Lieblich

Let X be a scheme. Then h_X has a nice property. Fix Y, and take $U \subset Y$ to $hom(U, X) = h_X(U)$. This is a sheaf in the Zariski Topology.

 $\{U_i \subset Y\}$ is an open cover, then we have $h_X(Y) \xrightarrow{a} \prod_i h_X(U_i) \stackrel{b}{\xrightarrow{c}} \prod_{i,j} h_X(U_i \cap U_j)$ is exact. That is, *a* is injective and $\operatorname{Im}(a) = \{\alpha | b(\alpha) = c(\alpha)\}.$

Problem: Zariski Topology is not "geometric."

Serre said in FAC that it was good for Sheaves. However, Grothendieck wanted an abstract categorical notion of topology.

Observation: If X is a topological space, get a category with objects $U \subseteq X$ open with arrows hom(U, V) either the empty set or containing one arrow if $U \subset V$.

So then what is a presheaf? Just a contravariant functor from this category to Sets.

For sheaves, we need a bit more, we need to know what an open covering is, and how to glue things. We want to retain $\{V_i \subseteq U\}$ an open cover, that is, a set of arrows $V_i \to U$ in the category.

Silly Properties of Coverings

1. $\{U \subseteq U\}$ is a covering

2. If $\{V_i \subset U\}$ is a covering and $W \subseteq U$, then $(V_i \cap W) \subseteq W$ is a covering.

3. If $\{V_i \subset U\}$ is a covering and $\{W_{ij} \subset V_i\}$ are coverings then $\{W_{ij} \subset U\}$ is a covering.

Definition 1 (Grothendieck Topology). Given a category C, a Grothendieck Topology is a collection of sets of arrows $\{V_i \to U\}$ for each $U \in C$, called coverings, such that

- 1. Any isomorphism is a covering
- 2. If $\{V_i \to U\}$ is a covering and $W \to U$, then $V_i \times_U W$ exists for each i and $\{V_i \times_U W \to W\}$ is a covering
- 3. If $\{W_{ij} \to V_i\}$ is a covering and $\{V_i \to U\}$ is a covering, then $\{W_{ij} \to U\}$ is a covering.

A category with a Grothendieck Topology is called a Site.

Examples: X is a scheme. X_{Zar} is the small Zariski Topology. The objects are open immersions into X and the arrows are maps which commute with the immersion maps, and the coverings are collections of arrows $\phi_i : V_i \to U$ such that $\bigcup \phi_i(V_i) = U$.

 X_{ZAR} is the big Zariski site. $\mathcal{C} = Sch_X$. Let $Z \in \mathcal{C}$. Then the coverings are collections $\{\phi_i : Y_i \to Z\}$ of arrows of X-morphisms such that each ϕ_i is an open immersion and $\bigcup \phi_i(Y_i) = Z$.

 $X_{\acute{e}t}$ the small étale site. $\mathcal{C} = \{Z \to X \text{ étale}\}$ is a subcat of Sch_X . Then coverings are $\phi_i : Y_i \to Z$ X-morphisms with $\bigcup \phi_i(Y_i) = Z$.

 X_{ET} the big étale site where $\mathcal{C} = Sch_X$ and the coverings of Z are $\phi_i : Y_i \to Z$ with ϕ_i étale and $\bigcup \phi_i(Y_i) = Z$.

 X_{fppf} is the fppf site. $\mathcal{C} = Sch_X$ and the coverings are $\phi_i : Y_i \to Z$ with ϕ_i flat and locally of finite presentation with $\bigcup \phi_i(Y_i) = Z$.

Definition 2 (Sheaf of Sets). Given a site C, a sheaf of sets on C is a functor $F : C^{\circ} \to Set$ such that for all coverings $\{Y_i \to Z\}$ in C the diagram

$$F(Z) \to \prod_i F(Y_i) \Longrightarrow \prod_{i,j} F(Y_i \times_Z Y_j)$$

is exact.

We do need to consider i = j, eg Spec $\mathbb{Q}(\sqrt{2}) \to \operatorname{Spec} \mathbb{Q}$.

Theorem 1 (Grothendieck). For any X-scheme S, the functor $h_X : Sch_X^{\circ} \to Set$ is an fppf sheaf.

Proof. Fix $\{Y_i \to Z\}$ a covering, and show $h_S(Z) \to \prod h_S(Y_i) \Rightarrow h_S(Y_i \times_Z Y_j)$ is exact. Baby case; $\{Y_i \to Z\}$ is Spec $B \to \text{Spec } A$, $A \to B$ is faithfully flat and S = Spec C. Diagram becomes $\hom(C, A) \to \hom(C, B) \rightrightarrows \hom(C, B \otimes_A B)$. $\hom(C, A \to B \rightrightarrows B \otimes_A B)$.

