Lieblich
We will now return to Moduli problems. Recall:

1. Curves of genus g
2. Line Bundles on X
3. Maps between X and Y
4. Closed Subschemes of $X\left(\right.$ often $\left.X=\mathbb{P}^{n}\right)$
5. Subspaces of a vector space

We even wrote down what we expected the functors of points to be. So do we get Sheaves?
Look at $h_{\mathscr{M}_{3}}(T)=\operatorname{hom}_{T}\left(X_{T}, Y_{T}\right)=\operatorname{hom}(X \times T, Y)$. We proved that Y is a sheaf implies that $h_{\mathscr{M}_{3}}$ is an fppf sheaf.

How about $h_{\mathscr{M}_{4}}(T)=\{Z \hookrightarrow X \times T$ closed, Z is T-flat $\} / \simeq$ (note, isomorphisms are unique if they exist).
$Z \hookrightarrow X \times T$ is equivalent to $\mathscr{I}_{Z} \subset \mathscr{O}_{X \times T}$, so the sheaf condition corresponds to descent data on the inclusion $\mathscr{I}_{Z} \subset \mathscr{O}_{X \times T}$. fppf descent is effective for quasi-coherent sheaves, so these thing glue, so $h_{\mathscr{M}_{4}}$ is a sheaf.
$\left\{T_{i} \rightarrow T\right\}$ gives $h_{\mathscr{M}_{4}}(T) \rightarrow \prod h_{\mathscr{M}_{4}}\left(T_{i}\right) \rightrightarrows \prod h_{\mathscr{M}_{4}}\left(T_{i} \times_{T} T_{j}\right)$ the products are of isomorphism classes. The uniqueness of isomorphisms tells us that it is harmless to choose classes.

We know that $\left.\mathscr{I}_{Z}\right|_{T_{i}}$ is T_{i}-flat for all i. So we conclude that \mathscr{I}_{Z} is T_{i}-flat.
Lemma 1. Assume $f: X^{\prime} \rightarrow X$ is faithfully flat. A quasicoherent sheaf \mathscr{F} on X is X-flat, respectively of finite presentation, etc, iff $f^{*} \mathscr{F}$ is.
$h_{\mathscr{M}_{5}}(T)=\left\{W \subset \mathscr{O}_{T} \otimes V \mid\right.$ with locally free cokernel $\}$. Again, the isomorphisms are unique if they exist, so the same descent argument applies.

So $h_{\mathscr{M}_{3}}, h_{\mathscr{M}_{4}}, h_{\mathscr{M}_{5}}$ are all sheaves.
$h_{\mathscr{M}_{2}}=\{\mathscr{L}$ on $X \times T\} / \simeq$, which is $\operatorname{Pic}(X \times T)$. The sheaf condition takes $\left\{T_{i} \rightarrow T\right\}$ and we want to check exactness for $\operatorname{Pic}(X \times Y) \rightarrow \Pi \operatorname{Pic}\left(X \times T_{i}\right) \rightrightarrows \operatorname{Pic}\left(X \times T_{i} \times_{T} T_{j}\right)$.

But this is not exact at all!
Claim: Exactness ALWAYS fails on the left.
Proof. Choose T such that $\operatorname{Pic}(T) \neq\{0\}$. Let \mathscr{M} be a nontrivial invertible sheaf on T. Then $p_{2}^{*} \mathscr{M} \in$ $\operatorname{Pic}(X \times T)$ for $p_{2}: X \times T \rightarrow T$.

Choose an open covering $T=\cup T_{i}$ such that $\left.\mathscr{M}\right|_{T_{i}} \simeq \mathscr{O}_{T_{i}}$. So we take $\operatorname{Pic}(X \times T) \rightarrow \prod \operatorname{Pic}\left(X \times T_{i}\right)$ by $p_{2}^{*} \mathscr{M} \mapsto \mathscr{O}_{X \times T_{i}}$ and $\mathscr{O}_{X \times T} \mapsto \mathscr{O}_{X \times T_{i}}$

Claim: Exactness fails in the middle (in general)
Proof. X / \mathbb{R} given by $x^{2}+y^{2}+z^{2}=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$. We know that $X \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{P}_{\mathbb{C}}^{1}$ but $X \not \not \mathbb{P}_{\mathbb{R}}^{1}$. Thus there are no divisors of degree 1 (by Riemann-Roch).

