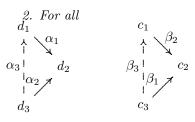
Lieblich

Definition 1 (Category Fibered in Groupoids). A functor $F : \mathcal{D} \to \mathcal{C}$ is a category fibered in groupoids if

1. For all $\beta : c_1 \to c_2$ and for all $d_2 \in \mathcal{D}$ such that $F(d_2) = c_2$, there exists $\alpha : d_1 \to d_2$ such that $F(\alpha) = \beta$.



That is, given β_3 , there exists a unique α_3 such that $F(\alpha_3) = \beta_3$ and everything commutes.

Definition 2 (Fiber Category). Given $c \in C$, the fiber category \mathcal{D}_c has objects $d \in \mathcal{D}$ such that F(d) = cand arrows $\alpha : d_1 \to d_2$ such that $F(\alpha) = id_c$

Definition 3 (Morphism of Categories Fibered in Groupoids). A 1-morphism of categories fibered in groupoids $F_1 : \mathcal{D}_1 \to \mathcal{C}$ and $F_2 : \mathcal{D}_2 \to \mathcal{C}$ is a functor $F : \mathcal{D}_1 \to \mathcal{D}_2$ which commutes with the functors to \mathcal{C} .

F is an equivalence (isomorphism) if $\forall c \in \mathcal{C}$ the induced $F_c : (\mathcal{D}_1)_c \to (\mathcal{D}_2)_c$ is an equivalence.

Note: hom $(\mathcal{D}_1, \mathcal{D}_2)$ is a groupoid (arrows are natural isomorphisms of functors $\mathcal{D}_1 \to \mathcal{D}_2$)

So now take $C = Sch_S$. We have our old friend, $Func(C^\circ, Sets)$ and our even older friends Schemes over S.

We note that our old(er) friends naturally define categories fibered in groupoids.

Example 1. $\mathcal{D}_1 = h_X, X \in Sch_S$. So look at $\hom_{\mathcal{C}}(h_X, \mathcal{D}_2) \xrightarrow{\simeq} (\mathcal{D}_2)_X$ is an equivalence of categories.

Remember that \mathscr{M}_0 is the moduli of varieties (we've been vague here, but it is some object such that every $X \to \mathscr{M}_0$ determines and is determined by a flat family $\mathscr{V} \to X$)

Example 2. $X \mapsto QCoh(X)$ the category of quasicoherent sheaves on X with isomorphisms as the arrows defines a category fibered in groupoids.

Bonus: Descent Theory = Gluing = Sheafiness

Gluing in general: Fix $\mathcal{D} \to \mathcal{C} = Sch_S$ thought of as a Site (say, big Étale)

Definition 4 (Category of Descent Data). Given a covering $\{Y_i \to X\}$ the category of descent data with respect to that covering is $\mathscr{D}_{\{Y_i \to X\}}$ with objects (d_i, φ_{ij}) where $d_i \in \mathcal{D}_{Y_i}$ and $\varphi_{ij} : d_i|_{Y_i \times XY_j} \to d_j|_{Y_i \times XY_j}$, that is, $pr_1^*d_i \to pr_2^*d_j$, an isomorphism, such that $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $Y_i \times_X Y_j \times_X Y_k$, with the arrows being $(d_i, \varphi_{ij}) \to (d'_i, \varphi'_{ij})$ being $d_i \to d'_i$ compatible with $\varphi_{ij}, \varphi'_{ij}$.

Observation: Any object of \mathscr{D}_X gives rise to an object of $\mathscr{D}_{\{Y_i \to X\}}$ by $d_i = d|_{Y_i} = \psi^*(d)$ and $\psi_i pr_1 = \psi_j pr_2$ so we get a natural isomorphism $pr_1^*\psi_i^* \to pr_2^*\psi_j^*$ and so $pr_1^*d_i \simeq pr_2^*d_j$, so the cocycle condition is built into pseudofunctors.

