
1 Hacking

Constructing Surfaces of General Type by Deformation Theory
Motivation: Let k = C. Then curves C have only one topological invariant, the genus g.
Surfaces: We consider the underlying topological 4-manifold. Then Q = ∪ : H2(X, Z) × H2(X, Z) →

H2(X, Z) = Z is a unimodular symmetric bilinear form.
Freedman: Assume that π1(X) = 0. Then X is uniquely determined up to homeomorphism by Q.
Donaldson: ∃ a topological 4 manifold with infinitely many non-isomorphic differentiable structures (eg,

elliptic surfaces) (never true for dim 6= 4.)
Problem: Classify topological types of surfaces of general type? (recall, a surface is of general type if

ω⊗N
X defines a birational map for N >> 0).

Assume that π1(X) = 0. Then Hodge Theory implies that the signature of Q is (2h2,0 + 1, h1,1 − 1)
where h2,0 = h0(KX). Consider the simplest case, where h2,0 = 0. Then Q is diag[1,−1, . . . ,−1] for n -1’s,
for some n.

X ' BlnP2 (homeomorphic)
(Topologist: P2

C]P̄2
C] . . . ]P̄2

C where ] is a connected sum and P̄2 is P2 with orientation reversed.)
Severi, around 1920, asked if there is a surface X of general type such that X ' P2

C.
Yau, in 1976, showed no. By showing that c2

1 = 3c2 ⇒ X = B/Γ where B ⊂ C2 is the unit ball and Γ
acts on B as the proper discontinuous action of a discrete group.

Theorem 1 (Barlow 1982 (A student of Miles Reid)). There exists a surface of general type with X home-
omorphic to P2 blown up at 8 points.

He did this by explicit construction.

Theorem 2 (Lee and Park 2006). There exists a surface of general type X homeomorphic to P2 blown up
at 7 points.

(Yesterday posted 6)
Idea of Proof:
Assume that there exists such an X. Consider the moduli space M of deformations of X. Then

dim M ≥ h1(TX) − h2(TX) (because h0(TX) = 0 because X being of general type implies that there
are no infinitesimal automorphisms.)

So then h1(TX)− h2(TX) = −χ(TX).
By Riemann-Roch, if E is a vector bundle on X, then χ(E) = deg(ch(E).td(X))dim X and in this case,

χ(TX) = 1/6(7c2
1 − 5c2) = 1/6(7 ∗ 2− 5 ∗ 10) = −6, and so dim M ≥ 6.

We compactify M by adding points corresponding to singular surfaces at the boundary (there exists a
natural way to do this using minimal model program).

To prove the theorem, we construct singular surface Y corresponding to a point of ∂M and proof that
there exists a smoothing.

Local Model
Notation: We will write 1

r (1, a) = C2/µr where µr 3 S : (x, y) 7→ (S x,S ya). we always assume that
(a, r) = 1 because that is iff it is free in codimension 1. Consider Y = 1

n2 (1, nα− 1).
Smoothing: Z = 1/n(1,−1) = (uv = wn) ⊂ C3 which corresponds to Y = 1/n2(1, nα − 1) = (uv =

wn) ⊂ 1/n(1,−1, a).
(u = xn, v = yn, w = xy) so get Y = (uv = wn + t) ⊂ 1/n(1,−1, a)× C1

t ,
Note that KY is Q-Cartier.
Milnor Fibre

1. Milnor fibre M ′ of smoothing Z = (uv = wn + t) of Z.

Brieskorn: there exists a simultaneous resolution of family of ADE singularities (after finite base
change). This tells us that M ′ is diffeomorphic to a family of smooth manifolds, which is homotopy
equivalence to ∨n−1

i=1 S2.

2. The Milnor fiber of Y = Y , and then M ′ µn→M étale implies that π1(M) = Z/nZ and e(M ′) = ne(M).
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So M has the homotopy type of a CW complex of real dimension 2 via Morse Theory. Thus, M is a
rational homology ball, ie, H∗(M, Q) = H∗(B, Q).

From the Mayer-Vietoris sequence, we get e(X) = e(X∗)+e(M)−e(∂M), e(Y ) = e(Y ∗)−e(C)−e(∂M),
and e(C) = e(M) = 1, so e(X) = e(Y ) where C is the cone.

Now we must check π1.
∂M = S3/(Z/n2Z), the lens space, and we have π1(∂M) → π1(M) surjective and by van Kampen’s

Theorem, we get π1(X) = π1(X∗) ∗π1(∂M) π1(M) which is surjected onto by π1(X∗) = π1(Y ∗), and so it is
enough to show that π1(Y ∗) = 0.

