1 Hacking

Constructing Surfaces of General Type by Deformation Theory

Motivation: Let $k = \mathbb{C}$. Then curves C have only one topological invariant, the genus g.

Surfaces: We consider the underlying topological 4-manifold. Then $Q = \cup : H^2(X, \mathbb{Z}) \times H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{Z}) = \mathbb{Z}$ is a unimodular symmetric bilinear form.

Freedman: Assume that $\pi_1(X) = 0$. Then X is uniquely determined up to homeomorphism by Q.

Donaldson: \exists a topological 4 manifold with infinitely many non-isomorphic differentiable structures (eg, elliptic surfaces) (never true for dim \neq 4.)

Problem: Classify topological types of surfaces of general type? (recall, a surface is of general type if $\omega_X^{\otimes N}$ defines a birational map for N >> 0).

Assume that $\pi_1(X) = 0$. Then Hodge Theory implies that the signature of Q is $(2h^{2,0} + 1, h^{1,1} - 1)$ where $h^{2,0} = h^0(K_X)$. Consider the simplest case, where $h^{2,0} = 0$. Then Q is $diag[1, -1, \ldots, -1]$ for n -1's, for some n.

 $X \simeq Bl^n \mathbb{P}^2$ (homeomorphic)

(Topologist: $\mathbb{P}^2_{\mathbb{C}} \# \mathbb{P}^2_{\mathbb{C}} \# \dots \# \mathbb{P}^2_{\mathbb{C}}$ where # is a connected sum and \mathbb{P}^2 is \mathbb{P}^2 with orientation reversed.)

Severi, around 1920, asked if there is a surface X of general type such that $X \simeq \mathbb{P}^2_{\mathbb{C}}$.

Yau, in 1976, showed no. By showing that $c_1^2 = 3c_2 \Rightarrow X = B/\Gamma$ where $B \subset \mathbb{C}^2$ is the unit ball and Γ acts on B as the proper discontinuous action of a discrete group.

Theorem 1 (Barlow 1982 (A student of Miles Reid)). There exists a surface of general type with X homeomorphic to \mathbb{P}^2 blown up at 8 points.

He did this by explicit construction.

Theorem 2 (Lee and Park 2006). There exists a surface of general type X homeomorphic to \mathbb{P}^2 blown up at 7 points.

(Yesterday posted 6)

Idea of Proof:

Assume that there exists such an X. Consider the moduli space \mathscr{M} of deformations of X. Then dim $\mathscr{M} \geq h^1(T_X) - h^2(T_X)$ (because $h^0(T_X) = 0$ because X being of general type implies that there are no infinitesimal automorphisms.)

So then $h^1(T_X) - h^2(T_X) = -\chi(T_X)$.

By Riemann-Roch, if E is a vector bundle on X, then $\chi(E) = \deg(ch(E).td(X))_{\dim X}$ and in this case, $\chi(T_X) = 1/6(7c_1^2 - 5c_2) = 1/6(7*2 - 5*10) = -6$, and so dim $\mathscr{M} \ge 6$.

We compactify \mathcal{M} by adding points corresponding to singular surfaces at the boundary (there exists a natural way to do this using minimal model program).

To prove the theorem, we construct singular surface Y corresponding to a point of $\partial \mathcal{M}$ and proof that there exists a smoothing.

Local Model

Notation: We will write $\frac{1}{r}(1,a) = \mathbb{C}^2/\mu_r$ where $\mu_r \ni \mathscr{S} : (x,y) \mapsto (\mathscr{S}x, \mathscr{S}y^a)$. we always assume that (a,r) = 1 because that is iff it is free in codimension 1. Consider $Y = \frac{1}{n^2}(1,n\alpha-1)$.

Smoothing: $Z = 1/n(1, -1) = (uv = w^n) \subset \mathbb{C}^3$ which corresponds to $Y = 1/n^2(1, n\alpha - 1) = (uv = w^n) \subset 1/n(1, -1, a).$

 $(u = x^n, v = y^n, w = xy)$ so get $\mathscr{Y} = (uv = w^n + t) \subset 1/n(1, -1, a) \times \mathbb{C}^1_t$, Note that K_Y is Q-Cartier. <u>Milnor Fibre</u>

1. Milnor fibre M' of smoothing $\mathscr{Z} = (uv = w^n + t)$ of Z.

Brieskorn: there exists a simultaneous resolution of family of ADE singularities (after finite base change). This tells us that M' is diffeomorphic to a family of smooth manifolds, which is homotopy equivalence to $\bigvee_{i=1}^{n-1} S^2$.

