Lieblich
We will now return to Moduli problems. Recall:

1. Curves of genus g

2. Line Bundles on X

3. Maps between X and Y

4. Closed Subschemes of X (often X = P")

5. Subspaces of a vector space

We even wrote down what we expected the functors of points to be. So do we get Sheaves?

Look at h_z,(T) = homy (X7, Yr) = hom(X x T,Y). We proved that Y is a sheaf implies that h_g, is
an fppf sheaf.

How about h_4, (T) = {Z — X x T closed, Z is T-flat}/ ~ (note, isomorphisms are unique if they exist).

Z — X x T is equivalent to .#; C Oxxr, so the sheaf condition corresponds to descent data on the
inclusion .z C Ox . fppf descent is effective for quasi-coherent sheaves, so these thing glue, so h 4, is a
sheaf.

{T; — T} gives hy,(T) = [1 o, (Ti) = 1 how, (T x7 T;) the products are of isomorphism classes. The
uniqueness of isomorphisms tells us that it is harmless to choose classes.

We know that .#z|r, is T;-flat for all i. So we conclude that .#7 is T;-flat.

Lemma 1. Assume [ : X' — X is faithfully flat. A quasicoherent sheaf % on X is X-flat, respectively of
finite presentation, ete, iff f*F is.

hoa(T) = {W C Or ® V| with locally free cokernel}. Again, the isomorphisms are unique if they exist,
so the same descent argument applies.

S0 huy, howy, hows are all sheaves.

hoa, ={% on X x T}/ ~, which is Pic(X x T'). The sheaf condition takes {T; — T} and we want to
check exactness for Pic(X x Y) — [[Pic(X x T;) = Pic(X x T; x7 T}).

But this is not exact at all!

Claim: Exactness ALWAYS fails on the left.

Proof. Choose T such that Pic(T) # {0}. Let .# be a nontrivial invertible sheaf on T. Then p5.# €
Pic(X xT) forps : X xT —T.

Choose an open covering 7' = UT; such that .#|r, ~ Or,. So we take Pic(X x T') — [] Pic(X x T;) by
P +— Oxx1, and Ox 1 — OxxT; O

Claim: Exactness fails in the middle (in general)

Proof. X/R given by 2% + y? 4+ 2% = 0 in P%. We know that X ®p C ~ ]P’(lC but X # PL. Thus there are no
divisors of degree 1 (by Riemann-Roch).
Consider the covering Spec C — SpecR. This gives Pic(X) — Pic(X ® C) = Pic(X @ C ®g C).

This is Z > Z = Z x Z. so both of the maps to Z x Z take 1+ (1,1), but 1 is not in th image. O

So Descent here fails because of the local nature of line bundles . on X x T’ that p;.Z ~ p5.% on
X xT" and @ji 0 pij # @ik, because there are too many isomorphisms.

We eventually realize we have one big problem: we are thinking of sets, rather than categories.

We fix this by shifting our thinking.

Definition 1 (Groupoid). A groupoid is a category where every morphism is invertible.
Definition 2 (Discrete Groupoid). A groupoid C is discrete if Vo € C, Aut(z) = {id}.

Definition 3 (Connected Groupoid). A group is connected if any two objects are isomorphic.



A group G is a groupoid with one object with Aut(z) = G, this is an example of a connected groupoid.

A discrete groupoid is like a set, via x : Sets — Groupoids which takes a set S to a category with object
set S and just identity maps.

Note: Groupoids do form a category, with arrows being functors.

Lemma 2. The essential image of x s the discrete groupoids.

More good things: 2(T) is a groupoid of .2 on X x T. So S Lo gives #>(T) (xf)” AM5(S) functor
takes £ on X x T to (id X f)*.Z on X x S. We guess that this gives a functor Sch® — Groupoids
But composition gets funny, and is no longer on the nose.

7" % 7" L, T then there exists an isomorphism ¢* f* ~ (fg)*. This is the universal property of the
pullback, which is unique up to unique isomorphism.
Exercise: What does all this MEAN?

