — k[e] such that v’ X ¢""(§) = v. Because Tg ~ T, and we have
u' xu” (&) = ¢, we have v, ¢ € Tg so since u”’(§) = {|a» = v|ar = ¢"(§) so v” = ¢’ so { =wv. This is (H2),
and so done.

So now assume that (H1)-(H4) are satisfied. We already have a hull (R,&). We want to show that it
prorepresents F. That is, for all Artin rings A, we have a bijection hg(A) — F(A). It’s always a surjection
by smoothness, so injectivity must be checked.

We prove this by induction on the length of A. Let p’ : A’ — A be a small thickening and let I be the
kernel. Suppose hr(A) — F(A) is a bijection. We want to deduce that we have a bijection for A" as well.
For all n € F(A), we have hr(p)~'(n) and F(p)~!(n) (the —1’s denote inverse images, not inverse functions),
and both are pseudotorsors under Tr ® I ~ Tr ® I. By functoriality, they are compatible.

But we have injection, so they must be in bijection. Since this holds for all € F(A), we have a bijection
hr(A’) ~ F(A’). So (R,&) prorepresents F, by induction.



If F is prorepresentable, then (*) is always bijective because A’ x 4 A” is a categorical fiber product in
Art(A, k).

And so Schlessinger’s Criterion is established.

More Examples:

Example 10 (Deformations of a quotient scheme). Let X be a scheme over A and &n a quasicoherent
sheaf on Xp. Write X, & for the restrictions to k.

Fix & — F surjective as a quasicoherent quotient. Then Def g o sends A to {Ex|a — Fa flat restricting
to & — F after @k}.

Note: No automorphism to worry about, so we could even have a motion of equality of quotients via
equality of kernels.

Theorem 2. Defz ¢ is a deformation functor, and satisfies (H4). If Xa is proper and & is coherent, then
Defz & also satisfies (H3), and so is prorepresentable.

Note: For representability of the global version (Quot Scheme) need projective. But we see that the local
behavior is still scheme-like under properness hypothesis. This hints at algebraic spaces.

Sketch of proof:

Given A" — A, A” — A and F4,.% 4+ both restricting to .%4 on A, set B = A’ x4 A” and set
Fp = Fa Xz, Fyar and get a surjection p 1= &rlp — Fp by & — Ear Xg, Eav — Fp. This is not
necessarily an isomorphism.

This gives (H1), but we actually constructed an inverse to (*), so we get (H2) and (H4) also.

The tangent space Def z ¢ is HO(X, #om(¥4, F)) where & = ker(& — F). (this is an exercise)

Under our extra hypothesis, this is finite dimensional, and so (H3) is satisfied.

Corollary 1. Given Xp/A and Z C X, then Defz x is a deformation functor and satisfies (H4). If further
X is proper over A, then (H3) is satisfied and so prorepresentable.

Proof. Set &, = Ox,, then closed subschemes are just the quasicoherent quotients of this. Apply the
Theorem O

Example 11. Given X, Y over A, f: X — Y over k, and Def; sends A to {fa : Xala — Yala over A
restricting to f on A}.

Corollary 2. If X,Yx are locally of finite type, Xa is flat over A and Y5 separated over A, then Defy is
a deformation functor and satisfies (H4). If Xa,Ya are proper, then also get (H3).