Consider the covering $\operatorname{Spec} \mathbb{C} \rightarrow \operatorname{Spec} \mathbb{R}$. This gives $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X \otimes \mathbb{C}) \rightrightarrows \operatorname{Pic}\left(X \otimes \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}\right)$.
This is $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightrightarrows \mathbb{Z} \times \mathbb{Z}$. so both of the maps to $\mathbb{Z} \times \mathbb{Z}$ take $1 \mapsto(1,1)$, but 1 is not in th image.
So Descent here fails because of the local nature of line bundles \mathscr{L} on $X \times T^{\prime}$, that $p_{1}^{*} \mathscr{L} \simeq p_{2}^{*} \mathscr{L}$ on $X \times T^{\prime \prime}$ and $\varphi_{j k} \circ \varphi_{i j} \neq \varphi_{i k}$, because there are too many isomorphisms.

We eventually realize we have one big problem: we are thinking of sets, rather than categories.
We fix this by shifting our thinking.
Definition 1 (Groupoid). A groupoid is a category where every morphism is invertible.
Definition 2 (Discrete Groupoid). A groupoid \mathcal{C} is discrete if $\forall x \in \mathcal{C}$, $\operatorname{Aut}(x)=\{\operatorname{id}\}$.
Definition 3 (Connected Groupoid). A group is connected if any two objects are isomorphic.

A group G is a groupoid with one object with $\operatorname{Aut}(x)=G$, this is an example of a connected groupoid.
A discrete groupoid is like a set, via $\chi:$ Sets \rightarrow Groupoids which takes a set S to a category with object set S and just identity maps.

Note: Groupoids do form a category, with arrows being functors.
Lemma 2. The essential image of χ is the discrete groupoids.
More good things: ${ }_{2}(T)$ is a groupoid of \mathscr{L} on $X \times T$. So $S \xrightarrow{f} T$ gives $\mathscr{M}_{2}(T) \xrightarrow{\left(\mathscr{L}_{X} f\right)^{*}} \mathscr{M}_{2}(S)$ functor takes \mathscr{L} on $X \times T$ to $(\mathrm{id} \times f)^{*} \mathscr{L}$ on $X \times S$. We guess that this gives a functor $S c h^{\circ} \rightarrow$ Groupoids

But composition gets funny, and is no longer on the nose.
$T^{\prime \prime} \xrightarrow{g} T^{\prime} \xrightarrow{f} T$ then there exists an isomorphism $g^{*} f^{*} \simeq(f g)^{*}$. This is the universal property of the pullback, which is unique up to unique isomorphism.

Exercise: What does all this MEAN?
Take $T^{\prime \prime \prime} \xrightarrow{h} T^{\prime \prime} \xrightarrow{g} T^{\prime} \xrightarrow{f} T$, and we get a commutative diagram of functors:

$$
h^{*}(f g)^{*}
$$

$(g h)^{*} f^{*}$
Definition 4 (Fibered Category with Clivage (Pseudofunctor)). A Fibered Category with Clivage, or Pseudofunctor, over a category \mathcal{C} is

1. For each $c \in \mathcal{C}$, a groupoid $F(c)$
2. For each arrow $f: c \rightarrow d$ in \mathcal{C}, a functor $f^{*}: F(d) \rightarrow F(c)$
3. For each pair of arrows $c \xrightarrow{f} d \xrightarrow{g} e$, an isomorphism $\nu_{f, g}: f^{*} g^{*} \rightarrow(g f)^{*}$ such that the diagram above commutes with the isomorphisms being the ν 's.

Olsson
Let $A^{\prime} \rightarrow A$ be a surjective map of rings with square zero kernel J, and $P^{\prime} \rightarrow \operatorname{Spec} A^{\prime}$ smooth scheme with reduction $P \rightarrow \operatorname{Spec} A$.