Take T 2 77 % 17 7, T, and we get a commutative diagram of functors:

n*(f9)*
Y
Regtft (fgh)
N S
(gh)" f*

Definition 4 (Fibered Category with Clivage (Pseudofunctor)). A Fibered Category with Clivage, or Pseudo-
functor, over a category C is

1. For each c € C, a groupoid F(c)

2. For each arrow [ :c¢— d in C, a functor f*: F(d) — F(c)

3. For each pair of arrows c ERFIEA e, an isomorphism vy g 1 f*g* — (gf)* such that the diagram above
commutes with the isomorphisms being the v’s.

Olsson

Let A’ — A be a surjective map of rings with square zero kernel J, and P’ — Spec A’ smooth scheme
with reduction P — Spec A.

And j: X — P an inclusion with X smooth over Spec A.

Problem: Understand how we can lift the picture j : X — P to a diagram X’ — P’ with X’ smooth
over Spec A'.

Why? This would include lifting a variety with it’s embedding into Projective Space.

We want Ox/ on |X| satisfying the following:
J@ﬁx— - —>ﬁX/— - = —>-ﬁX

jrOp —>j 0p

J A A
Define .Z to be a sheaf on | X| which, to any open U C X, associates the set of diagrams



U —— v
e
P (N P

N\ N\

Spec A—— Spec A’

What are the global sections?

The set of arrows U’ — P’ filling in this diagram form a torsor under hom((i o j)*Q}D,/A,, J® oOy) =
hom(j*Q}D/A, J® Oy) = j*Tpja ®a J. There is an action of j*Tp/y ® J on Z.

If I C Op is the ideal of X, then we look at the conormal bundle j*I = I/I? = 4. We get an exact
sequence 0 — I/I? A j*Q}D/A — Q}(/A —0and 0 — Tx/g — j*Tp/a — A — 0. We tensor the second
with J and we claim that T'x,4 ® J acts trivially on ..

A section 9 € T'x/4 ® J(U) corresponds to a diagram
U’ U’

Spec A > Spec A’

Proposition 1. .Z is a torsor under 4 ® J.

Torsor:

1. VU C X, there exists a covering U = UU; such that £ (U;) # 0
2. For all U C X either Z(U) = 0 or the action of A4 ® J(U) on Z(U) is simply transitive.

Sketch of proof: Check that if U is affine, then the action of A ® J(U) on Z(U) is simply transitive.

0—=Tx/a®@JU)— jTpa® JU) — A @JU)— 0.

General Fact: If G is a sheaf of abelian groups, then the set of isomorphism classes of G-torsors on |X|
are in bijection with H1(X, Q).

In our case, we choose a covering of X = U,;U; with U; affine and s; € Z(U;).

On U; N Uj, we get two sections s;|y,; and sy, in Z(Usy).

The action of A @ J(U) on Z(U;;) is simply transitive, and this implies that there exists a unique
ri; € A ® J(Uij) such that x5 * s;|u,; = sj|u,;. Now you check that {x;;} is a Cech 1-cocycle, so we get a
class in HY(X, 4 ® J).

So now . is trivial iff Z(X) # 0 iff [£] € HY(X, 4 & J) is zero.

Summary:

1. There exists a canonical obstruction o(j) € H!(X, .4 ® J) whose vanishing is necessary and sufficient
for the existence of a lifting of j.

2. The set of liftings j' of j form a torsor under H°(X, .4 ® J) if o(j) = 0.



Reminder: 0 — Tx 4 — j*Tp/a — 4 — 0 induces

HOX, ¥ ®J) = H'(X,Tx/a ® J) — H'(X, j*Tpja © J) — H' (X, ¥ @ J) > H*(X,Tx/a ® J)

. What is §(o(j))? It’s o(g) where g is the composition of j with the structure map P — Spec A.

Example: Let P be a smooth proper surface over k and X C P a smooth rational curve with X. X = —1.
By Hartshorne V.1.4.1, we get that deg 4" = —1. So HY(X, 4/ ® J) =0, H)(X, #/ ® J) = 0.

So H' = 0 says that there is no obstruction to X being lifted onto P[], and H® = 0 says that it is
unique, and so it is X[e].

