Lieblich
Let X be a scheme. Then hx has a nice property. Fix Y, and take U C Y to hom(U, X) = hx(U). This
is a sheaf in the Zariski Topology.

olle

{U; C Y} is an open cover, then we have hx (Y) % IL hx(Us)
injective and Im(a) = {a]b(a) = c(a)}.

Problem: Zariski Topology is not ”geometric.”

Serre said in FAC that it was good for Sheaves. However, Grothendieck wanted an abstract categorical
notion of topology.

Observation: If X is a topological space, get a category with objects U C X open with arrows hom(U, V)
either the empty set or containing one arrow if U C V.

So then what is a presheaf? Just a contravariant functor from this category to Sets.

For sheaves, we need a bit more, we need to know what an open covering is, and how to glue things. We
want to retain {V; C U} an open cover, that is, a set of arrows V; — U in the category.

Silly Properties of Coverings

[ ; hx (Ui NUj) is exact. That is, a is

1. {U C U} is a covering
2. If {V; c U} is a covering and W C U, then (V; N W) C W is a covering.
3. If {V; C U} is a covering and {W;; C V;} are coverings then {W;; C U} is a covering.

Definition 1 (Grothendieck Topology). Given a category C, a Grothendieck Topology is a collection of sets
of arrows {V; — U} for each U € C, called coverings, such that

1. Any isomorphism is a covering

2. If {V; = U} is a covering and W — U, then V; xy W exists for each i and {V; xy W — W} is a
covering

3. If {W;; — Vi} is a covering and {V; — U} is a covering, then {W;; — U} is a covering.
A category with a Grothendieck Topology is called a Site.

Examples: X is a scheme. Xz, is the small Zariski Topology. The objects are open immersions into
X and the arrows are maps which commute with the immersion maps, and the coverings are collections of
arrows ¢; : V; — U} such that |J ¢;(V;) = U}.

Xzar is the big Zariski site. C = Schx. Let Z € C. Then the coverings are collections {¢; : ¥; — Z} of
arrows of X-morphisms such that each ¢; is an open immersion and |J ¢;(Y;) = Z.

X the small étale site. C = {Z — X étale} is a subcat of Schyx. Then coverings are ¢; : Y; — Z
X-morphisms with |J¢;(Y;) = Z.

X g the big étale site where C = Schx and the coverings of Z are ¢; : ¥; — Z with ¢; étale and
Uei(Ys) = Z.

Xyppyr is the fppf site. C = Schx and the coverings are ¢; : Y; — Z with ¢; flat and locally of finite
presentation with | ¢;(Y;) = Z.

Definition 2 (Sheaf of Sets). Given a site C, a sheaf of sets on C is a functor F : C° — Set such that for
all coverings {Y; — Z} in C the diagram
F(Z) = [[Fv) = [[FYixzY))
i i,
s exact.

We do need to consider i = j, eg Spec Q(v/2) — Spec Q.
Theorem 1 (Grothendieck). For any X-scheme S, the functor hx : SchS — Set is an fppf sheaf.



Proof. Fix {Y; — Z} a covering, and show hs(Z) — [[ hs(Yi) = hs(Y; xz Y;) is exact.
Baby case; {Y; — Z} is Spec B — Spec A, A — B is faithfully flat and S = Spec C'.
Diagram becomes hom(C, A) — hom(C, B) = hom(C, B ®4 B). hom(C,A — B = B®4 B).

Lemma 1. A — B = B®4 B is exact (top map is b+— b® 1 and bottom isb— 1®1b).

The lemma is equivalent to 0 - A — B — B®4 B exact, where the map is b+— b®1—1®b. We look at
the special case where there exists o : B — A such that A — B % A is the identity. We the get B4 B — B
by b ® C +— o(b)c. We show that if b®@ 1 =1 ® b then b € A this condition implies that o(b) = b, so we get
a o(b) € Ais equal to b, so b € A.

Observe that to prove 0 - A — B — B® 4 B is exact, it is enough to prove it after a faithfully flat base
change A — D. Let D = B, then A — B becomes B — B ® 4 B — B, which reduces the problem to the
special case. [Check This].

So the lemma is established.