Lemma 1. $A \to B \rightrightarrows B \otimes_A B$ is exact (top map is $b \mapsto b \otimes 1$ and bottom is $b \mapsto 1 \otimes b$).

The lemma is equivalent to $0 \to A \to B \to B \otimes_A B$ exact, where the map is $b \mapsto b \otimes 1 - 1 \otimes b$. We look at the special case where there exists $\sigma: B \to A$ such that $A \to B \xrightarrow{\sigma} A$ is the identity. We the get $B \otimes_A B \to B$ by $b \otimes C \mapsto \sigma(b)c$. We show that if $b \otimes 1 = 1 \otimes b$ then $b \in A$ this condition implies that $\sigma(b) = b$, so we get a $\sigma(b) \in A$ is equal to b, so $b \in A$.

Observe that to prove $0 \to A \to B \to B \otimes_A B$ is exact, it is enough to prove it after a faithfully flat base change $A \to D$. Let D = B, then $A \to B$ becomes $B \to B \otimes_A B \to B$, which reduces the problem to the special case. [Check This].

So the lemma is established.

We will use the following lemma without proof:

Lemma 2. $F : Sch_X^{\circ} \to Set$ is an fppf sheaf iff it is a Zariski Sheaf and for all SpecB \to SpecA with $A \to B$ faithfully flat and of finite presentation, then $F(V) \to F(U) \rightrightarrows F(U \times_V U)$.

Corollary 1. If S if affine, then h_S is an fppf sheaf.

Sketch of the general case: Let $S_i \subseteq S$ be an affine covering of S. Let $U \to V$ be an fppf covering. Then we want to look at $h_S(V) \to h_S(U) \rightrightarrows h_S(U \times_V U)$. $U \to S$ such that the two maps $U \times_V U \to U \to S$ must agree. We then get, using fppf, that there exists $|V| \to |S|$ such that $|U| \to |V| \to |S|$ corresponds to our original $U \to S$.

We pull back $S_i \subset S$ and take $V_i = f^{-1}(S_i)$ and $U_i = U \times_V V_i$. Then $U_i \times_{V_i} U_i \rightrightarrows U_i \rightarrow V_i$ and $U_i \rightarrow S_i$ affine causes a map $V_i \to S_i$ to exist, and these glue to $V \to S$ as desired.

Olsson

 $A \to R$ a ring homomorphism, take the category A - alg/R of diagrams $\xrightarrow{J} R$ A And take $F: A - alg/R \to Set$ a functor. If For all $I, J \in Mod_R$ the natural map $F(R[I \oplus J]) \to$

 $F(R[I]) \times F(R[J])$ is an isomorphism, then we get a tangent space T_F .

[In fact, $\forall I, F(R[I])$ is an *R*-module and $T_F := F(R[\epsilon])$]

 $\begin{array}{l} +:F(R[\epsilon])\times F(R[\epsilon])\simeq F(R[\epsilon_1,\epsilon_2]/(\epsilon_1^2,\epsilon_2^2,\epsilon_1\epsilon_2))\to F(R[\epsilon]) \text{ with the map by } \epsilon_i\to\epsilon.\\ \times f:F(R[\epsilon])\to F(R[\epsilon]) \text{ is induced by } R[\epsilon]\to R[\epsilon] \text{ by } a+b\epsilon\mapsto a+fb\epsilon. \end{array}$

Problem 1: R a ring, $g: X \to \text{Spec } R$ a separated, smooth map. Consider the functor $\text{Def}_X: \mathbb{Z} - Alg/R \to \mathbb{Z}$ Set with $\operatorname{Def}_X(C \xrightarrow{f} R)$ = the set of isomorphism classes of cartesian diagrams

 $\operatorname{Spec} R \longrightarrow \operatorname{Spec} C$

with q_C smooth.

A morphism of diagrams is an arrow $h: X'_C \to X_C$ such that the following commutes

Spec $R \longrightarrow$ Spec CCall the above Diagram 1. Remark: If C = R[I] for some R-module I, then any morphism h as in Diagram 1 is an isomorphism.

Proposition 1. For all $I, J \in Mod_R$, $Def_X(R[I \oplus J]) \to Def_X(R[I]) \times Def_X(R[J])$ is an isomorphism.

Proof in Osserman on Day 3.

