Lieblich
Definition 1 (Category Fibered in Groupoids). A functor $F: \mathcal{D} \rightarrow \mathcal{C}$ is a category fibered in groupoids if

1. For all $\beta: c_{1} \rightarrow c_{2}$ and for all $d_{2} \in \mathcal{D}$ such that $F\left(d_{2}\right)=c_{2}$, there exists $\alpha: d_{1} \rightarrow d_{2}$ such that $F(\alpha)=\beta$.

That is, given β_{3}, there exists a unique α_{3} such that $F\left(\alpha_{3}\right)=\beta_{3}$ and everything commutes.
Definition 2 (Fiber Category). Given $c \in \mathcal{C}$, the fiber category \mathcal{D}_{c} has objects $d \in \mathcal{D}$ such that $F(d)=c$ and arrows $\alpha: d_{1} \rightarrow d_{2}$ such that $F(\alpha)=\mathrm{id}_{c}$

Definition 3 (Morphism of Categories Fibered in Groupoids). A 1-morphism of categories fibered in groupoids $F_{1}: \mathcal{D}_{1} \rightarrow \mathcal{C}$ and $F_{2}: \mathcal{D}_{2} \rightarrow \mathcal{C}$ is a functor $F: \mathcal{D}_{1} \rightarrow \mathcal{D}_{2}$ which commutes with the functors to \mathcal{C}.
F is an equivalence (isomorphism) if $\forall c \in \mathcal{C}$ the induced $F_{c}:\left(\mathcal{D}_{1}\right)_{c} \rightarrow\left(\mathcal{D}_{2}\right)_{c}$ is an equivalence.
Note: $\operatorname{hom}\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is a groupoid (arrows are natural isomorphisms of functors $\mathcal{D}_{1} \rightarrow \mathcal{D}_{2}$)
So now take $\mathcal{C}=S c h_{S}$. We have our old friend, $\operatorname{Func}\left(\mathcal{C}^{\circ}, S e t s\right)$ and our even older friends Schemes over S.

We note that our old(er) friends naturally define categories fibered in groupoids.
Example 1. $\mathcal{D}_{1}=h_{X}, X \in S c h_{S}$. So look at $\operatorname{hom}_{\mathcal{C}}\left(h_{X}, \mathcal{D}_{2}\right) \xrightarrow{\simeq}\left(\mathcal{D}_{2}\right)_{X}$ is an equivalence of categories.
Remember that \mathscr{M}_{0} is the moduli of varieties (we've been vague here, but it is some object such that every $X \rightarrow \mathscr{M}_{0}$ determines and is determined by a flat family $\mathscr{V} \rightarrow X$)

Example 2. $X \mapsto Q C o h(X)$ the category of quasicoherent sheaves on X with isomorphisms as the arrows defines a category fibered in groupoids.

Bonus: Descent Theory $=$ Gluing $=$ Sheafiness
Gluing in general: Fix $\mathcal{D} \rightarrow \mathcal{C}=S c h_{S}$ thought of as a Site (say, big Étale)
Definition 4 (Category of Descent Data). Given a covering $\left\{Y_{i} \rightarrow X\right\}$ the category of descent data with respect to that covering is $\mathscr{D}_{\left\{Y_{i} \rightarrow X\right\}}$ with objects $\left(d_{i}, \varphi_{i j}\right)$ where $d_{i} \in \mathcal{D}_{Y_{i}}$ and $\varphi_{i j}:\left.\left.d_{i}\right|_{Y_{i} \times X} Y_{j} \rightarrow d_{j}\right|_{Y_{i} \times X} Y_{j}$, that is, $p r_{1}^{*} d_{i} \rightarrow p r_{2}^{*} d_{j}$, an isomorphism, such that $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k}$ on $Y_{i} \times_{X} Y_{j} \times_{X} Y_{k}$, with the arrows being $\left(d_{i}, \varphi_{i j}\right) \rightarrow\left(d_{i}^{\prime}, \varphi_{i j}^{\prime}\right)$ being $d_{i} \rightarrow d_{i}^{\prime}$ compatible with $\varphi_{i j}, \varphi_{i j}^{\prime}$.

Observation: Any object of \mathscr{D}_{X} gives rise to an object of $\mathscr{D}_{\left\{Y_{i} \rightarrow X\right\}}$ by $d_{i}=\left.d\right|_{Y_{i}}=\psi^{*}(d)$ and $\psi_{i} p r_{1}=\psi_{j} p r_{2}$ so we get a natural isomorphism $p r_{1}^{*} \psi_{i}^{*} \rightarrow p r_{2}^{*} \psi_{j}^{*}$ and so $p r_{1}^{*} d_{i} \simeq p r_{2}^{*} d_{j}$, so the cocycle condition is built into pseudofunctors.