2. The Milnor fiber of $Y = \mathscr{Y}$, and then $M' \xrightarrow{\mu_n} M$ étale implies that $\pi_1(M) = \mathbb{Z}/n\mathbb{Z}$ and e(M') = ne(M).

So M has the homotopy type of a CW complex of real dimension 2 via Morse Theory. Thus, M is a rational homology ball, ie, $H_*(M, \mathbb{Q}) = H_*(B, \mathbb{Q})$.

From the Mayer-Vietoris sequence, we get $e(X) = e(X^*) + e(M) - e(\partial M)$, $e(Y) = e(Y^*) - e(C) - e(\partial M)$, and e(C) = e(M) = 1, so e(X) = e(Y) where C is the cone.

Now we must check π_1 .

 $\partial M = S^3/(\mathbb{Z}/n^2\mathbb{Z})$, the lens space, and we have $\pi_1(\partial M) \to \pi_1(M)$ surjective and by van Kampen's Theorem, we get $\pi_1(X) = \pi_1(X^*) *_{\pi_1(\partial M)} \pi_1(M)$ which is surjected onto by $\pi_1(X^*) = \pi_1(Y^*)$, and so it is enough to show that $\pi_1(Y^*) = 0$.

Smoothability:

Let X be a surface with isolated singularities and $L_X = L_{X/k}^*$ the cotangent complex. Then $0 \to I \to A' \to A \to 0$ exact, specifically, $0 \to kt^{n+1} \to k[t]/(t^{n+2}) \to k[t]/(t^{n+1}) \to 0$ and X lying over Spec A. Can we extend X to Spec A'?

The obstruction lies in $\operatorname{Ext}^2(L_X, \mathscr{O}_X)$, if it is zero, then the extensions form a torsor under $\operatorname{Ext}^1(L_X, \mathscr{O}_X)$. Local to Global

 $H^p(\mathscr{E}xt^q) \Rightarrow \operatorname{Ext}^{p+q}$ spectral sequence takes us to an exact sequence

$$0 \to H^1(\mathscr{E}xt^0) \to \operatorname{Ext}^1 \to H^0(\mathscr{E}xt^1) \to H^2(\mathscr{E}xt^0) \to \operatorname{Ext}^2$$

Which gives

$$0 \to H^1(T_X) \to \operatorname{Ext}^1(L_X, \mathscr{O}_X) \to H^0(\mathscr{E}xt^1(L_X, \mathscr{O}_X)) \to H^2(T_X) \to \operatorname{Ext}^2(L_X, \mathscr{O}_X)$$

Claim: $H^2(T_X) = 0$ implies that every infinitesimal deformation of singularities is induced by a deformation of X.

Proof: the first order is by the last long exact sequence

higher order: the spectral sequence gives $\operatorname{Ext}^2(L_X, \mathscr{O}_X) = H^0(\mathscr{E}xt^2(L_X, \mathscr{O}_X))$, so if \exists a local lift, then there exists a global lift. Now liftings are torsors under $\operatorname{Ext}^1(L_X, \mathscr{O}_X)$ which is global, and maps surjectively onto $H^0(\mathscr{E}xt^1(L_X, \mathscr{O}_X))$ which is local.

WARNING

If X is a surface of general type, then often $H^2(T_X) \neq 0$. eg, $X = X_d \subset \mathbb{P}^3$, $d \geq 5$ implies that $H^2(T_X) \neq 0$. (Exercise)

Reason: $H^2(T_X) = H^0(\Omega_X \otimes \omega_X)^*$ by Serre Duality and ω_X ample.