Smoothability:
Let X be a surface with isolated singularities and LX = L∗

X/k the cotangent complex. Then 0 → I →
A′ → A → 0 exact, specifically, 0 → ktn+1 → k[t]/(tn+2) → k[t]/(tn+1) → 0 and X lying over Spec A. Can
we extend X to Spec A′?

The obstruction lies in Ext2(LX ,OX), if it is zero, then the extensions form a torsor under Ext1(LX ,OX).
Local to Global
Hp(E xtq)⇒ Extp+q spectral sequence takes us to an exact sequence

0→ H1(E xt0)→ Ext1 → H0(E xt1)→ H2(E xt0)→ Ext2

Which gives

0→ H1(TX)→ Ext1(LX ,OX)→ H0(E xt1(LX ,OX))→ H2(TX)→ Ext2(LX ,OX)

Claim: H2(TX) = 0 implies that every infinitesimal deformation of singularities is induced by a defor-
mation of X.

Proof: the first order is by the last long exact sequence
higher order: the spectral sequence gives Ext2(LX ,OX) = H0(E xt2(LX ,OX)), so if ∃ a local lift, then

there exists a global lift. Now liftings are torsors under Ext1(LX ,OX) which is global, and maps surjectively
onto H0(E xt1(LX ,OX)) which is local.

WARNING
If X is a surface of general type, then often H2(TX) 6= 0. eg, X = Xd ⊂ P3, d ≥ 5 implies that

H2(TX) 6= 0. (Exercise)
Reason: H2(TX) = H0(ΩX ⊗ ωX)∗ by Serre Duality and ωX ample.
However, X may still have unobstructed deformations. eg, X = Xd ⊂ P3, the embedded deformations of

X ⊂ P3 modulo isomorphism surjects onto the deformations of X modulo isomorphism for d 6= 4 (Exercise)
The Construction
First thing, Y is rational. There exist singular rational surfaces with ample canonical bundle.
If C is cubic, p, q, r flexes, B is a conic and A is a line in P2. Consider the pencil of cubics generated by

A + B,C. Blow up the base points p, q, r three times to get an elliptic fibration p : Z → P1

The degenerate fibers are Ẽ6, Ã1 and 2 nodes for C general.
Blow up 18 times to get g : Z̃ → Z.
Then we contract 5 chains of P1’s where a chain of P1’s with self intersection ≤ −2, contracts to a cyclic

quotient singularity.
General Type
KZ̃ = g∗KZ + E, with E effective and g-exceptional.
KZ̃ = h∗KY − F where F is effective and h-exceptional.
Then h∗KY = h∗KZ + E + F = E + F − f where f is a fiber of Z̃ → P1 and so h∗KY ∼ D is effective,

now check that h∗KY is nef, ie, h∗KY .C ≥ 0 for all C (We only need to check C = SuppD).
So then K2

Y = 2 from Noether’s formula. (c2
1 + c2 = 12χ(OY ),K2

Y + e(Y ) = 12χ(OX) and h1(OY ) =
h2(OY ) = 0 since Y is rational).

So why does H2(TX) = 0?

Lemma 1. Y is a surface with cyclic quotient singularities and π : Z̃ → Y is the minimal resolution with E
the exceptional locus. IF H2(TZ̃(− log E)) = 0 then H2(TY ) = 0. (That is, the vector fields tangent to E)

Serre duality gives that H2(TZ̃(− log E)) = H0(ΩZ̃(log E) ⊗ ωZ̃)∗, so now we use the elliptic fibration
Z̃ → P1 to get vanishing.
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2 Conrad

Discrete Galois Modules
Let F be a field and Fs/F a fixed separable closure with Galois group GF = Aut(FS/F ) = lim←−Gal(F ′/F )

is a compact, profinite group.
Krull Correspondence says that closed subgroups correspond to intermediate fields and that open sub-

groups correspond to finite subextensions

Example 1. V a commutative group scheme of finite type over F
Then GF acts on M = V (FS) (an abelian group)
This acts on Spec FS → V , any such map factors as Spec Fs → Spec F ′ → V for a finite Galois extension
V is quasiprojective, so V ↪→ PN

F and it acts on the homogeneous coordinates.
GF action on any m ∈ V (F ′) ⊆ V (FS) = M has stabilizer Gal(FS/F ′) ⊆ GF an open subgroup.