Upshot: Get a functor $\mathscr{D}_{X} \rightarrow \mathscr{D}_{\left\{Y_{i} \rightarrow X\right\}}$.
Definition 5 (Stack). \mathcal{D} is a prestack on \mathcal{C} if $\nu_{\left\{Y_{i} \rightarrow X\right\}}$ is fully faithful for all $\left\{Y_{i} \rightarrow X\right\}$ (descent morphisms) \mathcal{D} is a stack if $\nu_{\left\{Y_{i} \rightarrow X\right\}}$ is an equivalence of categories for all $\left\{Y_{i} \rightarrow X\right\}$ (effective descent morphism)

Prestack: A Reinterpretation
Given $a, b \in \mathcal{D}_{X}$, so now we define a presheaf $I(a, b)$ on $S c h_{X}$ as follows: given $f: Y \rightarrow X$ assign $I(a, b)(f)=\operatorname{Isom}_{\mathcal{D}_{Y}}\left(f^{*} a, f^{*} b\right)$.

Lemma 1. \mathcal{D} is a prestack iff $\forall X, a, b, I(a, b)$ is a sheaf on $X_{E T}$.

Exercise 1. Prove this.

This is that the isomorphisms form a sheaf.
Just as one can sheafify a presheaf, one can stackify a prestack (or in fact, any category fibered in groupoids)

Theorem 1. Given a fibered category $\mathcal{D} \rightarrow \mathcal{C}$ with \mathcal{C} a site, there exists a stack \mathcal{D}^{s} and a 1-morphism $\mathcal{D} \rightarrow \mathcal{D}^{s}$ over \mathcal{C} such that for all stacks $\mathcal{S} \rightarrow \mathcal{C}$, the map $\operatorname{hom}\left(\mathcal{D}^{s}, \mathcal{S}\right) \rightarrow \operatorname{hom}(\mathcal{D}, \mathcal{S})$ is an equivalence of groupoids.

Proposition 1. $Q C o h$ is a stack on $(\operatorname{Spec} \mathbb{Z})_{f p p f}=\left(S c h_{\mathbb{Z}}\right)_{f p p f}$.
Proposition 2. Sheaves on $(\operatorname{Spec} \mathbb{Z})_{E T}$ form a stack. $\left(S h_{T}=\left\{\right.\right.$ sheaves on $\left.T_{E T}\right)$
Our Problems: Is it a stack
5: The subspaces of a vector space V : STACK - because they're a Sheaf, and a sheaf is a stack.
4: Closed subschemes of X : STACK - sheaf
3: $\operatorname{hom}(X, Y)$: STACK - sheaf
2: Line bundles on X : STACK, but not a sheaf (fails in as many ways as possible, but it is a stack due to descent theory)

1: Curves of Genus $g=1$: Stack, but not a sheaf (See Ravi's second talk)
0: Varieties: Prestack $(\operatorname{Isom}(X, Y)$ is a sheaf $)$, but not a stack.
Example 3. There exists X / \mathbb{C} a smooth 3-fold, with a descent datum relative to Spec $\mathbb{C} \rightarrow$ Spec \mathbb{R} which does NOT descent (so it is not quasi-projective)

Funny: A scheme X is a sheaf, so a family $X \rightarrow Y$ is a sheaf on $T_{E T}$. So $\{S c h e m e s\} \subset S h e a v e s$, so why not take the stacky closure of $S c h$ in $S h$?

Olsson
Definition 6 (Picard Category). A Picard Category is a groupoid \mathcal{P} together with the following extra structure:

1. A functor $+: P \times P \rightarrow P$
2. An isomorphism of functors:

$$
\begin{aligned}
& P \times P \times P \\
& \begin{array}{ll}
+\times 1 \\
\stackrel{1}{2} \\
P
\end{array} \Rightarrow \begin{array}{l}
1 \times+ \\
P \times P
\end{array} \\
& +{ }_{P} \\
& \sigma_{x, y, z}:(x+y)+z \simeq x+(y+z)
\end{aligned}
$$