However, X may still have unobstructed deformations. eg, $X = X_d \subset \mathbb{P}^3$, the embedded deformations of $X \subset \mathbb{P}^3$ modulo isomorphism surjects onto the deformations of X modulo isomorphism for $d \neq 4$ (Exercise) The Construction

First thing, Y is rational. There exist singular rational surfaces with ample canonical bundle.

If C is cubic, p, q, r flexes, B is a conic and A is a line in \mathbb{P}^2 . Consider the pencil of cubics generated by A + B, C. Blow up the base points p, q, r three times to get an elliptic fibration $p: Z \to \mathbb{P}^1$

The degenerate fibers are \tilde{E}_{6} , \tilde{A}_{1} and 2 nodes for C general.

Blow up 18 times to get $g: Z \to Z$.

Then we contract 5 chains of \mathbb{P}^1 's where a chain of \mathbb{P}^1 's with self intersection ≤ -2 , contracts to a cyclic quotient singularity.

General Type

 $\overline{K_{\tilde{Z}}} = g^*K_Z + E$, with E effective and g-exceptional.

 $\overline{K}_{\tilde{Z}} = h^* K_Y - F$ where F is effective and h-exceptional.

Then $h^*K_Y = h^*K_Z + E + F = E + F - f$ where f is a fiber of $\tilde{Z} \to \mathbb{P}^1$ and so $h^*K_Y \sim D$ is effective, now check that h^*K_Y is nef, i.e., $h^*K_Y \cdot C \ge 0$ for all C (We only need to check C = Supp D).

So then $K_Y^2 = 2$ from Noether's formula. $(c_1^2 + c_2 = 12\chi(\mathcal{O}_Y), K_Y^2 + e(Y) = 12\chi(\mathcal{O}_X)$ and $h^1(\mathcal{O}_Y) = h^2(\mathcal{O}_Y) = 0$ since Y is rational).

So why does
$$H^2(T_X) = 0$$
?

Lemma 1. Y is a surface with cyclic quotient singularities and $\pi : \tilde{Z} \to Y$ is the minimal resolution with E the exceptional locus. IF $H^2(T_{\tilde{Z}}(-\log E)) = 0$ then $H^2(T_Y) = 0$. (That is, the vector fields tangent to E)

Serre duality gives that $H^2(T_{\tilde{Z}}(-\log E)) = H^0(\Omega_{\tilde{Z}}(\log E) \otimes \omega_{\tilde{Z}})^*$, so now we use the elliptic fibration $\tilde{Z} \to \mathbb{P}^1$ to get vanishing.

2 Conrad

Discrete Galois Modules

Let F be a field and F_s/F a fixed separable closure with Galois group $G_F = \operatorname{Aut}(F_S/F) = \varprojlim \operatorname{Gal}(F'/F)$ is a compact, profinite group.

Krull Correspondence says that closed subgroups correspond to intermediate fields and that open subgroups correspond to finite subextensions

Example 1. V a commutative group scheme of finite type over F

Then G_F acts on $M = V(F_S)$ (an abelian group)

This acts on Spec $F_S \to V$, any such map factors as Spec $F_s \to \text{Spec } F' \to V$ for a finite Galois extension V is quasiprojective, so $V \hookrightarrow \mathbb{P}_F^N$ and it acts on the homogeneous coordinates.

 G_F action on any $m \in V(F') \subseteq V(F_S) = M$ has stabilizer $Gal(F_S/F') \subseteq G_F$ an open subgroup.

Example 2. $X \to \operatorname{Spec} F$ separated and of finite type, then $\ell \neq \operatorname{char} F$, $H^i_{et}(X_{F_s}, \mathbb{Z}/\ell^n\mathbb{Z})$ has a G_F action with open stabilizers.

Definition 1 (Discrete Galois Module). A discrete G_F -module is a G_F -module M such that every element $m \in M$ has an open stabilizer in G_F .

Example 3. A G_F -module M with $|M| < \infty$ is discrete iff G_F acts on M through a finite quotient Gal(F'/F) (IE, $G_{F'} \subseteq G_F$ open acts trivially on M)

Remark 1. If Γ is any profinite group, then we can make the same discussion. Examples are $\Gamma = \mathbb{Z}_p, GL_n(\mathbb{Z}_p)$ and $\pi_1^{et}(X, x)$.

