Lieblich

Descent Theory = Gluing

WEell, in the Zariski topology, if we have sheaves defined on open sets, we can glue them together to get
a sheaf on the whole thing.

So at the Zariski level if X is a scheme and {U C X} is an open covering with .%; on U; quasi-coherent
sheaves, we need maps ¢;; : Z;|v,nv;, — #j|v.nv, is an isomorphism such that o, o ;; = @q for all 4, j, k
on U; N Uj NUy.

Definition 1 (Descent Datum). Let f: X' — X be an fpgc (faithfully flat, quasi-compact).
X" = X" xx X'
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And F a quasi-coherent sheaf on X'. Then a descent datum is an isomorphism ¢ : p5.F' — p5.F' such

that p%gfp o plap = p*f:;,w-
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Reinterpretation: A descent datum on %’ consists of an isomorphism ¢y, 4, : t7.F' ~ t5.%' for all
t1,to € X'(T) for fixed T € Schx, such that Vi1, t2,t3 € X'(T), ©ty.t5 © Pt1,t, = P11, and this is functorial
in T, ¢;. (this includes that ¢, ; = id)

Note: If F' = f*% then there is a natural descent datum ¢y, ¢, : 7 f*F ~ t5f*F and ft1 = fta and
(ft1)* ~ t7 f* naturally, so we get natural descent data as above. We denote this by (f*.%, can).

Definition 2 (Category of Descent Data for f). The category of Descent data for f, Dy is the category of
pairs (F',p) where F' is a quasi-coherent sheaf on X' and ¢ is a descent datum.
The maps are ¢ : F| — F3 such that
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Note then that pullback defines a functor f* : QCoh(X) — Dy by F — (f*F,can). This functor will
tell us how gluable things are.

Definition 3 (Descent Morphism). f is a descent morphism if f* is fully faithful.
f is an effective descent morphism if f* is an equivalence.

Theorem 1 (Grothendieck). If f : X' — X is fpgc, then f is an effective descent morphism for quasi-
coherent sheaves.

That is, we are allowed to glue using these morphisms.



Theorem 2 (Girard/Grothendieck). If f has a section then f is an effective descent morphism.

Proof. Let f : X' — X be a morphism, o : X — X’ a section. We will show that f* is fully faithful and
essentially surjective.

f* is clearly faithful, as o* f* = id, o : & — ¢ such that f*a = 0 implies that o* f*o = a = 0.

f* is full: a map (Z, ) Y (F',¢'). That is, we have maps t : T'— X' and T' — X and t*% Y
such that for all ¢1,to we get the square above.

Ref. point o7, with o the section. So we get the following diagram:
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So we can propagate ¢, .

Now all that remains is to check essentially surjective: Fix (#,¢) € Dy and t € X'(T), T € Schx.
We hope that (F,p) ~ f*(a*ﬁz) = (f*0*.F,can)

Oroft U F = U fro*F. Given 1,12, we get the diagram

@h UftQt*f* * 7
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This comes from gluing for .%. And as when we showed that this was full, we have an isomorphism .%#
to f*o*.F respecting the canonical descent datum. O

We now prove the previous theorem:
Proof. Special case: X, X’ affine, Spec B — Spec A, A — B faithfully flat.

1. f* is fully faithful iff for M, N being A-modules, we have that hom 4 (M,N) — hompg(M ®4 B,N ®4
B) = homy(M,N®B) = hompg ,s(M®s4BR4B, N® 4B®4B) = hom (M, N® 4 B® 4 B) is exact, so
we get homa (M, N - N®4B = N®,B® 4B), so just need to show that N - N® 4B = N®4B®4B
is exact. We reduce to the case where B — A is a section, and then it is fairly straightforward.

2. f* is essentially surjective: (Z,p)isMand ¢ : B&aM — M® 4 B an isomorphism of B® 4 B-modules

Guess what .% on X should be such that f*(%) ~ (Z,¢). We take N = {m € Mlm®1 = o(1@m)}.
Observe that there is a map v : N ® 4 B — M which is compatible with the descent data.