Example 2. X → Spec F separated and of finite type, then ` 6= char F , Hi
et(XFs , Z/`nZ) has a GF action

with open stabilizers.

Definition 1 (Discrete Galois Module). A discrete GF -module is a GF -module M such that every element
m ∈M has an open stabilizer in GF .

Example 3. A GF -module M with |M | <∞ is discrete iff GF acts on M through a finite quotient Gal(F ′/F )
(IE, GF ′ ⊆ GF open acts trivially on M)

Remark 1. If Γ is any profinite group, then we can make the same discussion. Examples are Γ =
Zp, GLn(Zp) and πet

1 (X, x).

Example 4. E/F is an elliptic curve, N ∈ Z+ and char F 6 |N . Then E[N ] := E[N ](Fs) ' Z/NZ× Z/NZ
with GF acting through Gal(F (E[N ])/F ) extension generated by the coordinates of the N -torsion points.

ρE,N : GF
cont→ Aut(E[N ]) ' GL2(Z/NZ).

Consider N = pr where p is a prime not equal to charF
Fact: E[pr] ' Z/prZ× Z/prZ.
If F = C then E ' C/Λ so E[N ] ' 1

N Λ/Λ ' Λ/NΛ which is surjected onto by Λ/NdΛ ' E[Nd], and so
E[pr+1]→ E[pr] is surjective.

So we can set GF acting on each thing in a way that is compatible. So we are going to deform this
compatible system, ρE,N .

Define Tp(E) = the p-adic Tate module, which is lim←−E[pr] = Zp × Zp. So if F = C, E ' C/Λ, then
TpE = lim←−Λ/prΛ ' Λ⊗Z Zp = H1(E, Zp).

So now we have ρE,p∞ : GF → GL2(Zp) ⊆ M2(Zp) open, and usually the kernel isn’t open. Now Tp(E)
is a Galois Module, but not a discrete one.

Arithmetic Application: Let F be a finite field of order q, and choose ` 6= charF , so we get ρE,`∞ : GF →
GL2(Z`) = AutZ`

(T`E). Let φ be the Frobenius element in GF . Then the characteristic polynomial of φ is
X2 − aEX + q where aE = |EF | − (q + 1) ∈ Z ⊂ Z`.

Example 5. Let E be an elliptic curve over Qp and E′ another one. Define them by y2 = x3 + ax + b and
y2 = x3 + a′x + b′. Look at the GQp-action on E[p7], E′[p7]. Then you get two maps GQp ⇒ GL2(Z/p7Z),
and suppose that |a′ − a|, |b′ − b| << 1, then ρE,p7 ' ρE′,p7 as GQp

-modules.

So then we have ρE,p∞ , ρE,p∞ : GQp
→ GL2(Zp) both induce the same map to GL2(Z/pZ). ”two p-adic

deformations” of the same induced p7 representation.
Cohomology
Let Γ be a profinite group (eg GF ). Define ModΓ to be the category of discrete Γ-modules. (6= Z[Γ]-

modules)

Exercise 1. ModΓ has enough injectives (follow Tohoku)

ModΓ → Ab by M 7→MΓ = {m ∈M |γm = m for all γ ∈ Γ}.
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Definition 2 (Cohomology). H∗(Γ,−) : ModΓ → Ab are the derived functors of (−)Γ.

Remark: We can compute this using continuous cochains.

Example 6. H1(Γ,M) = Z1(Γ,M)/B1(Γ,M) where B1(Γ,M) = {Γ→M continuous sending γ 7→ γm0 −
m0 for some m0 ∈M}. This factors through Γ/stabΓ(m0).

Z1(Γ,M) = {c : Γ→M |c(γ1γ2) = γ1c(γ2) + c(γ1), c cont}.

Say that Γ acts trivially on M , then B1(Γ,M) = 0 and Z1(Γ,M) = {continuous homomorphisms
Γ→M}.

Remark 2. Given ϕ : Γ → Γ′ continuous, then get ModΓ′ → ModΓ and for M ′ ∈ ModΓ′ , we have
(M ′)Γ

′ ⊂ (M ′)Γ.

This induces H∗(Γ′,M ′)→ H∗(Γ,M ′) by composition with ϕ on the level of cochains.

Example 7. F ′/F a field extension, say Qp/Q, then fix compatible separable closures and get an induces
GF ′ → GF continuous and well defined up to conjugation, and H∗(Γ′,M ′)→ H∗(Γ,M ′) is invariant under
conjugation by Γ′.