3. A natural transformation $\tau_{x, y}: x+y \simeq y+x$ commuting with + .
4. For all $x \in P$, the functor $P \rightarrow P$ by $y \mapsto x+y$ is an equivalence
5. Pentagon Axiom: The following diagram commutes

$$
\begin{array}{cc}
(x+y)+(z+w) \\
\sigma_{x, y, z+w} & \sigma_{x+y, z, w} \\
x+(y+(z+w)) & ((x+y)+z)+w \\
\vdots & \swarrow \sigma_{x, y, z} \\
\sigma_{y, z, w} &
\end{array}
$$

6. $\tau_{x, x}=\mathrm{id}$ for all $x \in P$
7. $\forall x, y \in P, \tau_{x, y} \circ \tau_{y, x}=\mathrm{id}$
8. Hexagon Axiom: The following diagram commutes:

Example 4. If X is a scheme, then $\operatorname{Pic}(X)$, the groupoid of all line bundles on X with $\otimes: \operatorname{Pic}(X) \times \operatorname{Pic}(X) \rightarrow$ $\operatorname{Pic}(X)$

Example 5. $f: X \rightarrow Y$ a morphism of schemes, and I a quasicoherent \mathscr{O}_{X}-module. Then an I-extension of X over Y is a diagram

where j is square zero together with an isomorphism $I \xrightarrow{\iota} \operatorname{ker}\left(\mathscr{O}_{X^{\prime}} \rightarrow \mathscr{O}_{X}\right)$. Let $\operatorname{Exal}_{Y}(X, I)$ to be the category of I-extensions of X over Y.

Remark: $I \rightarrow \mathscr{O}_{X^{\prime}} \rightarrow \mathscr{O}_{X}$ over $f^{-1} \mathscr{O}_{Y}$
If $A \rightarrow B$ is a morphism of sheaves of algebras on a topological space T and I is a B-module, we get the category $\operatorname{Exal}_{A}(B, I)$ (Extensions of Algebras)

So now, $\operatorname{Exal}_{Y}(X, I)$ is a groupoid. Take
X_{2}^{\prime}

Y
Such that it commutes with the isomorphisms of I with $\operatorname{ker}\left(\mathscr{O}_{X_{i}^{\prime}} \rightarrow \mathscr{O}_{X}\right)$, and so we get an isomorphism. If $U \subseteq X$, then there is a restriction functor $\operatorname{Exal}_{Y}(X, I) \rightarrow \operatorname{Exal}_{Y}\left(U, I_{U}\right)$
For $u: I \rightarrow J$, a maps of \mathscr{O}_{X}-modules, there is a functor $u_{*}: \operatorname{Exal}_{Y}(X, I) \rightarrow \operatorname{Exal}_{Y}(X, J)$ so we get $I \hookrightarrow \mathscr{O}_{X^{\prime}} \rightarrow \mathscr{O}_{X}$ as a morphism of $f^{-1} \mathscr{O}_{Y}$ algebras. $\mathscr{O}_{X_{u}^{\prime}}=\mathscr{O}_{X^{\prime}} \oplus_{I} J=\left(\mathscr{O}_{X^{\prime}}[J]\right) /\{(i,-u(i)) \mid i \in I\}$.

So we get a map $X \rightarrow X_{u}^{\prime}$ from J which commutes with the map $X \rightarrow X^{\prime}$ by I as morphisms over Y.
Lemma 2. If I and J are two quasi-coherent \mathscr{O}_{X}-modules, then

$$
\left(p r_{1 *}, p r_{2 *}\right): \operatorname{Exal}_{Y}(X, I \oplus J) \rightarrow \operatorname{Exal}_{Y}(X, I) \times \operatorname{Exal}_{Y}(X, J)
$$

is an equivalence of categories.
Take $\Sigma: I \times I \rightarrow I$ to be the summation map, so we define the + map $+: \operatorname{Exal}_{Y}(X, I) \times \operatorname{Exal}_{Y}(X, I)$ by taking first the isomorphism with $\operatorname{Exal}_{Y}(X, I \oplus I)$ and then $\Sigma_{*} . \sigma, \tau$ are determined by taking more or less the canonical isomorphisms, and then everything works out.

