
Lieblich
Let X be a scheme. Then hX has a nice property. Fix Y , and take U ⊂ Y to hom(U,X) = hX(U). This

is a sheaf in the Zariski Topology.

{Ui ⊂ Y } is an open cover, then we have hX(Y ) a→
∏

i hX(Ui)

b→
→
c

∏
i,j hX(Ui ∩Uj) is exact. That is, a is

injective and Im(a) = {α|b(α) = c(α)}.
Problem: Zariski Topology is not ”geometric.”
Serre said in FAC that it was good for Sheaves. However, Grothendieck wanted an abstract categorical

notion of topology.
Observation: If X is a topological space, get a category with objects U ⊆ X open with arrows hom(U, V )

either the empty set or containing one arrow if U ⊂ V .
So then what is a presheaf? Just a contravariant functor from this category to Sets.
For sheaves, we need a bit more, we need to know what an open covering is, and how to glue things. We

want to retain {Vi ⊆ U} an open cover, that is, a set of arrows Vi → U in the category.
Silly Properties of Coverings

1. {U ⊆ U} is a covering

2. If {Vi ⊂ U} is a covering and W ⊆ U , then (Vi ∩W ) ⊆W is a covering.

3. If {Vi ⊂ U} is a covering and {Wij ⊂ Vi} are coverings then {Wij ⊂ U} is a covering.

Definition 1 (Grothendieck Topology). Given a category C, a Grothendieck Topology is a collection of sets
of arrows {Vi → U} for each U ∈ C, called coverings, such that

1. Any isomorphism is a covering

2. If {Vi → U} is a covering and W → U , then Vi ×U W exists for each i and {Vi ×U W → W} is a
covering

3. If {Wij → Vi} is a covering and {Vi → U} is a covering, then {Wij → U} is a covering.

A category with a Grothendieck Topology is called a Site.

Examples: X is a scheme. XZar is the small Zariski Topology. The objects are open immersions into
X and the arrows are maps which commute with the immersion maps, and the coverings are collections of
arrows φi : Vi → U} such that

⋃
φi(Vi) = U}.

XZAR is the big Zariski site. C = SchX . Let Z ∈ C. Then the coverings are collections {φi : Yi → Z} of
arrows of X-morphisms such that each φi is an open immersion and

⋃
φi(Yi) = Z.

Xét the small étale site. C = {Z → X étale} is a subcat of SchX . Then coverings are φi : Yi → Z
X-morphisms with

⋃
φi(Yi) = Z.

XÉT the big étale site where C = SchX and the coverings of Z are φi : Yi → Z with φi étale and⋃
φi(Yi) = Z.
Xfppf is the fppf site. C = SchX and the coverings are φi : Yi → Z with φi flat and locally of finite

presentation with
⋃

φi(Yi) = Z.

Definition 2 (Sheaf of Sets). Given a site C, a sheaf of sets on C is a functor F : C◦ → Set such that for
all coverings {Yi → Z} in C the diagram

F (Z)→
∏

i

F (Yi) ⇒
∏
i,j

F (Yi ×Z Yj)

is exact.

We do need to consider i = j, eg Spec Q(
√

2)→ Spec Q.

Theorem 1 (Grothendieck). For any X-scheme S, the functor hX : Sch◦X → Set is an fppf sheaf.
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Proof. Fix {Yi → Z} a covering, and show hS(Z)→
∏

hS(Yi) ⇒ hS(Yi ×Z Yj) is exact.
Baby case; {Yi → Z} is Spec B → Spec A, A→ B is faithfully flat and S = Spec C.
Diagram becomes hom(C,A)→ hom(C,B) ⇒ hom(C,B ⊗A B). hom(C,A→ B ⇒ B ⊗A B).

Lemma 1. A→ B ⇒ B ⊗A B is exact (top map is b 7→ b⊗ 1 and bottom is b 7→ 1⊗ b).

The lemma is equivalent to 0→ A→ B → B⊗A B exact, where the map is b 7→ b⊗1−1⊗ b. We look at
the special case where there exists σ : B → A such that A→ B

σ→ A is the identity. We the get B⊗A B → B
by b⊗ C 7→ σ(b)c. We show that if b⊗ 1 = 1⊗ b then b ∈ A this condition implies that σ(b) = b, so we get
a σ(b) ∈ A is equal to b, so b ∈ A.

Observe that to prove 0→ A→ B → B⊗A B is exact, it is enough to prove it after a faithfully flat base
change A → D. Let D = B, then A → B becomes B → B ⊗A B → B, which reduces the problem to the
special case. [Check This].

So the lemma is established.
We will use the following lemma without proof:

Lemma 2. F : Sch◦X → Set is an fppf sheaf iff it is a Zariski Sheaf and for all SpecB → SpecA with
A→ B faithfully flat and of finite presentation, then F (V )→ F (U) ⇒ F (U ×V U).