How to compute T_{Def_X} or more generally the *R*-module $\text{Def}_X(R[I])$?

Special Case: X affine. Facts: (1) $\operatorname{Def}_X(R[I])$ consists of one element and (2) For any deformation $X \longrightarrow X'$

 $\operatorname{Spec} R \longrightarrow \operatorname{Spec} R[I]$

then the set of maps $h: X' \to X'$ as in Diagram 1 is in canonical bijection with $H^0(X, T_X \otimes I)$. Why is there a lifting? $X = \operatorname{Spec} R[x_1, \ldots, x_r]/(f_1, \ldots, f_\ell)$. In fact, $X[I] \to \operatorname{Spec} R[I]$ is a smooth lifting. REASON???

j a closed immersion defined by a square-zero ideal J then the set of arrows f filling in the diagram is a pseudo-torsor under hom $(f_0^*\Omega^1_{Y/S}, J)$

Definition 3 (Pseudo-Torsor). Either no arrow exists or, if an arrow exists, there is a simply transitive action of hom $(f_0^*\Omega^1_{Y/S}, J)$ on the set of arrows.

For general $X \to \operatorname{Spec} R$, this also shows that $(X[I] \to \operatorname{Spec} R[I]) \in \operatorname{Def}_X(R[I])$. Choose a covering $X = \bigcup_i U_i$ with each U_i affine and denote $\{U_i\} = \mathcal{U}$. Choose for each $i \in I$ a smooth lifting $U'_i \to \operatorname{Spec} R[I]$ We want to patch the U'_i to a lifting of X.

two elements of $\operatorname{Def}_{U_{ij}}(R[I])$.

Pick $\forall i$ and isomorphism $\sigma_i : U'_i \to U_i[I]$. Note that any other choice of σ_i is given by composition with an automorphisms of $U_i[I] \leftrightarrow H^0(U_i, T_X \otimes I)$.

There is an obstruction for the σ_i 's to glue to an isomorphism $X' \simeq X[I]$. $x_{ij} : U_{ij}[I] \xrightarrow{\sigma_j^{-1}} U'_{ij} \xrightarrow{\sigma_i} U_{ij}(U)$.

Lemma 3. $x_{ij} = x_{ij} + x_{jk}$ in $H^0(U_{ijk}, T_X \otimes I)$.

Proof. Simple diagram chase.

Corollary 2. The $\{x_{ij}\}$ define a Cech Cocycle $[X'] \in \check{H}^1(X, T_X \otimes I) = H^1(X, T_X \otimes I)$.

Theorem 2. The map $\operatorname{Def}_X(R[I]) \to H^1(X, T_X \otimes I)$ by $X' \mapsto [X']$ is an *R*-module isomorphism.

Osserman

Examples: For "nice" global moduli functors, it works well to simply restrict to $Art(\Lambda, k)$ to obtain predeformation functors. An example is deformations of a closed subscheme.

Let X_{Λ} be a scheme over Spec Λ and write X for $X_{\Lambda}|_{\text{Spec }k}$. Let $Z \subseteq X$ be a closed subscheme. Def_{Z,X} : $Art(\Lambda, k) \to Set$ is defined by $A \mapsto \{Z_A \subset X_{\Lambda}|_{\text{Spec }A}$ closed subscheme, flat over A, such that $Z_A|_{\text{Spec }k} = Z\}$. Sometimes, simple restriction of functors isn't so good.

Example: Deformations of a scheme. Fix X over k, then Def_X is defined by $A \mapsto \{(X_A, \varphi) : X_A \text{ is flat} over \text{Spec } A, \varphi : X \to X_A \text{ such that } \varphi \text{ induces isomorphism of } X \text{ with the fiber product } X_A \times_A k\}/\simeq$.

Note: If we naively restrict functors, we still get a predeformation functor, but its behavior will be worse. Problem comes from the automorphisms of X not extending to X_A . This is the first hint that for moduli problems involving automorphisms that functors to Sets don't capture everything.

Example: Deformation of a quasicoherent sheaf. Fix X_{Λ} over Spec Λ and set $X = X_{\Lambda}|_k$ fix \mathscr{E} a quasicoherent sheaf on X. Define $\text{Def}_{\mathscr{E}}$ by $A \mapsto \{(\mathscr{E}_A, \phi)|\mathscr{E}_A\}$ is quasicoherent on $X_{\Lambda}|_A$, flat over A, and $\phi : \mathscr{E}_A \to \mathscr{E}$ inducing an isomorphism $\mathscr{E}_A \otimes_A k \simeq \mathscr{E}\}/\simeq$.