Example 6. Let $f: A \rightarrow B$ be a homomorphisms of abelian groups. Define P_{f} to have objects the elements $x \in B$ and morphisms $x \rightarrow y$ elements $h \in A$ with $f(h)=y-x$

Let T be a topological space (or a site)
Definition 7 (Picard Stack). A Picard (pre-)Stack over T is a (pre)Stack \mathcal{P} with morphisms of stacks $(+, \sigma, \tau)$ such that for all $U \subseteq T$, the fiber $\left(\mathcal{P}_{U},+, \sigma, \tau\right)$ is a Picard category.
Example 7. Pic(-) defines a Picard Stack on $|X|$.
Example 8. Exal ${ }_{Y}(-, I)$ gives a Picard stack on $|X|$
Example 9. $f: A \rightarrow B$ is a homomorphism of sheaves of abelian groups on a topological space T, then get Picard prestack pch $(A \rightarrow B)$
Definition 8 (Morphism of Picard Stacks). Let T be a topological space and $\mathcal{P}_{1}, \mathcal{P}_{2}$ Picard Stacks over T. Then a morphism of Picard Stacks $\mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ is a pair (F, ι) where $F: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ is a morphism of stacks and $\iota: F(x+y) \simeq F(x)+F(y)$ such that the following commute

We get another Picard stack $\operatorname{HOM}\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ with an identity element, kernels and \otimes.
Osserman
Continuing the Proof of Schlessinger's Criterion.
Already shown that (H1)-(H3) imply that we have a Hull. Suppose that F has a hull (R, ξ). Then (H3) follows from $T_{R} \simeq T_{F}$ and R noetherian of finite dimension.

Now suppose that we have $p^{\prime}: A^{\prime} \rightarrow A$ and $p^{\prime \prime}: A^{\prime \prime} \rightarrow A$ in $\operatorname{Art}(\Lambda, k)$ with $p^{\prime \prime}$ a surjection. For (H1), we want $\left(^{*}\right) F\left(A^{\prime} \times_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)$ to be surjective. Suppose that we have $\eta^{\prime} \in F\left(A^{\prime}\right)$ and $\eta^{\prime \prime} \in F\left(A^{\prime \prime}\right)$ both restricting to $\eta \in F(A)$. Since $\bar{h}_{R} \rightarrow F$ is smooth (by exercise) is it surjective, so $\exists u^{\prime}: R \rightarrow A^{\prime}$ such that $u^{\prime}(\xi)=\eta^{\prime}$.

Also, using smoothness applied to $p^{\prime \prime}, \exists u^{\prime \prime}: R \rightarrow A^{\prime \prime}$ with $u^{\prime \prime}(\xi)=\eta^{\prime \prime} . \operatorname{Set} \zeta=u^{\prime} \times{ }_{u} u^{\prime \prime}(\xi) \in F\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right)$, this lifts $\left(\eta^{\prime}, \eta^{\prime \prime}\right)$ and this proves (H1).

For (H2), assume that $A=k, A^{\prime \prime}=k[\epsilon]$. We want $\left(^{*}\right)$ injective. Suppose that $v \in F\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right)$ also restricts to η^{\prime} and $\eta^{\prime \prime}$, we want $v=\zeta$. Keeping the same $u^{\prime}: R \rightarrow A^{\prime}$, apply smoothness to the map $A^{\prime} \times_{k} k[\epsilon] \rightarrow A^{\prime}$ and obtain to obtain $q^{\prime \prime}: R \rightarrow k[\epsilon]$ such that $u^{\prime} \times q^{\prime \prime}(\xi)=v$. Because $T_{R} \simeq T_{F}$, and we have $u^{\prime} \times u^{\prime \prime}(\xi)=\zeta$, we have $u^{\prime \prime}, q^{\prime \prime} \in T_{R}$ so since $u^{\prime \prime}(\xi)=\left.\zeta\right|_{A^{\prime \prime}}=\left.v\right|_{A^{\prime \prime}}=q^{\prime \prime}(\xi)$ so $u^{\prime \prime}=q^{\prime \prime}$ so $\zeta=v$. This is (H2), and so done.

So now assume that (H1)-(H4) are satisfied. We already have a hull (R, ξ). We want to show that it prorepresents F. That is, for all Artin rings A, we have a bijection $h_{R}(A) \rightarrow F(A)$. It's always a surjection by smoothness, so injectivity must be checked.

We prove this by induction on the length of A. Let $p^{\prime}: A^{\prime} \rightarrow A$ be a small thickening and let I be the kernel. Suppose $h_{R}(A) \rightarrow F(A)$ is a bijection. We want to deduce that we have a bijection for A^{\prime} as well. For all $\eta \in F(A)$, we have $h_{R}(p)^{-1}(\eta)$ and $F(p)^{-1}(\eta)$ (the -1 's denote inverse images, not inverse functions), and both are pseudotorsors under $T_{F} \otimes I \simeq T_{R} \otimes I$. By functoriality, they are compatible.