Upshot: Get a functor $\mathscr{D}_X \to \mathscr{D}_{\{Y_i \to X\}}$.

Definition 5 (Stack). \mathcal{D} is a prestack on \mathcal{C} if $\nu_{\{Y_i \to X\}}$ is fully faithful for all $\{Y_i \to X\}$ (descent morphisms) \mathcal{D} is a stack if $\nu_{\{Y_i \to X\}}$ is an equivalence of categories for all $\{Y_i \to X\}$ (effective descent morphism)

Prestack: A Reinterpretation

Given $a, b \in \mathcal{D}_X$, so now we define a presheaf I(a, b) on Sch_X as follows: given $f : Y \to X$ assign $I(a, b)(f) = \text{Isom}_{\mathcal{D}_Y}(f^*a, f^*b)$.

Lemma 1. \mathcal{D} is a prestack iff $\forall X, a, b, I(a, b)$ is a sheaf on X_{ET} .

Exercise 1. Prove this.

This is that the isomorphisms form a sheaf.

Just as one can sheafify a presheaf, one can stackify a prestack (or in fact, any category fibered in groupoids)

Theorem 1. Given a fibered category $\mathcal{D} \to \mathcal{C}$ with \mathcal{C} a site, there exists a stack \mathcal{D}^s and a 1-morphism $\mathcal{D} \to \mathcal{D}^s$ over \mathcal{C} such that for all stacks $\mathcal{S} \to \mathcal{C}$, the map $\hom(\mathcal{D}^s, \mathcal{S}) \to \hom(\mathcal{D}, \mathcal{S})$ is an equivalence of groupoids.

Proposition 1. *QCoh is a stack on* $(\text{Spec } \mathbb{Z})_{fppf} = (Sch_{\mathbb{Z}})_{fppf}$.

Proposition 2. Sheaves on $(\text{Spec }\mathbb{Z})_{ET}$ form a stack. $(Sh_T = \{\text{sheaves on } T_{ET})$

Our Problems: Is it a stack

5: The subspaces of a vector space V: STACK - because they're a Sheaf, and a sheaf is a stack.

4: Closed subschemes of X: STACK - sheaf

3: hom(X, Y): STACK - sheaf

2: Line bundles on X: STACK, but not a sheaf (fails in as many ways as possible, but it is a stack due to descent theory)

1: Curves of Genus g = 1: Stack, but not a sheaf (See Ravi's second talk)

0: Varieties: Prestack (Isom(X, Y) is a sheaf), but not a stack.

Example 3. There exists X/\mathbb{C} a smooth 3-fold, with a descent datum relative to $\operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{R}$ which does NOT descent (so it is not quasi-projective)

Funny: A scheme X is a sheaf, so a family $X \to Y$ is a sheaf on T_{ET} . So $\{Schemes\} \subset Sheaves$, so why not take the stacky closure of Sch in Sh?

<u>Olsson</u>

Definition 6 (Picard Category). A Picard Category is a groupoid \mathcal{P} together with the following extra structure:

1. A functor $+ : P \times P \rightarrow P$

 $\sigma_{x,y,z}: (x+y) + z \simeq x + (y+z)$

3. A natural transformation $\tau_{x,y}: x + y \simeq y + x$ commuting with +.

4. For all $x \in P$, the functor $P \to P$ by $y \mapsto x + y$ is an equivalence

$$(x+y) + (z+w)$$

$$\sigma_{x,y,z+w} \qquad \checkmark^{\sigma_{x+y,z,w}}$$

$$+ (y + (z+w)) \qquad ((x+y)+z) + w$$

$$\sigma_{y,z,w} \qquad \checkmark^{\sigma_{x,y,z}} \qquad \checkmark^{\sigma_{x,y,z}}$$

$$x + ((y+z) + (y+z)) + w$$

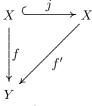
5. Pentagon Axiom: The following diagram commutes