Example 4. E/F is an elliptic curve, $N \in \mathbb{Z}^+$ and char $F \not| N$. Then $E[N] := E[N](F_s) \simeq \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ with G_F acting through Gal(F(E[N])/F) extension generated by the coordinates of the N-torsion points.

 $\rho_{E,N}: G_F \xrightarrow{cont} \operatorname{Aut}(E[N]) \simeq GL_2(\mathbb{Z}/N\mathbb{Z}).$

Consider $N = p^r$ where p is a prime not equal to char F

Fact: $E[p^r] \simeq \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/p^r\mathbb{Z}$.

If $F = \mathbb{C}$ then $E \simeq \mathbb{C}/\Lambda$ so $E[N] \simeq \frac{1}{N}\Lambda/\Lambda \simeq \Lambda/N\Lambda$ which is surjected onto by $\Lambda/Nd\Lambda \simeq E[Nd]$, and so $E[p^{r+1}] \to E[p^r]$ is surjective.

So we can set G_F acting on each thing in a way that is compatible. So we are going to deform this compatible system, $\rho_{E,N}$.

Define $T_p(E)$ = the *p*-adic Tate module, which is $\varprojlim E[p^r] = \mathbb{Z}_p \times \mathbb{Z}_p$. So if $F = \mathbb{C}$, $E \simeq \mathbb{C}/\Lambda$, then $T_pE = \varprojlim \Lambda/p^r \Lambda \simeq \Lambda \otimes_{\mathbb{Z}} \mathbb{Z}_p = H_1(E, \mathbb{Z}_p)$.

So now we have $\rho_{E,p^{\infty}} : G_F \to GL_2(\mathbb{Z}_p) \subseteq M_2(\mathbb{Z}_p)$ open, and usually the kernel isn't open. Now $T_p(E)$ is a Galois Module, but not a discrete one.

Arithmetic Application: Let F be a finite field of order q, and choose $\ell \neq \operatorname{char} F$, so we get $\rho_{E,\ell^{\infty}} : G_F \to GL_2(\mathbb{Z}_\ell) = \operatorname{Aut}_{\mathbb{Z}_\ell}(T_\ell E)$. Let ϕ be the Frobenius element in G_F . Then the characteristic polynomial of ϕ is $X^2 - a_E X + q$ where $a_E = |E_F| - (q+1) \in \mathbb{Z} \subset \mathbb{Z}_\ell$.

Example 5. Let E be an elliptic curve over \mathbb{Q}_p and E' another one. Define them by $y^2 = x^3 + ax + b$ and $y^2 = x^3 + a'x + b'$. Look at the $G_{\mathbb{Q}_p}$ -action on $E[p^7], E'[p^7]$. Then you get two maps $G_{\mathbb{Q}_p} \rightrightarrows GL_2(\mathbb{Z}/p^7\mathbb{Z})$, and suppose that |a'-a|, |b'-b| << 1, then $\rho_{E,p^7} \simeq \rho_{E',p^7}$ as $G_{\mathbb{Q}_p}$ -modules.

So then we have $\rho_{E,p^{\infty}}, \rho_{E,p^{\infty}} : G_{\mathbb{Q}_p} \to GL_2(\mathbb{Z}_p)$ both induce the same map to $GL_2(\mathbb{Z}/p\mathbb{Z})$. "two *p*-adic deformations" of the same induced p^7 representation.

Cohomology

Let Γ be a profinite group (eg G_F). Define Mod_{Γ} to be the category of discrete Γ -modules. $(\neq \mathbb{Z}[\Gamma]-modules)$

Exercise 1. Mod_{Γ} has enough injectives (follow Tohoku)

 $Mod_{\Gamma} \to Ab$ by $M \mapsto M^{\Gamma} = \{m \in M | \gamma m = m \text{ for all } \gamma \in \Gamma\}.$

Definition 2 (Cohomology). $H^*(\Gamma, -) : Mod_{\Gamma} \to Ab$ are the derived functors of $(-)^{\Gamma}$.

Remark: We can compute this using continuous cochains.