We will use the following lemma without proof:

Lemma 2. F' : Schg — Set is an fppf sheaf iff it is a Zariski Sheaf and for all SpecB — SpecA with
A — B faithfully flat and of finite presentation, then F(V) — F(U) = F(U xy U).

Corollary 1. If S if affine, then hg is an fppf sheaf.

Sketch of the general case: Let .S; C S be an affine covering of S. Let U — V be an fppf covering. Then
we want to look at hg(V) — hg(U) =2 hg(U xy U). U — S such that the two maps U xy U - U — S
must agree. We then get, using fppf, that there exists |V| — |S| such that |U| — |V| — |S| corresponds to
our original U — S.

We pull back S; C S and take V; = f~1(S;) and U; = U xy V;. Then U; xv. U; = U; — V; and U; — S;

affine causes a map V; — 5; to exist, and these glue to V' — S as desired. O
Olsson
A — R a ring homomorphism, take the category A — alg/R of diagrams
f

C — R

A

And take F : A —alg/R — Set a functor. If For all I,J € Modgr the natural map F(R[I ® J]) —
F(R[I]) x F(R[J]) is an isomorphism, then we get a tangent space 1.

[In fact, VI, F(R[I]) is an R-module and T := F(R|e])]

+: F(R[e]) x F(R[e]) ~ F(Rle1, e2]/(€3, €3, €1€2)) — F(R[e]) with the map by €; — €.

x f: F(R[e]) — F(R[e]) is induced by R[e] — Rle] by a + be — a + fbe.

Problem 1: R aring, g : X — Spec R a separated, smooth map. Consider the functor Def x : Z— Alg/R —

Set with Def x (C ER R) = the set of isomorphism classes of cartesian diagrams
X — X

g gc

Spec R— Spec C

with go smooth.
A morphism of diagrams is an arrow h : X, — X¢ such that the following commutes



Spec R—> Spec C

Call the above Diagram 1.
Remark: If C = RJ[I] for some R-module I, then any morphism A as in Diagram 1 is an isomorphism.

Proposition 1. For all I,J € Modg, Defx (R[I & J]) — Def x (R[I]) x Defx (R[J]) is an isomorphism.

Proof in Osserman on Day 3.
How to compute Tpet,, or more generally the R-module Def x (R[I])?

Special Case: X affine. Facts: (1) Defx (R[I]) consists of one element and (2) For any deformation
X —X'

Spec R—> Spec R[I]
then the set of maps h: X’ — X’ as in Diagram 1 is in canonical bijection with H%(X,Tx ® I).
Why is there a lifting? X = Spec R[z1,...,z,]/(f1,.-., f¢). In fact, X[I] — Spec R[I] is a smooth lifting,.
REASON?7??

Recall:
Ty —— Y

i

7 —— S
j a closed immersion defined by a square-zero ideal J then the set of arrows f filling in the diagram is a
pseudo-torsor under hom(f;€3, /50 )

Definition 3 (Pseudo-Torsor). FEither no arrow exists or, if an arrow exists, there is a simply transitive
action of hom(f(j‘Q%//S, J) on the set of arrows.

For general X — Spec R, this also shows that (X[I] — Spec R[I]) € Defx(R[I]). Choose a covering
X =, U; with each U; affine and denote {U;} = U. Choose for each ¢ € I a smooth lifting U — Spec R[I]
We want to patch the U/ to a lifting of X.

19RO
X — X' corresponds to Ox: ' “E'X 0y on |X]|

I®ROU,
U — Spec R[I] corresponds to Oy 5% 0y, on |U;).

On U;; = U; NUj, we get a diagram

!’

iU
/

Ui; 3
\

U; Us;

two elements of Defy, ; (R[I]).
Pick Vi and isomorphism o; : U} — U;[I]. Note that any other choice of o; is given by composition with
an automorphisms of U;[I] < H(U;, Tx ® I).

—1
There is an obstruction for the 0;’s to glue to an isomorphism X' =~ X[I]. z;; : Uy[I] = U % U, ().



Lemma 3. x;; = z;; + zj5 in H(Uyjp, Tx ® I).

Proof. Simple diagram chase. O
Corollary 2. The {z;;} define a Cech Cocycle [X'] € HY(X,Tx ® I) = HY (X, Tx ® I).