- 6. $\tau_{x,x} = \text{id for all } x \in P$
- 7. $\forall x, y \in P, \ \tau_{x,y} \circ \tau_{y,x} = \mathrm{id}$

x

Example 4. If X is a scheme, then $\operatorname{Pic}(X)$, the groupoid of all line bundles on X with $\otimes : \operatorname{Pic}(X) \times \operatorname{Pic}(X) \to \mathbb{C}(X)$ $\operatorname{Pic}(X)$

Example 5. $f: X \to Y$ a morphism of schemes, and I a quasicoherent \mathcal{O}_X -module. Then an I-extension of X over Y is a diagram

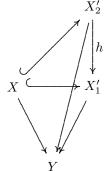


where j is square zero together with an isomorphism $I \xrightarrow{\iota} \ker(\mathscr{O}_{X'} \to \mathscr{O}_X)$. Let $\operatorname{Exal}_Y(X, I)$ to be the category of I-extensions of X over Y.

Remark: $I \to \mathcal{O}_{X'} \to \mathcal{O}_X$ over $f^{-1}\mathcal{O}_Y$

If $A \to B$ is a morphism of sheaves of algebras on a topological space T and I is a B-module, we get the category $\operatorname{Exal}_A(B, I)$ (Extensions of Algebras)

So now, $\operatorname{Exal}_{Y}(X, I)$ is a groupoid. Take



Such that it commutes with the isomorphisms of I with $\ker(\mathscr{O}_{X'_i} \to \mathscr{O}_X)$, and so we get an isomorphism. If $U \subseteq X$, then there is a restriction functor $\operatorname{Exal}_Y(X, I) \to \operatorname{Exal}_Y(U, I_U)$

For $u: I \to J$, a maps of \mathscr{O}_X -modules, there is a functor $u_*: \operatorname{Exal}_Y(X, I) \to \operatorname{Exal}_Y(X, J)$ so we get
$$\begin{split} I &\hookrightarrow \mathscr{O}_{X'} \to \mathscr{O}_X \text{ as a morphism of } f^{-1}\mathscr{O}_Y \text{ algebras. } \mathscr{O}_{X'_u} = \mathscr{O}_{X'} \oplus_I J = (\mathscr{O}_{X'}[J])/\{(i, -u(i)) | i \in I\}.\\ \text{So we get a map } X \to X'_u \text{ from } J \text{ which commutes with the map } X \to X' \text{ by } I \text{ as morphisms over } Y. \end{split}$$

Lemma 2. If I and J are two quasi-coherent \mathcal{O}_X -modules, then

$$(pr_{1*}, pr_{2*})$$
: Exal_Y $(X, I \oplus J) \to$ Exal_Y $(X, I) \times$ Exal_Y (X, J)

is an equivalence of categories.

Take $\Sigma: I \times I \to I$ to be the summation map, so we define the + map $+: \operatorname{Exal}_Y(X, I) \times \operatorname{Exal}_Y(X, I)$ by taking first the isomorphism with $\operatorname{Exal}_Y(X, I \oplus I)$ and then Σ_* . σ, τ are determined by taking more or less the canonical isomorphisms, and then everything works out.

Example 6. Let $f : A \to B$ be a homomorphisms of abelian groups. Define P_f to have objects the elements $x \in B$ and morphisms $x \to y$ elements $h \in A$ with f(h) = y - x

Let T be a topological space (or a site)

Definition 7 (Picard Stack). A Picard (pre-)Stack over T is a (pre)Stack \mathcal{P} with morphisms of stacks $(+, \sigma, \tau)$ such that for all $U \subseteq T$, the fiber $(\mathcal{P}_U, +, \sigma, \tau)$ is a Picard category.

Example 7. Pic(-) defines a Picard Stack on |X|.