Example 6. $H^1(\Gamma, M) = Z^1(\Gamma, M)/B^1(\Gamma, M)$ where $B^1(\Gamma, M) = \{\Gamma \to M \text{ continuous sending } \gamma \mapsto \gamma m_0 - m_0 \text{ for some } m_0 \in M\}$. This factors through $\Gamma/\operatorname{stab}_{\Gamma}(m_0)$.

 $Z^{1}(\Gamma, M) = \{ c : \Gamma \to M | c(\gamma_{1}\gamma_{2}) = \gamma_{1}c(\gamma_{2}) + c(\gamma_{1}), c \text{ cont} \}.$

Say that Γ acts trivially on M, then $B^1(\Gamma, M) = 0$ and $Z^1(\Gamma, M) = \{$ continuous homomorphisms $\Gamma \to M \}.$

Remark 2. Given $\varphi : \Gamma \to \Gamma'$ continuous, then get $Mod_{\Gamma'} \to Mod_{\Gamma}$ and for $M' \in Mod_{\Gamma'}$, we have $(M')^{\Gamma'} \subset (M')^{\Gamma}$.

This induces $H^*(\Gamma', M') \to H^*(\Gamma, M')$ by composition with φ on the level of cochains.

Example 7. F'/F a field extension, say \mathbb{Q}_p/\mathbb{Q} , then fix compatible separable closures and get an induces $G_{F'} \to G_F$ continuous and well defined up to conjugation, and $H^*(\Gamma', M') \to H^*(\Gamma, M')$ is invariant under conjugation by Γ' .

Thus, $H^*(G_F, M) \to H^*(G_F, M)$ is canonical, and often we just say $H^*(F, M) \to H^*(F', M)$, it's like the pullback map with respect to Spec $F' \to \text{Spec } F$.

Example 8. Take $F = \mathbb{Q}$ and look at $H^1(G_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) = \hom_{cont}(G_{\mathbb{Q}}, \mathbb{Z}/2\mathbb{Z}) = \{\mathbb{Q}, \mathbb{Q}(\sqrt{d}) | d \in \mathbb{Z} \setminus \{0\} \text{ square free} \}$

This is not finite dimensional over $\mathbb{Z}/2\mathbb{Z}$. We want to work with a quotient of $G_{\mathbb{Q}}$ subject to restricted ramification.

Let F be a number field $([F : \mathbb{Q}] < \infty)$ then $\operatorname{Spec} \mathscr{O}_F$ is "like" an algebraic curve. What should replace G_F ? Take F'/F finite, then get $\operatorname{Spec} \mathscr{O}_{F'} \to \operatorname{Spec} \mathscr{O}_F$ and let Σ be a finite set of ramified primes. Want to consider F'/F ramified $\subset \Sigma =$ the fixed finite set of maximal ideals of \mathscr{O}_F , i.e., we want to replace G_F with $\pi_1^{et}(\operatorname{Spec} \mathscr{O}_{F,\Sigma})$

ie, $G_{F,\Sigma} = Gal(F_{\Sigma}/F)$ composition of F'/F finite and unramified outside Σ . Algebraic Number Theory $(+\epsilon)$ implies

Theorem 3 (Tate). If M is a finite discrete $G_{F,\Sigma}$ -module, then $H^i(G_{F,\Sigma}, M)$ are finite for all i and vanish for i > 2 so long as |M| is odd.

If instead, $[L:\mathbb{Q}_p] < \infty$, then $H^i(G_L, M)$ are finite for M a finite discrete G_L -module and are 0 for i > 2.

Example 9. $F = \mathbb{Q}, \Sigma = \{2, 3, 7\}, \text{ then } H^1(G_{\mathbb{Q}, \Sigma}, \mathbb{Z}/2\mathbb{Z}) = \{\mathbb{Q}(\sqrt{d}) | \text{ for } d|42\}, \text{ which is finite.}$

<u>Deformations</u>

Motivation: Hida constructed certain representations $\rho : G_{\mathbb{Q},\Sigma} \to Gl_2(\mathbb{Z}_p[[x]])$ such that under $x \mapsto (1+p)^k - 1$ for $k \geq 2$ gave interesting representations $\rho_k : G_{\mathbb{Q},\Sigma} \to GL_2(\mathbb{Z}_p)$.