Prorepresentability and Hulls

Definition 4 (Prorepresentability). Given $F : Art(\Lambda, k) \to Sets$, let $Art(\Lambda, k)$ be the category of complete local noetherian Λ -algebras and $\hat{F} : Art(\Lambda, k) \to Set$ defined by $\hat{F}(R) = \varprojlim F(R/\mathfrak{m}^n)$. A functor F is called prorepresentable if \hat{F} is representable.

Warning! If we start with a global moduli problem, then \hat{F} is not necessarily obtained by simply considering the families over R. This is the issue of effectivizability, see next week.

Definition 5 (Smooth). Given F, F' functors $Art(\Lambda, k) \to Set$ and a natural transformation $f : F \to F'$, then f is smooth (formally smooth) if for all surjections $A \to B$ in $Art(\Lambda, k)$, the map $F(A) \to F(B) \times_{G(B)} G(A)$ is surjective.

Recall that T_F , the tangent space of F is $F(k[\epsilon])$.

Notation: Given $R \in Art(\Lambda, k)$ denote $h_R : Art(\Lambda, k) \to Set$ the functor of points of Spec R, so $H_R(R) = hom(R, R')$ and \bar{h}_R is the restriction to $Art(\Lambda, k)$.

Definition 6 (Hull). Let F be a predeformation functor, a pair (R, η) with $\eta \in \hat{F}(R)$ is a hull for F if

- 1. $\eta: \bar{h}_R \to F$ is smooth
- 2. $T_{\bar{h}_R} \rightarrow T_F$ is an isomorphism

Proposition 2. If (R, η) and (R', η') are hulls for F, then they are isomorphic.

Left as an exercise.

Definition 7 (Small Thickening). A surjective map $f; A \to B$ in $Art(\Lambda, k)$ is a small thickening if ker f is isomorphic to k, or equivalently, $\mathfrak{m}_A \ker f = 0$ and ker f is principal.

Remark: it is easy to check that any surjection in $Art(\Lambda, k)$ can be factored as a sequence of small thickenings.

Given $A' \to A, A'' \to A$, then we get (*) $F(A' \times_A A'') \to F(A') \times_{F(A)} F(A'')$.

Theorem 3 (Schlessinger's Criterion). If F is a predeformation functor, consider the following conditions:

H1 (*) is surjective whenever $A'' \rightarrow A$ is surjective. (Equivalently, Small thickening)

H2 (*) is bijective whenever $A'' = k[\epsilon]$, A = k.

H3 T_F is finite-dimensional

H4 (*) is bijective whenever A' = A'' and both maps are surjective. (equivalently, small thickening)

Then (H1) - (H3) is equivalent to F having a hull, and (H1) - (H4) is equivalent to F being prorepresentable.

Vakil

The Space that Wanted to be a Scheme

Let $\mathscr{X} \to B$ be a nice family of objects parametrized by B. A moduli space \mathscr{M} means that every family of nice objects $\mathscr{X} \to B$ corresponds to a map $B \to \mathscr{M}$.

In question: The moduli space of smooth genus 3 curves \mathcal{M}_3 .

So $\mathscr{X} \to B$ is a smooth, projective morphism of relative dimension 1 with geometrically connected fibers all of which are genus 3.

Why should this be a scheme?

Clues: (Martin) The tangent space: given $[C] \in \mathcal{M}_3$, we can find $T_{[C]}$. At each point this is a 6 dimensional vector space. Soon (Brian) we will have the entire deformation space. So then \mathcal{M}_3 is formally smooth. So what is a vector bundle on \mathcal{M}_3 ?

$$\left| \begin{array}{c} V_B = \pi^* V \\ \swarrow \\ B \\ \xrightarrow{\pi} \\ \mathcal{M}_3 \end{array} \right|$$

So a vector bundle on \mathcal{M}_3 should be a recipe for giving, a vector bundle on B for any family $\mathscr{C} \to B$ which behaves well under pullback.

So now, we take $\mathscr{H}_3 \subseteq \mathscr{M}_3$, some genus 3 curves are hyperelliptic. (i.e., they admit 2 to 1 covers of \mathbb{P}^1 . \mathscr{H}_3 is a 5-dimensional Cartier Divisor, so it is locally cut out by a single equation. In fact, this holds in general, if you have a family $\mathscr{C} \to B$, there is a closed immersion $H \to B$ locally cut out by a single equation such that $C|_H$ (the completion of the fiber square) is a family of hyperelliptic curves and that H is the largest closed immersion with this property. (Obtain H by completing the square with $\mathscr{H}_3 \to \mathscr{M}_3$ and $B \to \mathscr{M}_3$.