So we may assume that there is a section X — X’ (from B — A an augmentation). Now we know
that descent is effective, and so the proof in this case shows that v is an isomorphism in Dy.
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Obstruction Theories

Let w: A’ — A be a surjection of rings and I = ker 7 a square zero ideal as an A-module.
Let g : X — Spec A be a smooth separated scheme.

Problem, we want to understand the liftings
X — X'

Spec AC— Spec A’



with ¢’ smooth.
We defined Defy : Alg/A — Set yesterday by (f : C — A) — the set of isomorphism classes of squares

over this map:
X —X¢

smooth

Spec A———Spec C

Yesterday, we said that Tper, = H' (X, Tx/a).
When X is affine, we have the following;:

1. 3 a lifting X’ — Spec A’
2. Any two liftings are isomorphic
3. the group of automorphism of any lifting X’ — Spec A’ is canonically isomorphic to H%(X,Tx ® I)

For general X, if X’ — Spec A’ is a smooth lifting, I get a bijection varphix: : Defx (A’ — A) —
HY'(X,Tx ®1I). Yesterday the fixed lifting was X[I] — Spec A[I]. This lifting cannot be chosen canonically,
however.

Def of px/: Cover X by U; affine sets, and take X" € Def x(A’). Then for all i we get
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Choosing o; : U}’ — U/ for each i gives, for all 4, j,
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Q: When 93X’ — Spec A'?
Let U = {U;} be a covering of X by affines. Fix listing maps U/ — Spec A’. For all i,j, choose an
isomorphism ¢j; : U/|v,; — Ujlu,;
/ Pki
Uilu

/
ik —>Uk‘Uijk
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Ujlu
This diagram need not commute! We in fact get 9;x = @i, © (prj o wji) € H(Uijk, Tx ® I), an
automorphism.

ijk

Lemma 1. 1. {0} is a Cech 2-cocycle

2. If ¢l; is a second choice of isomorphisms that give {9;;,}, then {0ii} — {0;;,.} is a Cech boundary,
o(g) € H*(X, Tx ®I).



Proposition 1. 3 a lifting X' g, Spec A" of g iff o(g) = 0.

Summary:

1. There is a canonical obstruction o(g) € H?(X,Tx ® I) such that o(g) = 0 iff Def x (4’ — A) # ()
2. If o(g) = 0, then the set of isomorphism classes of liftings form a torsor under H(X,Tx ® I)

3. For any lifting of g, the group of automorphisms is canonically isomorphic to H(X,Tx ® I).
Take A a ring, F': A — alg — Set.

Definition 4 (Obstruction Theory). An obstruction theory for F consists of the following data:

1. ¥ morphisms A — Ag of A-algebras with kernel a nilpotent ideal and Ay reduced and a € F(A), we get
a functor O, : (finite type Ag-modules) — (finite type Ag-modules).

2. For all diagrams A’ — A — Ay and a € F(A), where A" — A is surjective with ker(A" — A) = J
annihilated by ker(A" — Ay), a class o(a) € Oy (J) which is zero iff a lifts to F(A’).

Generally Aq is a field, A is a thickening, and A’ is a further thickening.

This should be functorial in the natural way.

Example: Let j : X < X’ be a closed immersion defined by a square zero ideal J, L a line bundle on X.

Problem: Understand the liftings of L to L' on X.

We could take a lifting to a line bundle isomorphic to L, or we could take a pair (L', :) where L’ is a line
bundle on X’ and ¢ : j*L’ — L is a specific isomorphism of line bundles on X.

We will use the latter, and two are isomorphic (L', ¢) ~ (L”, €) if there exists o : L' — L” an isomorphism
such that eoc = ¢ (abusing notation to say o is a map j*L’ — j*L"”.) Note that just because (L';.), (L', ¢)
exist, there doesn’t NEED to be an homomorphism between them because the diagram may not commute.

No we have 0 — J — 0%, — 0% — 0 with the first map g — 1+ g, is a sequence of sheaves on | X|, and
I+ )A+9) =1+@g+f)+gf=1+(g+f)

This sequence is exact, so we get 0 — H°(J) — H°(0%,) — H°(0%) — H*(J) — Pic(X’') — Pic(X) —
H?(J) — ... from the long exact sequence on cohomology.