Thus, H∗(GF ,M) → H∗(GF ,M) is canonical, and often we just say H∗(F,M) → H∗(F ′,M), it’s like
the pullback map with respect to Spec F ′ → Spec F .

Example 8. Take F = Q and look at H1(GQ, Z/2Z) = homcont(GQ, Z/2Z) = {Q, Q(
√

d)|d ∈ Z \ {0} square
free}

This is not finite dimensional over Z/2Z. We want to work with a quotient of GQ subject to restricted
ramification.

Let F be a number field ([F : Q] < ∞) then Spec OF is ”like” an algebraic curve. What should replace
GF ? Take F ′/F finite, then get Spec OF ′ → Spec OF and let Σ be a finite set of ramified primes. Want to
consider F ′/F ramified ⊂ Σ = the fixed finite set of maximal ideals of OF , ie, we want to replace GF with
πet

1 (Spec OF,Σ)
ie, GF,Σ = Gal(FΣ/F ) composition of F ′/F finite and unramified outside Σ.
Algebraic Number Theory (+ε) implies

Theorem 3 (Tate). If M is a finite discrete GF,Σ-module, then Hi(GF,Σ,M) are finite for all i and vanish
for i > 2 so long as |M | is odd.

If instead, [L : Qp] < ∞, then Hi(GL,M) are finite for M a finite discrete GL-module and are 0 for
i > 2.

Example 9. F = Q, Σ = {2, 3, 7}, then H1(GQ,Σ, Z/2Z) = {Q(
√

d)| for d|42}, which is finite.

Deformations
Motivation: Hida constructed certain representations ρ : GQ,Σ → Gl2(Zp[[x]]) such that under x 7→

(1 + p)k − 1 for k ≥ 2 gave interesting representations ρk : GQ,Σ → GL2(Zp).
Now, fix ρ̄ : Γ→ GL(V0) a finite dimensional representation over a finite field of a profinite group.
Remember, GL(V0) ' GLN (k)
ϕ̂k = the complete local noetherian rings with residue field k (= coeff ring Λ = W (k)) (If k = Fp, then

Λ = Zp.)
A lifting of ρ̄ to A ∈ ϕ̂k is a pair (VA, θ) where VA is a finite free A-module equipped with a continuous

ρ : Γ→ GL(VA) and θ : VA/mAVA ' V0 as k[Γ]-module.
Say (VA, θ) ∼ (V ′

A, θ′) if ∃VA ' V ′
A as A[Γ]-modules such that mod mA carries θ to θ′. (ie, respects

identification with V0)
A deformation of ρ̄ to A is an equivalence class of lifts.
Matrix Meaning: ρ : Γ→ GLN (k).
Lifting: ρ : Γ→ GLN (A) continuous such that ρ mod mA = ρ̄ and ρ ∼ ρ′ corresponds to ρ = Mρ′M−1

with M ∈ GLN (A) and M ≡ 1 mod mA.
WARNING: If E → S (S is a p-adic variety) is a family of elliptic curves, for all s ∈ S(Qp) set ρs :

GQp
→ GL2(Zp) from E, but these don’t come from a single representation GQp

→ GL2(Zp[[x1, . . .]])
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Definition 3. Def ρ̄ : ϕ̂k → Set takes A to the set of deformations of ρ̄ to A.

This is easily seen to be a covariant functor using VA → A′ ⊗A VA.
Note: These are deformations, not liftings. EQUIVALENCE CLASSES.

Exercise 2. Def ρ̄(k[ε]) = H1(Γ,Endk(V0)) with gamma acting by conjugation on linear maps.

”Proof”: ρ̄ : Γ → GLN (k), ρ : Γ → GLN (k[ε]) and ρ(γ) = (1 + εc(γ))ρ̄(γ). ρ continuous liftings
correspond to C ∈ Z1(Γ,End(V0)) and ρ ∼ ρ′ corresponds to c− c′ ∈ B1(Γ,End(V0)).

Theorem 4 (Mazur). If dim H1(Γ,EndV0) <∞, then Def ρ̄ satisfies Schlessinger’s criteria (H1) to (H3).
If EndΓ(V0) = k (eg ρ̄ is absolutely irreducible) then (H4) also holds, so get a universal deformation

ρ̄univ : Γ→ GLN (Runiv
ρ̄ ).

IE, given ρ̄ : Γ → GLN (k) and a lifting ρ : Γ → GLN (A), then there exists a unique Runiv
ρ̄ → A such

that it carries ρ̄univ to ρ up to 1-unit matrix conjugation.

Example 10. Γ = GQ,Σ, want to impose more conditions.
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