Corollary 1. If S if affine, then hS is an fppf sheaf.

Sketch of the general case: Let Si ⊆ S be an affine covering of S. Let U → V be an fppf covering. Then
we want to look at hS(V ) → hS(U) ⇒ hS(U ×V U). U → S such that the two maps U ×V U → U → S
must agree. We then get, using fppf, that there exists |V | → |S| such that |U | → |V | → |S| corresponds to
our original U → S.

We pull back Si ⊂ S and take Vi = f−1(Si) and Ui = U ×V Vi. Then Ui ×Vi
Ui ⇒ Ui → Vi and Ui → Si

affine causes a map Vi → Si to exist, and these glue to V → S as desired.

Olsson
A→ R a ring homomorphism, take the category A− alg/R of diagrams

A

C R
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f

And take F : A − alg/R → Set a functor. If For all I, J ∈ ModR the natural map F (R[I ⊕ J ]) →
F (R[I])× F (R[J ]) is an isomorphism, then we get a tangent space TF .

[In fact, ∀I, F (R[I]) is an R-module and TF := F (R[ε])]
+ : F (R[ε])× F (R[ε]) ' F (R[ε1, ε2]/(ε21, ε

2
2, ε1ε2))→ F (R[ε]) with the map by εi → ε.

×f : F (R[ε])→ F (R[ε]) is induced by R[ε]→ R[ε] by a + bε 7→ a + fbε.
Problem 1: R a ring, g : X → Spec R a separated, smooth map. Consider the functor DefX : Z−Alg/R→

Set with DefX(C
f→ R) = the set of isomorphism classes of cartesian diagrams

Spec R

X

Spec C

XC

.............................................................................. ............

................................................................................................................. ............

..............................................................................................................
...
.........
...

g

..............................................................................................................
...
.........
...

gC

with gC smooth.
A morphism of diagrams is an arrow h : X ′

C → XC such that the following commutes
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Spec R

X

Spec C

XC

X ′
C

.............................................................................. ............

................................................................................................................. ............

..............................................................................................................
...
.........
...

g

..............................................................................................................
...
.........
...

gC

.........................
.........................

.........................
.........................

.........................
.........................

................................. ........
....

......................................................................................................................................................................................
....
............

....................................................
...
............ h

Call the above Diagram 1.
Remark: If C = R[I] for some R-module I, then any morphism h as in Diagram 1 is an isomorphism.

Proposition 1. For all I, J ∈ModR, DefX(R[I ⊕ J ])→ DefX(R[I])×DefX(R[J ]) is an isomorphism.

Proof in Osserman on Day 3.
How to compute TDefX

or more generally the R-module DefX(R[I])?
Special Case: X affine. Facts: (1) DefX(R[I]) consists of one element and (2) For any deformation

Spec R

X

Spec R[I]

X ′

............................................................... ............

................................................................................................................. ............

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

then the set of maps h : X ′ → X ′ as in Diagram 1 is in canonical bijection with H0(X, TX ⊗ I).
Why is there a lifting? X = Spec R[x1, . . . , xr]/(f1, . . . , f`). In fact, X[I]→ Spec R[I] is a smooth lifting.
REASON???
Recall:

T S

T0 Y

................................................................................................................. ............

..............................................................................................................
...
.........
...

j

................................................................................................................. ............

..............................................................................................................
...
.........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................
............

∃f

j a closed immersion defined by a square-zero ideal J then the set of arrows f filling in the diagram is a
pseudo-torsor under hom(f∗0 Ω1

Y/S , J)

Definition 3 (Pseudo-Torsor). Either no arrow exists or, if an arrow exists, there is a simply transitive
action of hom(f∗0 Ω1

Y/S , J) on the set of arrows.

For general X → Spec R, this also shows that (X[I] → Spec R[I]) ∈ DefX(R[I]). Choose a covering
X =

⋃
i Ui with each Ui affine and denote {Ui} = U . Choose for each i ∈ I a smooth lifting U ′

i → Spec R[I]
We want to patch the U ′

i to a lifting of X.

X → X ′ corresponds to OX′
I⊗ROX→ OX on |X|

U ′
i → Spec R[I] corresponds to OU ′

i

I⊗ROUi→ OUi
on |Ui|.

On Uij = Ui ∩ Uj , we get a diagram

Uij

U ′
j |Uij

U ′
i |Uij

............................................................................................................ ...........
.

.................
.................

.................
.................

.................
..........................
............ ..............................................................................................................

...
.........
...

∃

two elements of DefUij
(R[I]).