Osserman

The Proof of Schlessinger’s Theorem

(*)is F(A" x4 A") = F(A") xpeay F(A”)

H1 - (*) is surjective if A” — A is a small thickening

H2 - (*) is bijective if A” = kle] and A =k

H3 - TF is finite dimensional

H4 - (*) is bijective if A’ = A” and A’ — A is a small thickening

Theorem 1 (Schlessinger). Let F be a predeformation functor. Then F has a hull iff (H1),(H2),(H3) are
satisfied.
F' is prorepresetable iff all four are satisfied.

Proposition 2. Let F' be a deformation functor and A" — A a small thickening with kernel I. For every
1 € F(A), when the set of i’ € F(A’) restricting to n is nonempty, it has a transitive action of Tp @k I. This
action commutes with any morphism F' — F of deformation functors (Hj) is satisfied iff for all A" — A
small thickenings, and all n € F(A), this morphism is free (whenever the set is nonempty).

Definition 5 (Essential). A surjection p: A" — A in Art(A, k) is essential if Vq : A” — A; such that pq is
surjective, then q is surjective.

Lemma 3. If p is a small thickening, p is not essential iff p has a section.
Example: k[e] — k is not essential, but Z/p* — F,, is.
Proposition 3. If (H1)-(H3) are satisfied, then F has a hull

Proof. We will proceed first by constructing a hull, then proving that it is one.

We'll construct (R,€) with R € Art(A, k) and ¢ € F(R) such that hp £, F is smooth and induces
TR >~ TF.

Let n be the maximal ideal of A, r = dim T which is finite by (H3), then set S = A[[t1,...,¢,]] and m
the maximal ideal of S.

We will construct R as S/J where J = N;>2J; and the J; are constructed inductively.

Jo =m? 4+ nS, and S/ Jo = k[T%] = k[T}] = k[e]".

Set Ry = S/J3, and use (H2) to construct a {3 € F(Rz) inducing a bijection Tg, — Tr.

So suppose we have R;_1 = S/J;—1 and &_1 € F(R;—1). We'll choose J; to be minimal among J
satisfying mJ;_1 € J C J;_1 and &;_; can be lifted to an element of F(R;).

The first is preserved under arbitrary intersection, we need to check the second condition too.

Note: J satisfying the first condition corresponds to vector subspaces of J;_1/mJ;_1, which is finite
dimensional. This implies that it is enough to check finite (and thus pairwise) intersections.

Suppose that J, K satisfy our conditions. Claim: J N K does too. Again using J;_1/mJ;_1, we can
replace K without changing J N K so that J + K = J;_1. Then S/J xg/;, , S/K = S/(JNK). So by (H1),
we have some element of F(S/(J N K)) restricting to &_1, which means J N K satisfies our conditions.

So we can set J; to be the minimal ideal satisfying the conditions. As stated before, we define J = N;>2J;
and R =S/J.

If R; = S/J;, because m* C J;, we have R = llnR/ J; and furthermore, there is an element £ which is
the limit of the &;.



So (R, ¢&) is our prospective hull. Ty ~ Tr is immediate from the choice of &, smoothness is harder. Fix
p: A" — A a small thickening, n’ € F(A’) such that p(n') =n € F(A) and u : R — A such that u(§) = 7.
Want a lift v’ : R — A’ such that v/(§) =7’
" First, construct any v’ lifting u. Since A is an Artin ring, it factors through R — R; for some .
i+1

Ry — A
S L)'R7 XAA/
/'f
/

7 P1
7/
/
/

Ri—i—l _— _Rz

with p; a small thickening. If we have a section, then no problem. If not, then p; is essential, so we
choose w as above, must be surjective. Enough to show kerw D J;11. This follows from (H1).

So we have some v/, we want to have u’(§) = n’. But we have compatible transitive actions of Tp ® I ~
Tr® I of F(p)~1(n) and hr(p)~'(n) = R — A’ such that R — A sends ¢ to 7.

So 31 € Tr ® I sending u/(£) to . Then we can modify u’ by 7 and we’ll have the desired v’ lifting u
and sending £ to 7. O