Example 8. $\operatorname{Exal}_Y(-, I)$ gives a Picard stack on |X|

Example 9. $f: A \to B$ is a homomorphism of sheaves of abelian groups on a topological space T, then get Picard prestack $pch(A \to B)$

Definition 8 (Morphism of Picard Stacks). Let T be a topological space and $\mathcal{P}_1, \mathcal{P}_2$ Picard Stacks over T. Then a morphism of Picard Stacks $\mathcal{P}_1 \to \mathcal{P}_2$ is a pair (F, ι) where $F : \mathcal{P}_1 \to \mathcal{P}_2$ is a morphism of stacks and $\iota : F(x + y) \simeq F(x) + F(y)$ such that the following commute $F(y) + F(x) \longleftarrow F(x) + F(y)$

$$F(y + x) \leftarrow T(x) + F(y)$$

$$F(y + x) \leftarrow F(\tau) + F(x + y)$$

$$F((x + y) + z) \xrightarrow{F(\tau)} F(x + y) + F(z) \xrightarrow{\iota} (F(x) + F(y)) + F(z)$$

$$F(\sigma) \uparrow \qquad \sigma \uparrow$$

$$F(\sigma) \downarrow \qquad F(\sigma) + F(\sigma) + F(\sigma) + F(\sigma) + F(\sigma) + F(\sigma)$$

 $F(x + (y + z)) \xrightarrow{\iota} F(x) + F(y + z) \xrightarrow{\iota} F(x) + (F(y) + F(z))$

We get another Picard stack $HOM(\mathcal{P}_1, \mathcal{P}_2)$ with an identity element, kernels and \otimes . Osserman

Continuing the Proof of Schlessinger's Criterion.

Already shown that (H1)-(H3) imply that we have a Hull. Suppose that F has a hull (R,ξ) . Then (H3) follows from $T_R \simeq T_F$ and R noetherian of finite dimension.

Now suppose that we have $p': A' \to A$ and $p'': A'' \to A$ in $Art(\Lambda, k)$ with p'' a surjection. For (H1), we want (*) $F(A' \times_A A'') \to F(A') \times_{F(A)} F(A'')$ to be surjective. Suppose that we have $\eta' \in F(A')$ and $\eta'' \in F(A'')$ both restricting to $\eta \in F(A)$. Since $\bar{h}_R \to F$ is smooth (by exercise) is it surjective, so $\exists u': R \to A'$ such that $u'(\xi) = \eta'$.

Also, using smoothness applied to $p'', \exists u'' : R \to A''$ with $u''(\xi) = \eta''$. Set $\zeta = u' \times_u u''(\xi) \in F(A' \times_A A'')$, this lifts (η', η'') and this proves (H1).

For (H2), assume that A = k, $A'' = k[\epsilon]$. We want (*) injective. Suppose that $v \in F(A' \times_A A'')$ also restricts to η' and η'' , we want $v = \zeta$. Keeping the same $u' : R \to A'$, apply smoothness to the map $A' \times_k k[\epsilon] \to A'$ and obtain to obtain $q'' : R \to k[\epsilon]$ such that $u' \times q''(\xi) = v$. Because $T_R \simeq T_F$, and we have $u' \times u''(\xi) = \zeta$, we have $u'', q'' \in T_R$ so since $u''(\xi) = \zeta|_{A''} = v|_{A''} = q''(\xi)$ so u'' = q'' so $\zeta = v$. This is (H2), and so done.

So now assume that (H1)-(H4) are satisfied. We already have a hull (R,ξ) . We want to show that it prorepresents F. That is, for all Artin rings A, we have a bijection $h_R(A) \to F(A)$. It's always a surjection by smoothness, so injectivity must be checked.

We prove this by induction on the length of A. Let $p': A' \to A$ be a small thickening and let I be the kernel. Suppose $h_R(A) \to F(A)$ is a bijection. We want to deduce that we have a bijection for A' as well. For all $\eta \in F(A)$, we have $h_R(p)^{-1}(\eta)$ and $F(p)^{-1}(\eta)$ (the -1's denote inverse images, not inverse functions), and both are pseudotorsors under $T_F \otimes I \simeq T_R \otimes I$. By functoriality, they are compatible.