Pick ∀i and isomorphism σi : U ′
i → Ui[I]. Note that any other choice of σi is given by composition with

an automorphisms of Ui[I]↔ H0(Ui, TX ⊗ I).

There is an obstruction for the σi’s to glue to an isomorphism X ′ ' X[I]. xij : Uij [I]
σ−1

j→ U ′
ij

σi→ Uij(U).
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Lemma 3. xij = xij + xjk in H0(Uijk, TX ⊗ I).

Proof. Simple diagram chase.

Corollary 2. The {xij} define a Cech Cocycle [X ′] ∈ Ȟ1(X, TX ⊗ I) = H1(X, TX ⊗ I).

Theorem 2. The map DefX(R[I])→ H1(X, TX ⊗ I) by X ′ 7→ [X ′] is an R-module isomorphism.

Osserman
Examples: For ”nice” global moduli functors, it works well to simply restrict to Art(Λ, k) to obtain

predeformation functors. An example is deformations of a closed subscheme.
Let XΛ be a scheme over Spec Λ and write X for XΛ|Spec k. Let Z ⊆ X be a closed subscheme. DefZ,X :

Art(Λ, k)→ Set is defined by A 7→ {ZA ⊂ XΛ|Spec A closed subscheme, flat over A, such that ZA|Spec k = Z}.
Sometimes, simple restriction of functors isn’t so good.
Example: Deformations of a scheme. Fix X over k, then DefX is defined by A 7→ {(XA, ϕ) : XA is flat

over Spec A, ϕ : X → XA such that ϕ induces isomorphism of X with the fiber product XA ×A k}/ '.
Note: If we naively restrict functors, we still get a predeformation functor, but its behavior will be worse.
Problem comes from the automorphisms of X not extending to XA. This is the first hint that for moduli

problems involving automorphisms that functors to Sets don’t capture everything.
Example: Deformation of a quasicoherent sheaf. Fix XΛ over Spec Λ and set X = XΛ|k fix E a quasico-

herent sheaf on X. Define DefE by A 7→ {(EA, φ)|EA} is quasicoherent on XΛ|A, flat over A, and φ : EA → E
inducing an isomorphism EA ⊗A k ' E }/ '.

Prorepresentability and Hulls

Definition 4 (Prorepresentability). Given F : Art(Λ, k) → Sets, let Ârt(Λ, k) be the category of complete
local noetherian Λ-algebras and F̂ : Ârt(Λ, k)→ Set defined by F̂ (R) = lim←−F (R/mn). A functor F is called
prorepresentable if F̂ is representable.

Warning! If we start with a global moduli problem, then F̂ is not necessarily obtained by simply
considering the families over R. This is the issue of effectivizability, see next week.

Definition 5 (Smooth). Given F, F ′ functors Art(Λ, k) → Set and a natural transformation f : F → F ′,
then f is smooth (formally smooth) if for all surjections A→ B in Art(Λ, k), the map F (A)→ F (B)×G(B)

G(A) is surjective.

Recall that TF , the tangent space of F is F (k[ε]).
Notation: Given R ∈ Ârt(Λ, k) denote hR : Ârt(Λ, k)→ Set the functor of points of Spec R, so HR(R) =

hom(R,R′) and h̄R is the restriction to Art(Λ, k).

Definition 6 (Hull). Let F be a predeformation functor, a pair (R, η) with η ∈ F̂ (R) is a hull for F if

1. η : h̄R → F is smooth

2. Th̄R
→ TF is an isomorphism

Proposition 2. If (R, η) and (R′, η′) are hulls for F , then they are isomorphic.

Left as an exercise.

Definition 7 (Small Thickening). A surjective map f ;A→ B in Art(Λ, k) is a small thickening if ker f is
isomorphic to k, or equivalently, mA ker f = 0 and ker f is principal.

Remark: it is easy to check that any surjection in Art(Λ, k) can be factored as a sequence of small
thickenings.

Given A′ → A,A′′ → A, then we get (∗) F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).

Theorem 3 (Schlessinger’s Criterion). If F is a predeformation functor, consider the following conditions:

H1 (∗) is surjective whenever A′′ → A is surjective. (Equivalently, Small thickening)
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H2 (∗) is bijective whenever A′′ = k[ε], A = k.

H3 TF is finite-dimensional

H4 (∗) is bijective whenever A′ = A′′ and both maps are surjective. (equivalently, small thickening)

Then (H1)− (H3) is equivalent to F having a hull, and (H1)− (H4) is equivalent to F being prorepre-
sentable.