Theorem 2. The map Defx (R[I]) — HY(X,Tx ® I) by X' — [X'] is an R-module isomorphism.

Osserman

Examples: For "nice” global moduli functors, it works well to simply restrict to Art(A, k) to obtain
predeformation functors. An example is deformations of a closed subscheme.

Let Xa be a scheme over Spec A and write X for Xa|speck- Let Z C X be a closed subscheme. Defy x :
Art(A, k) — Set is defined by A — {Z4 C X |spec 4 closed subscheme, flat over A, such that Z4|gpecr = Z}-

Sometimes, simple restriction of functors isn’t so good.

Example: Deformations of a scheme. Fix X over k, then Defx is defined by A — {(Xa,¢) : X4 is flat
over Spec A, ¢ : X — X 4 such that ¢ induces isomorphism of X with the fiber product X4 x4 k}/ ~.

Note: If we naively restrict functors, we still get a predeformation functor, but its behavior will be worse.

Problem comes from the automorphisms of X not extending to X 4. This is the first hint that for moduli
problems involving automorphisms that functors to Sets don’t capture everything.

Example: Deformation of a quasicoherent sheaf. Fix X, over Spec A and set X = X, fix & a quasico-
herent sheaf on X. Define Defg by A — {(&4,¢)|E4} is quasicoherent on Xp |4, flat over A, and ¢p: &4 — &
inducing an isomorphism &4 ®4 k ~ &}/ ~.

Prorepresentability and Hulls

Definition 4 (Prorepresentability). Given F': Art(A,k) — Sets, let AArt(A, k) be the category of complete
local noetherian A-algebras and F: Art(A, k) — Set defined by F(R) = lim F'(R/m™). A functor I is called

prorepresentable zfﬁ’ is representable.

Warning! If we start with a global moduli problem, then F is not necessarily obtained by simply
considering the families over R. This is the issue of effectivizability, see next week.

Definition 5 (Smooth). Given F,F’ functors Art(A,k) — Set and a natural transformation f : F — F’,
then f is smooth (formally smooth) if for all surjections A — B in Art(A, k), the map F'(A) — F(B) X (B
G(A) is surjective.

Recall that TF, the tangent space of F' is F'(k[e]).
Notation: Given R € Art(A, k) denote hg : Art(A, k) — Set the functor of points of Spec R, so Hr(R) =
hom(R, R’) and hp is the restriction to Art(A, k).

Definition 6 (Hull). Let F' be a predeformation functor, a pair (R,n) with n € F’(R) is a hull for F if
1. n:hg — F is smooth
2. Ty, — TF is an isomorphism

Proposition 2. If (R,n) and (R',7n’) are hulls for F, then they are isomorphic.

Left as an exercise.

Definition 7 (Small Thickening). A surjective map f; A — B in Art(A, k) is a small thickening if ker f is
isomorphic to k, or equivalently, mker f = 0 and ker f is principal.

Remark: it is easy to check that any surjection in Art(A,k) can be factored as a sequence of small
thickenings.
Given A" — A, A" — A, then we get (x) F'(A" x4 A”) — F(A") xpay F(A").

Theorem 3 (Schlessinger’s Criterion). If F is a predeformation functor, consider the following conditions:

H1 (%) is surjective whenever A” — A is surjective. (Equivalently, Small thickening)



H2 (x) is bijective whenever A” = kle], A =k.
H3 Ty is finite-dimensional
H4 (x) is bijective whenever A’ = A" and both maps are surjective. (equivalently, small thickening)

Then (H1) — (H3) is equivalent to F having a hull, and (H1) — (H4) is equivalent to F being prorepre-
sentable.

Vakil

The Space that Wanted to be a Scheme

Let 2" — B be a nice family of objects parametrized by B. A moduli space .# means that every family
of nice objects &~ — B corresponds to a map B — .

In question: The moduli space of smooth genus 3 curves .#3.

So 2 — B is a smooth, projective morphism of relative dimension 1 with geometrically connected fibers
all of which are genus 3.

Why should this be a scheme?