And $j: X \rightarrow P$ an inclusion with X smooth over Spec A.
Problem: Understand how we can lift the picture $j: X \rightarrow P$ to a diagram $X^{\prime} \hookrightarrow P^{\prime}$ with X^{\prime} smooth over Spec A^{\prime}.

Why? This would include lifting a variety with it's embedding into Projective Space.
We want $\mathscr{O}_{X^{\prime}}$ on $|X|$ satisfying the following: $J \otimes \mathscr{O}_{X}--\rightarrow \mathscr{O}_{X^{\prime}}-\cdots \mathscr{O}_{X}$

Define \mathscr{L} to be a sheaf on $|X|$ which, to any open $U \subset X$, associates the set of diagrams

What are the global sections?
The set of arrows $U^{\prime} \rightarrow P^{\prime}$ filling in this diagram form a torsor under hom $\left((i \circ j)^{*} \Omega_{P^{\prime} / A^{\prime}}^{1}, J \otimes \mathscr{O}_{U}\right)=$ $\operatorname{hom}\left(j^{*} \Omega_{P / A}^{1}, J \otimes \mathscr{O}_{U}\right)=j^{*} T_{P / A} \otimes_{A} J$. There is an action of $j^{*} T_{P / A} \otimes J$ on \mathscr{L}.

If $I \subseteq \mathscr{O}_{P}$ is the ideal of X, then we look at the conormal bundle $j^{*} I=I / I^{2}=\mathscr{N}^{\vee}$. We get an exact sequence $0 \rightarrow I / I^{2} \xrightarrow{d} j^{*} \Omega_{P / A}^{1} \rightarrow \Omega_{X / A}^{1} \rightarrow 0$ and $0 \rightarrow T_{X / A} \rightarrow j^{*} T_{P / A} \rightarrow \mathscr{N} \rightarrow 0$. We tensor the second with J and we claim that $T_{X / A} \otimes J$ acts trivially on \mathscr{L}.

A section $\partial \in T_{X / A} \otimes J(U)$ corresponds to a diagram

Proposition 1. \mathscr{L} is a torsor under $\mathscr{N} \otimes J$.
Torsor:

1. $\forall U \subset X$, there exists a covering $U=\cup U_{i}$ such that $\mathscr{L}\left(U_{i}\right) \neq \emptyset$
2. For all $U \subset X$ either $\mathscr{L}(U)=\emptyset$ or the action of $\mathscr{N} \otimes J(U)$ on $\mathscr{L}(U)$ is simply transitive.

Sketch of proof: Check that if U is affine, then the action of $\mathscr{N} \otimes J(U)$ on $\mathscr{L}(U)$ is simply transitive.
$0 \rightarrow T_{X / A} \otimes J(U) \rightarrow j^{*} T_{P / A} \otimes J(U) \rightarrow \mathscr{N} \otimes J(U) \rightarrow 0$.
General Fact: If G is a sheaf of abelian groups, then the set of isomorphism classes of G-torsors on $|X|$ are in bijection with $H^{1}(X, G)$.

In our case, we choose a covering of $X=\cup_{i} U_{i}$ with U_{i} affine and $s_{i} \in \mathscr{L}\left(U_{i}\right)$.
On $U_{i} \cap U_{j}$, we get two sections $\left.s_{i}\right|_{U_{i} j}$ and $\left.s_{j}\right|_{U_{i j}}$ in $\mathscr{L}\left(U_{i j}\right)$.
The action of $\mathscr{N} \otimes J(U)$ on $\mathscr{L}\left(U_{i j}\right)$ is simply transitive, and this implies that there exists a unique $x_{i j} \in \mathscr{N} \otimes J\left(U_{i j}\right)$ such that $\left.x_{i j} * s_{i}\right|_{U_{i j}}=\left.s_{j}\right|_{U_{i j}}$. Now you check that $\left\{x_{i j}\right\}$ is a Cech 1-cocycle, so we get a class in $H^{1}(X, \mathscr{N} \otimes J)$.