But we have injection, so they must be in bijection. Since this holds for all $\eta \in F(A)$, we have a bijection $h_{R}\left(A^{\prime}\right) \simeq F\left(A^{\prime}\right)$. So (R, ξ) prorepresents F, by induction.

If F is prorepresentable, then $\left(^{*}\right)$ is always bijective because $A^{\prime} \times{ }_{A} A^{\prime \prime}$ is a categorical fiber product in $\hat{\operatorname{Ar} t}(\Lambda, k)$.

And so Schlessinger's Criterion is established.
More Examples:
Example 10 (Deformations of a quotient scheme). Let X_{Λ} be a scheme over Λ and \mathscr{E}_{Λ} a quasicoherent sheaf on X_{Λ}. Write X, \mathscr{E} for the restrictions to k.

Fix $\mathscr{E} \rightarrow \mathscr{F}$ surjective as a quasicoherent quotient. Then $\operatorname{Def}_{\mathscr{F}, \mathscr{E}}$ sends A to $\left\{\left.\mathscr{E}_{\Lambda}\right|_{A} \rightarrow \mathscr{F}_{A}\right.$ flat restricting to $\mathscr{E} \rightarrow \mathscr{F}$ after $\otimes k\}$.

Note: No automorphism to worry about, so we could even have a notion of equality of quotients via equality of kernels.

Theorem 2. Def \mathscr{F}, \mathscr{E} is a deformation functor, and satisfies (H4). If X_{Λ} is proper and \mathscr{E} is coherent, then $\mathrm{Def}_{\mathscr{F}, \mathscr{E}}$ also satisfies (H3), and so is prorepresentable.

Note: For representability of the global version (Quot Scheme) need projective. But we see that the local behavior is still scheme-like under properness hypothesis. This hints at algebraic spaces.

Sketch of proof:
Given $A^{\prime} \rightarrow A, A^{\prime \prime} \rightarrow A$ and $\mathscr{F}_{A^{\prime}}, \mathscr{F}_{A^{\prime \prime}}$ both restricting to \mathscr{F}_{A} on A, set $B=A^{\prime} \times{ }_{A} A^{\prime \prime}$ and set $\mathscr{F}_{B}=\mathscr{F}_{A^{\prime}} \times \mathscr{F}_{A} \mathscr{F}_{A^{\prime \prime}}$ and get a surjection $\mathscr{E}_{B}:=\left.\mathscr{E}_{\Lambda}\right|_{B} \rightarrow \mathscr{F}_{B}$ by $\mathscr{E}_{B} \rightarrow \mathscr{E}_{A^{\prime}} \times_{\mathscr{E}_{A}} \mathscr{E}_{A^{\prime \prime}} \rightarrow \mathscr{F}_{B}$. This is not necessarily an isomorphism.

This gives (H1), but we actually constructed an inverse to $\left(^{*}\right.$), so we get (H2) and (H4) also.
The tangent space $\operatorname{Def}_{\mathscr{F}, \mathscr{E}}$ is $H^{0}(X, \mathscr{H} \operatorname{om}(\mathscr{G}, \mathscr{F}))$ where $\mathscr{G}=\operatorname{ker}(\mathscr{E} \rightarrow \mathscr{F})$. (this is an exercise)
Under our extra hypothesis, this is finite dimensional, and so (H3) is satisfied.
Corollary 1. Given X_{Λ} / Λ and $Z \subseteq X$, then $\operatorname{Def}_{Z, X}$ is a deformation functor and satisfies (H4). If further X_{Λ} is proper over Λ, then (H3) is satisfied and so prorepresentable.

Proof. Set $\mathscr{E}_{\Lambda}=\mathscr{O}_{X_{\Lambda}}$, then closed subschemes are just the quasicoherent quotients of this. Apply the Theorem

Example 11. Given X_{Λ}, Y_{Λ} over $\Lambda, f: X \rightarrow Y$ over k, and Def_{f} sends A to $\left\{f_{A}:\left.\left.X_{\Lambda}\right|_{A} \rightarrow Y_{\Lambda}\right|_{A}\right.$ over A restricting to f on $A\}$.

Corollary 2. If X_{Λ}, Y_{Λ} are locally of finite type, X_{Λ} is flat over Λ and Y_{Λ} separated over A, then Def_{f} is a deformation functor and satisfies (H4). If X_{Λ}, Y_{Λ} are proper, then also get (H3).