Vakil
The Space that Wanted to be a Scheme
Let X → B be a nice family of objects parametrized by B. A moduli space M means that every family

of nice objects X → B corresponds to a map B →M .
In question: The moduli space of smooth genus 3 curves M3.
So X → B is a smooth, projective morphism of relative dimension 1 with geometrically connected fibers

all of which are genus 3.
Why should this be a scheme?
Clues: (Martin) The tangent space: given [C] ∈ M3, we can find T[C]. At each point this is a 6

dimensional vector space. Soon (Brian) we will have the entire deformation space. So then M3 is formally
smooth. So what is a vector bundle on M3?

B M3

C V

................................................................................................................. ............
π

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

VB = π∗V
...........................................................

...
............

So a vector bundle on M3 should be a recipe for giving, a vector bundle on B for any family C → B
which behaves well under pullback.

e.g., the Hodge bundle

B M3

C E3

................................................................................................................. ............

..............................................................................................................
...
.........
...

π

..............................................................................................................
...
.........
...

π∗Ω1
C

.......................................................
...
............

So now, we take H3 ⊆ M3, some genus 3 curves are hyperelliptic. (i.e., they admit 2 to 1 covers of
P1. H3 is a 5-dimensional Cartier Divisor, so it is locally cut out by a single equation. In fact, this holds
in general, if you have a family C → B, there is a closed immersion H → B locally cut out by a single
equation such that C|H (the completion of the fiber square) is a family of hyperelliptic curves and that H is
the largest closed immersion with this property. (Obtain H by completing the square with H3 →M3 and
B →M3.

There is a scheme M3[100] which are genus 3 curves with ”level 100 structure” which is a legitimate
scheme, and we should have a finite morphism to M3. In fact, an étale morphism.

We now want to, given X, Y mapping to M3, construct X ×M3 Y . We get two families of curves on
X × Y , and so X ×M3 Y parametrizes isomorphisms between the two families.

The Isom Functor
Let B be a base and C1,C2 → B two families.

Theorem 4 (Grothendieck). IsomB(C1,C2) is a scheme if both families are projective and flat.

We now interpret M3,1 →M3 where M3,1 is the moduli space of genus 3 curves with 1 marked point.
This map should be a recipe for taking a family of marked genus 3 curves to a family of genus 3 curves

with no marked points.
This morphisms is even projective and smooth. Why? Take B → M3 and complete the fiber square,

well, B →M3 is the same as a family C → B and so C complete the square.
Unfortunately, M3 is not a scheme!
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Max said that schemes are sheaves in the Zariski Topology, and that means that if X is a scheme, we fix
a scheme Y and U 7→ hom(U,X) is a sheaf on Y .

Let Y be a pair of P1’s glued together over 2 points. Fix a curve C of genus 3 with a nontrivial
automorphism σ. We will use this to create two families of curves over Y .

The first will be C × Y → Y . The second is done by taking the trivial families on P1 and gluing by
applying σ on the two points. This will be called the Moebius Strip family. Erasing either node trivializes
the Moebius Strip, so this cannot be a scheme!

Grothendieck Topologies
We want to think of the category as open sets of a space X. U → X maps.
Take the additional data of coverings with three axioms (see Lieblich 2).
We now look at A1

C ∼ C with the classical topology, and it has coordinate t, then
√

t is a function on
some small enough open set U . 3

√
t− 1 makes sense on some V . And in fact

√
t + 3
√

t− 1 makes sense on
U ∩ V .

Take a map Spec C[u] \ {0} → Spec C[t] \ {0} by u2 = t and this is an étale open set, so this shows that
the étale topology is closer to the classical topology.

How to save M3. The problem was the automorphisms.
Example: x7+y7+z7 = 0 and a7+b7+c7 = 0. They are isomorphic, but there are MANY isomorphisms.
The Category of Families of Genus 3 Curves
This is a big groupoid, because you only have isomorphisms. We have a functor that takes a family to

it’s base in Schemes. We want to add morphisms that allow base change, and those will be fiber squares.
This makes it no longer a groupoid.

This is an example of a category fibered in groupoids.
A category fibered in groupoids is a STACK if

1. If IsomX(C1,C2) from SchX → Sets is a sheaf in the étale topology

2. ”Elements glue”

Fibered products of stacks are a little more subtle than with schemes...

Definition 8 (Representable Morphism). A morphism of stacks M →M ′ is representable if for all X →M ′

with X a scheme, the fiber product X ×M ′ M is a scheme.

Any notion preserved by base chance makes sense for representable morphisms.
Exercise: If M is a stack, then the diagonal ∆M : M → M ×M is representable iff every morphism

from a scheme to M is representable.
Hint:

M M ×Y M

U ×M V U ×Y V

.............................................................................. ............

.......................................................... ............

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

Definition 9 (Deligne-Mumford Stack). A stack M is of Deligne-Mumford type if

1. ∆M is representable, quasi-compact and separated

2. There is an étale cover by a scheme
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