So now \mathscr{L} is trivial iff $\mathscr{L}(X) \neq \emptyset$ iff $[\mathscr{L}] \in H^{1}(X, \mathscr{N} \otimes J)$ is zero.
Summary:

1. There exists a canonical obstruction $o(j) \in H^{1}(X, \mathscr{N} \otimes J)$ whose vanishing is necessary and sufficient for the existence of a lifting of j.
2. The set of liftings j^{\prime} of j form a torsor under $H^{0}(X, \mathscr{N} \otimes J)$ if $o(j)=0$.

Reminder: $0 \rightarrow T_{X / A} \rightarrow j^{*} T_{P / A} \rightarrow \mathscr{N} \rightarrow 0$ induces

$$
H^{0}(X, \mathscr{N} \otimes J) \rightarrow H^{1}\left(X, T_{X / A} \otimes J\right) \rightarrow H^{1}\left(X, j^{*} T_{P / A} \otimes J\right) \rightarrow H^{1}(X, \mathscr{N} \otimes J) \xrightarrow{\delta} H^{2}\left(X, T_{X / A} \otimes J\right)
$$

. What is $\delta(o(j))$? It's $o(g)$ where g is the composition of j with the structure map $P \rightarrow \operatorname{Spec} A$.
Example: Let P be a smooth proper surface over k and $X \subset P$ a smooth rational curve with $X . X=-1$.
By Hartshorne V.1.4.1, we get that $\operatorname{deg} \mathscr{N}=-1$. So $H^{1}(X, \mathscr{N} \otimes J)=0, H^{0}(X, \mathscr{N} \otimes J)=0$.
So $H^{1}=0$ says that there is no obstruction to X being lifted onto $P[\epsilon]$, and $H^{0}=0$ says that it is unique, and so it is $X[\epsilon]$.

Osserman
The Proof of Schlessinger's Theorem
$\left.{ }^{*}\right)$ is $F\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)$
H1 - (*) is surjective if $A^{\prime \prime} \rightarrow A$ is a small thickening
$\mathrm{H} 2-\left(^{*}\right)$ is bijective if $A^{\prime \prime}=k[\epsilon]$ and $A=k$
$\mathrm{H} 3-T_{F}$ is finite dimensional
$\mathrm{H} 4-\left(^{*}\right)$ is bijective if $A^{\prime}=A^{\prime \prime}$ and $A^{\prime} \rightarrow A$ is a small thickening
Theorem 1 (Schlessinger). Let F be a predeformation functor. Then F has a hull iff (H1),(H2),(H3) are satisfied.
F is prorepresetable iff all four are satisfied.
Proposition 2. Let F be a deformation functor and $A^{\prime} \rightarrow A$ a small thickening with kernel I. For every $\eta \in F(A)$, when the set of $\eta^{\prime} \in F\left(A^{\prime}\right)$ restricting to η is nonempty, it has a transitive action of $T_{F} \otimes_{k} I$. This action commutes with any morphism $F^{\prime} \rightarrow F$ of deformation functors (H4) is satisfied iff for all $A^{\prime} \rightarrow A$ small thickenings, and all $\eta \in F(A)$, this morphism is free (whenever the set is nonempty).

Definition 5 (Essential). A surjection $p: A^{\prime} \rightarrow A$ in $\operatorname{Art}(\Lambda, k)$ is essential if $\forall q: A^{\prime \prime} \rightarrow A$; such that $p q$ is surjective, then q is surjective.

Lemma 3. If p is a small thickening, p is not essential iff p has a section.
Example: $k[\epsilon] \rightarrow k$ is not essential, but $\mathbb{Z} / p^{2} \rightarrow \mathbb{F}_{p}$ is.
Proposition 3. If (H1)-(H3) are satisfied, then F has a hull
Proof. We will proceed first by constructing a hull, then proving that it is one.
We'll construct (R, ξ) with $R \in \hat{\operatorname{Ar}} t(\Lambda, k)$ and $\xi \in \hat{F}(R)$ such that $\bar{h}_{R} \xrightarrow{\xi} F$ is smooth and induces $T_{R} \simeq T_{F}$.