But we have injection, so they must be in bijection. Since this holds for all $\eta \in F(A)$, we have a bijection $h_R(A') \simeq F(A')$. So (R,ξ) prorepresents F, by induction.

If F is prorepresentable, then (*) is always bijective because $A' \times_A A''$ is a categorical fiber product in $Art(\Lambda, k)$.

And so Schlessinger's Criterion is established. More Examples:

Example 10 (Deformations of a quotient scheme). Let X_{Λ} be a scheme over Λ and \mathcal{E}_{Λ} a quasicoherent sheaf on X_{Λ} . Write X, \mathcal{E} for the restrictions to k.

Fix $\mathscr{E} \to \mathscr{F}$ surjective as a quasicoherent quotient. Then $\operatorname{Def}_{\mathscr{F},\mathscr{E}}$ sends A to $\{\mathscr{E}_{\Lambda}|_{A} \to \mathscr{F}_{A}$ flat restricting to $\mathscr{E} \to \mathscr{F}$ after $\otimes k\}$.

Note: No automorphism to worry about, so we could even have a notion of equality of quotients via equality of kernels.

Theorem 2. Def $_{\mathscr{F},\mathscr{E}}$ is a deformation functor, and satisfies (H4). If X_{Λ} is proper and \mathscr{E} is coherent, then Def $_{\mathscr{F},\mathscr{E}}$ also satisfies (H3), and so is prorepresentable.

Note: For representability of the global version (Quot Scheme) need projective. But we see that the local behavior is still scheme-like under properness hypothesis. This hints at algebraic spaces.

Sketch of proof:

Given $A' \to A$, $A'' \to A$ and $\mathscr{F}_{A'}, \mathscr{F}_{A''}$ both restricting to \mathscr{F}_A on A, set $B = A' \times_A A''$ and set $\mathscr{F}_B = \mathscr{F}_{A'} \times_{\mathscr{F}_A} \mathscr{F}_{A''}$ and get a surjection $\mathscr{E}_B := \mathscr{E}_{\Lambda}|_B \to \mathscr{F}_B$ by $\mathscr{E}_B \to \mathscr{E}_{A'} \times_{\mathscr{E}_A} \mathscr{E}_{A''} \to \mathscr{F}_B$. This is not necessarily an isomorphism.

This gives (H1), but we actually constructed an inverse to (*), so we get (H2) and (H4) also.

The tangent space $\operatorname{Def}_{\mathscr{F},\mathscr{E}}$ is $H^0(X, \mathscr{H}om(\mathscr{G}, \mathscr{F}))$ where $\mathscr{G} = \ker(\mathscr{E} \to \mathscr{F})$. (this is an exercise) Under our extra hypothesis, this is finite dimensional, and so (H3) is satisfied.

Corollary 1. Given X_{Λ}/Λ and $Z \subseteq X$, then $\text{Def}_{Z,X}$ is a deformation functor and satisfies (H4). If further X_{Λ} is proper over Λ , then (H3) is satisfied and so prorepresentable.

Proof. Set $\mathscr{E}_{\Lambda} = \mathscr{O}_{X_{\Lambda}}$, then closed subschemes are just the quasicoherent quotients of this. Apply the Theorem

Example 11. Given X_{Λ}, Y_{Λ} over Λ , $f : X \to Y$ over k, and Def_f sends A to $\{f_A : X_{\Lambda}|_A \to Y_{\Lambda}|_A$ over A restricting to f on $A\}$.

Corollary 2. If X_{Λ}, Y_{Λ} are locally of finite type, X_{Λ} is flat over Λ and Y_{Λ} separated over A, then Def_f is a deformation functor and satisfies (H4). If X_{Λ}, Y_{Λ} are proper, then also get (H3).