There is a scheme $\mathcal{M}_3[100]$ which are genus 3 curves with "level 100 structure" which is a legitimate scheme, and we should have a finite morphism to \mathcal{M}_3 . In fact, an étale morphism.

We now want to, given X, Y mapping to \mathcal{M}_3 , construct $X \times_{\mathcal{M}_3} Y$. We get two families of curves on $X \times Y$, and so $X \times_{\mathcal{M}_3} Y$ parametrizes isomorphisms between the two families.

The Isom Functor

Let B be a base and $\mathscr{C}_1, \mathscr{C}_2 \to B$ two families.

Theorem 4 (Grothendieck). Isom_B($\mathscr{C}_1, \mathscr{C}_2$) is a scheme if both families are projective and flat.

We now interpret $\mathcal{M}_{3,1} \to \mathcal{M}_3$ where $\mathcal{M}_{3,1}$ is the moduli space of genus 3 curves with 1 marked point.

This map should be a recipe for taking a family of marked genus 3 curves to a family of genus 3 curves with no marked points.

This morphisms is even projective and smooth. Why? Take $B \to \mathcal{M}_3$ and complete the fiber square, well, $B \to \mathcal{M}_3$ is the same as a family $\mathscr{C} \to B$ and so \mathscr{C} complete the square.

Unfortunately, \mathcal{M}_3 is not a scheme!

Max said that schemes are sheaves in the Zariski Topology, and that means that if X is a scheme, we fix a scheme Y and $U \mapsto \hom(U, X)$ is a sheaf on Y.

Let Y be a pair of \mathbb{P}^1 's glued together over 2 points. Fix a curve C of genus 3 with a nontrivial automorphism σ . We will use this to create two families of curves over Y.

The first will be $C \times Y \to Y$. The second is done by taking the trivial families on \mathbb{P}^1 and gluing by applying σ on the two points. This will be called the Moebius Strip family. Erasing either node trivializes the Moebius Strip, so this cannot be a scheme!

Grothendieck Topologies

We want to think of the category as open sets of a space X. $U \to X$ maps.

Take the additional data of coverings with three axioms (see Lieblich 2).

We now look at $\mathbb{A}^1_{\mathbb{C}} \sim \mathbb{C}$ with the classical topology, and it has coordinate t, then \sqrt{t} is a function on some small enough open set U. $\sqrt[3]{t-1}$ makes sense on some V. And in fact $\sqrt{t} + \sqrt[3]{t-1}$ makes sense on $U \cap V$.

Take a map $\operatorname{Spec} \mathbb{C}[u] \setminus \{0\} \to \operatorname{Spec} \mathbb{C}[t] \setminus \{0\}$ by $u^2 = t$ and this is an étale open set, so this shows that the étale topology is closer to the classical topology.

How to save \mathcal{M}_3 . The problem was the automorphisms.

Example: $x^7 + y^7 + z^7 = 0$ and $a^7 + b^7 + c^7 = 0$. They are isomorphic, but there are MANY isomorphisms. The Category of Families of Genus 3 Curves

This is a big groupoid, because you only have isomorphisms. We have a functor that takes a family to it's base in Schemes. We want to add morphisms that allow base change, and those will be fiber squares. This makes it no longer a groupoid.

This is an example of a category fibered in groupoids.

A category fibered in groupoids is a STACK if

1. If $Isom_X(\mathscr{C}_1, \mathscr{C}_2)$ from $Sch_X \to Sets$ is a sheaf in the étale topology

2. "Elements glue"

Fibered products of stacks are a little more subtle than with schemes...

Definition 8 (Representable Morphism). A morphism of stacks $\mathcal{M} \to \mathcal{M}'$ is representable if for all $X \to \mathcal{M}'$ with X a scheme, the fiber product $X \times_{\mathcal{M}'} \mathcal{M}$ is a scheme.

Any notion preserved by base chance makes sense for representable morphisms.

<u>Exercise</u>: If \mathscr{M} is a stack, then the diagonal $\Delta_{\mathscr{M}} : \mathscr{M} \to \mathscr{M} \times \mathscr{M}$ is representable iff every morphism from a scheme to \mathscr{M} is representable.

Definition 9 (Deligne-Mumford Stack). A stack \mathscr{M} is of Deligne-Mumford type if

- 1. $\Delta_{\mathcal{M}}$ is representable, quasi-compact and separated
- 2. There is an étale cover by a scheme