Let \mathfrak{n} be the maximal ideal of $\Lambda, r=\operatorname{dim} T_{F}$ which is finite by (H3), then set $S=\Lambda\left[\left[t_{1}, \ldots, t_{r}\right]\right]$ and \mathfrak{m} the maximal ideal of S.

We will construct R as S / J where $J=\cap_{i \geq 2} J_{i}$ and the J_{i} are constructed inductively.
$J_{2}=\mathfrak{m}^{2}+\mathfrak{n} S$, and $S / J_{2}=k\left[T_{S}^{*}\right]=k\left[T_{F}^{*}\right]=k[\epsilon]^{r}$.
Set $R_{2}=S / J_{2}$, and use (H2) to construct a $\xi_{2} \in F\left(R_{2}\right)$ inducing a bijection $T_{R_{2}} \rightarrow T_{F}$.
So suppose we have $R_{i-1}=S / J_{i-1}$ and $\xi_{i-1} \in F\left(R_{i-1}\right)$. We'll choose J_{i} to be minimal among J satisfying $\mathfrak{m} J_{i-1} \subseteq J \subseteq J_{i-1}$ and ξ_{i-1} can be lifted to an element of $F\left(R_{i}\right)$.

The first is preserved under arbitrary intersection, we need to check the second condition too.
Note: J satisfying the first condition corresponds to vector subspaces of $J_{i-1} / \mathfrak{m} J_{i-1}$, which is finite dimensional. This implies that it is enough to check finite (and thus pairwise) intersections.

Suppose that J, K satisfy our conditions. Claim: $J \cap K$ does too. Again using $J_{i-1} / \mathfrak{m} J_{i-1}$, we can replace K without changing $J \cap K$ so that $J+K=J_{i-1}$. Then $S / J \times{ }_{S / J_{i-1}} S / K=S /(J \cap K)$. So by (H1), we have some element of $F(S /(J \cap K))$ restricting to ξ_{i-1}, which means $J \cap K$ satisfies our conditions.

So we can set J_{i} to be the minimal ideal satisfying the conditions. As stated before, we define $J=\cap_{i \geq 2} J_{i}$ and $R=S / J$.

If $R_{i}=S / J_{i}$, because $\mathfrak{m}^{i} \subseteq J_{i}$, we have $R=\underset{\rightleftarrows}{\lim } R / J_{i}$ and furthermore, there is an element ξ which is the limit of the ξ_{i}.

So (R, ξ) is our prospective hull. $T_{R} \simeq T_{F}$ is immediate from the choice of ξ_{2}, smoothness is harder. Fix $p: A^{\prime} \rightarrow A$ a small thickening, $\eta^{\prime} \in F\left(A^{\prime}\right)$ such that $p\left(\eta^{\prime}\right)=\eta \in F(A)$ and $u: R \rightarrow A$ such that $u(\xi)=\eta$. Want a lift $u^{\prime}: R \rightarrow A^{\prime}$ such that $u^{\prime}(\xi)=\eta^{\prime}$

First, construct any u^{\prime} lifting u. Since A is an Artin ring, it factors through $R \rightarrow R_{i}$ for some i. R_{i+1}

with p_{1} a small thickening. If we have a section, then no problem. If not, then $p_{!}$is essential, so we choose w as above, must be surjective. Enough to show ker $w \supset J_{i+1}$. This follows from (H1).

So we have some u^{\prime}, we want to have $u^{\prime}(\xi)=\eta^{\prime}$. But we have compatible transitive actions of $T_{F} \otimes I \simeq$ $T_{R} \otimes I$ of $F(p)^{-1}(\eta)$ and $h_{R}(p)^{-1}(\eta)=R \rightarrow A^{\prime}$ such that $R \rightarrow A$ sends ξ to η.

So $\exists \tau \in T_{F} \otimes I$ sending $u^{\prime}(\xi)$ to η^{\prime}. Then we can modify u^{\prime} by τ and we'll have the desired u^{\prime} lifting u and sending ξ to η.