Clues: (Martin) The tangent space: given [C] € .#3, we can find Tjc). At each point this is a 6
dimensional vector space. Soon (Brian) we will have the entire deformation space. So then .#5 is formally
smooth. So what is a vector bundle on .#37

Vg =7*V
/ -
B ———— M3

So a vector bundle on .#3 should be a recipe for giving, a vector bundle on B for any family 4 — B
which behaves well under pullback.

e.g., the Hodge bundle
€ E3

T W*Qé

v

B —— s

So now, we take s C .3, some genus 3 curves are hyperelliptic. (i.e., they admit 2 to 1 covers of
P'. J4 is a 5-dimensional Cartier Divisor, so it is locally cut out by a single equation. In fact, this holds
in general, if you have a family ¥ — B, there is a closed immersion H — B locally cut out by a single
equation such that C|g (the completion of the fiber square) is a family of hyperelliptic curves and that H is
the largest closed immersion with this property. (Obtain H by completing the square with % — .#5 and
B — %3.

There is a scheme .#3[100] which are genus 3 curves with ”level 100 structure” which is a legitimate
scheme, and we should have a finite morphism to .#3. In fact, an étale morphism.

We now want to, given X,Y mapping to .45, construct X X 4, Y. We get two families of curves on
X xY, and so X X g, Y parametrizes isomorphisms between the two families.

The Isom Functor

Let B be a base and %1, %> — B two families.

Theorem 4 (Grothendieck). I'somp(%1,%2) is a scheme if both families are projective and flat.

We now interpret .#31 — .#3 where .#3 ;1 is the moduli space of genus 3 curves with 1 marked point.

This map should be a recipe for taking a family of marked genus 3 curves to a family of genus 3 curves
with no marked points.

This morphisms is even projective and smooth. Why? Take B — .#3 and complete the fiber square,
well, B — .#3 is the same as a family ¥ — B and so € complete the square.

Unfortunately, .#5 is not a scheme!



Max said that schemes are sheaves in the Zariski Topology, and that means that if X is a scheme, we fix
a scheme Y and U — hom(U, X) is a sheaf on Y.

Let Y be a pair of P!s glued together over 2 points. Fix a curve C of genus 3 with a nontrivial
automorphism o. We will use this to create two families of curves over Y.

The first will be C x Y — Y. The second is done by taking the trivial families on P! and gluing by
applying ¢ on the two points. This will be called the Moebius Strip family. Erasing either node trivializes
the Moebius Strip, so this cannot be a scheme!

Grothendieck Topologies

We want to think of the category as open sets of a space X. U — X maps.

Take the additional data of coverings with three axioms (see Lieblich 2).

We now look at A<1c ~ C with the classical topology, and it has coordinate t, then v/ is a function on
some small enough open set U. /t — 1 makes sense on some V. And in fact v/ + ¥/t — 1 makes sense on
unv.

Take a map Spec C[u] \ {0} — SpecCJ[t] \ {0} by u? =t and this is an étale open set, so this shows that
the étale topology is closer to the classical topology.

How to save .#5. The problem was the automorphisms.

Example: 27 +y"+27 = 0 and a” +b” +¢” = 0. They are isomorphic, but there are MANY isomorphisms.

The Category of Families of Genus 3 Curves

This is a big groupoid, because you only have isomorphisms. We have a functor that takes a family to
it’s base in Schemes. We want to add morphisms that allow base change, and those will be fiber squares.
This makes it no longer a groupoid.

This is an example of a category fibered in groupoids.

A category fibered in groupoids is a STACK if

1. If Isomx (%1, %) from Schx — Sets is a sheaf in the étale topology

2. ”Elements glue”

Fibered products of stacks are a little more subtle than with schemes...

Definition 8 (Representable Morphism). A morphism of stacks M4 — M is representable if for all X — A’
with X a scheme, the fiber product X X 4 M is a scheme.

Any notion preserved by base chance makes sense for representable morphisms.
Exercise: If .Z is a stack, then the diagonal A 4 : . # — # X .4 is representable iff every morphism
from a scheme to .# is representable.

Hint:
UXygV—UxyV

M ——> M Xy M
Definition 9 (Deligne-Mumford Stack). A stack .# is of Deligne-Mumford type if

1. A 4 is representable, quasi-compact and separated

2. There is an étale cover by a scheme