Now, fix $\bar{\rho}: \Gamma \to GL(V_0)$ a finite dimensional representation over a finite field of a profinite group.

Remember, $GL(V_0) \simeq GL_N(k)$

 $\hat{\varphi}_k$ = the complete local noetherian rings with residue field k (= coeff ring $\Lambda = W(k)$) (If $k = \mathbb{F}_p$, then $\Lambda = \mathbb{Z}_p$.)

A lifting of $\bar{\rho}$ to $A \in \hat{\varphi}_k$ is a pair (V_A, θ) where V_A is a finite free A-module equipped with a continuous $\rho : \Gamma \to GL(V_A)$ and $\theta : V_A/\mathfrak{m}_A V_A \simeq V_0$ as $k[\Gamma]$ -module.

Say $(V_A, \theta) \sim (V'_A, \theta')$ if $\exists V_A \simeq V'_A$ as $A[\Gamma]$ -modules such that mod \mathfrak{m}_A carries θ to θ' . (ie, respects identification with V_0)

A deformation of $\bar{\rho}$ to A is an equivalence class of lifts.

Matrix Meaning: $\rho: \Gamma \to GL_N(k)$.

Lifting: $\rho : \Gamma \to GL_N(A)$ continuous such that $\rho \mod \mathfrak{m}_A = \overline{\rho}$ and $\rho \sim \rho'$ corresponds to $\rho = M\rho' M^{-1}$ with $M \in GL_N(A)$ and $M \equiv 1 \mod \mathfrak{m}_A$.

WARNING: If $E \to S$ (S is a p-adic variety) is a family of elliptic curves, for all $s \in S(\mathbb{Q}_p)$ set $\rho_s : G_{\mathbb{Q}_p} \to GL_2(\mathbb{Z}_p)$ from E, but these don't come from a single representation $G_{\mathbb{Q}_p} \to GL_2(\mathbb{Z}_p[[x_1, \ldots]])$

Definition 3. $\operatorname{Def}_{\bar{\rho}}: \hat{\varphi}_k \to Set \ takes \ A \ to \ the \ set \ of \ deformations \ of \ \bar{\rho} \ to \ A.$

This is easily seen to be a covariant functor using $V_A \to A' \otimes_A V_A$. Note: These are deformations, not liftings. EQUIVALENCE CLASSES.

Exercise 2. Def_{$\bar{\rho}$} $(k[\epsilon]) = H^1(\Gamma, \operatorname{End}_k(V_0))$ with gamma acting by conjugation on linear maps.

"Proof": $\bar{\rho} : \Gamma \to GL_N(k), \ \rho : \Gamma \to GL_N(k[\epsilon]) \text{ and } \rho(\gamma) = (1 + \epsilon c(\gamma))\bar{\rho}(\gamma). \ \rho \text{ continuous liftings} correspond to <math>C \in Z^1(\Gamma, \operatorname{End}(V_0))$ and $\rho \sim \rho'$ corresponds to $c - c' \in B^1(\Gamma, \operatorname{End}(V_0)).$

Theorem 4 (Mazur). If dim $H^1(\Gamma, \operatorname{End} V_0) < \infty$, then $\operatorname{Def}_{\bar{\rho}}$ satisfies Schlessinger's criteria (H1) to (H3). If $\operatorname{End}_{\Gamma}(V_0) = k \ (eg \ \bar{\rho} \ is \ absolutely \ irreducible)$ then (H4) also holds, so get a universal deformation $\bar{\rho}^{univ} : \Gamma \to GL_N(\mathscr{R}^{univ}_{\bar{\rho}}).$

IE, given $\bar{\rho}: \Gamma \to GL_N(k)$ and a lifting $\rho: \Gamma \to GL_N(A)$, then there exists a unique $\mathscr{R}_{\bar{\rho}}^{univ} \to A$ such that it carries $\bar{\rho}^{univ}$ to ρ up to 1-unit matrix conjugation.

Example 10. $\Gamma = G_{\mathbb{Q},\Sigma}$, want to impose more conditions.