Proposition 2. Assume HY(X',0%,) — H°(X, 0%) is surjective. (Then the map H°(0O%) — H'(J) is
zero)

1. There exists an obstruction o(L) = 9[L] € H*(X,J) which is 0 iff there exists (L', 1).
2. If o(L) = 0, then the set of isomorphism classes of liftings (L', 1) is a torsor under H' (X, J)
3. For all liftings, the group of automorphisms is in canonical bijection with H°(X,J).

Osserman
Remarks: Fiber products may seem strange. We’ll come back to it later.

(H1) and (H2) of Schlessinger’s criterion are almost always satisfied if you’ve written down the deformation
functor properly.

(H3) tends to be related to some sort of properness hypothesis.
(H4) is related to presence of automorphisms.

Definition 5 (Deformation Functor). A predeformation functor F is a deformation functor if it satisfies
(H1) and (H2).

Note: (H3) Makes sense for any Deformation functor.

Definition 6 (Automorphism of Pair). Given (X4, ¢) € Defx(A), an automorphism of (Xa, ) (an infini-
tesimal automorphism of X 4) is an automorphism of X4 over A commuting with ¢.



Theorem 3. Let X be a scheme over k and Def x the functor of deformations of X. Then:

1. Defx is a deformation functor
2. Defx satisfies (H3) if X is proper.

3. Defx satisfies (H4) iff for all A" — A small thickening, the pair (X ar, @) over A’, every automorphism
of (Xar|la,@|a) is the restriction of an automorphism of (Xa, ).

In particular, if H(X, ,%”om(Q}X/k, Ox)) =0, then (H4) is satisfied.

Corollary 1. If X is proper, then Defx has a hull, and if further H°(X, j‘fom(Qk/k, Ox)) =0, then Def x
is prorepresentable.

Example: If X is a smooth, proper curve, then Def x has a hull, and Def x is prorepresentable if g > 2.

Lemma// 2. Consider
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of compatible ring and module homomorphisms, and with B = A’ x4 A”, N = M' Xy M" and M’ and
M" are flat over A’ and A” and A" — A surjective with nilpotent kernel and v’ induces M' @ o4» A ~ M and
similarly for u”.
Then, N is flat over B and p’ induces N @g A" ~ M and similarly for p”. Also, in same situation,
if we have L a B-module and q : L — M’ and ¢" : L — M" such that ¢’ induces L g A’ ~ M’, then
q xq":L— N is an isomorphism.

Note that this is more general than is necessary for Schlessinger, since we don’t restrict to Artin local
rings. Here, the modules are all free. The general argument uses the local criterion for flatness.

Proposition 3. Given A’ — A, A" — A where A" — A is surjective with nilpotent kernel, write B =
A’ x4 A", then

1. Given X' and X" flat over A’ and A", and an isomorphism ¢ : X'| 4 — X"| s there exists Y flat over
B with maps ¢ : X' =Y and ¢" : X" —'Y (over the map Spec A’ — Spec B) inducing isomorphisms
X' = Y|a and X" - Y|4 and ¢ = ¢ |40 ¢ | 4.

2. Given Y1,Ys flat over B, the natural map Isomp(Y1,Y2) — Isomar(Yi|ar,Y2|ar) X1soma(vi|a,Yela)
ISOmA// (Y1|A”7 YQ‘A”) S a ijectzon

Proof. 1. We'll consider Y on the same topological space as X’. We identify the spaces of X" and X"'|4
and also X'|4 using ¢ and write i : X|4 — X’'. Set Oy (U) = Ox/(U) XﬁX,‘A(ifl(U)) ﬁX//(iilU). So
Oy = 0x' Xi,0.,  Oxr.
The lemma tells us that &y is flat over B and that it recovers &x, and &x~ upon restriction to A’

and A”. The recovery of ¢ is a diagram chase. We also check that Oy is a sheaf and defines a scheme
structure, which boils down to module fiber product commutes with localization.

lA

2. Similar, but use second part of the lemma.

We now prove theorem about Defx.



Proof. 1. (H1) follows from part 1 of the proposition. (H2) uses part 2 of prop, also uses A = k so the ¢
in definition of Defx rigidify the isomorphisms

2. Is true for smooth X from Martin’s lecture, see later lectures for general statements.

3. Is similar to 1.



