1 Hacking

Constructing Surfaces of General Type by Deformation Theory

Motivation: Let k = C. Then curves C' have only one topological invariant, the genus g.

Surfaces: We consider the underlying topological 4-manifold. Then Q = U : H?(X,Z) x H*(X,Z) —
H?(X,7Z) = 7Z is a unimodular symmetric bilinear form.

Freedman: Assume that 71(X) = 0. Then X is uniquely determined up to homeomorphism by Q.

Donaldson: 3 a topological 4 manifold with infinitely many non-isomorphic differentiable structures (eg,
elliptic surfaces) (never true for dim # 4.)

Problem: Classify topological types of surfaces of general type? (recall, a surface is of general type if
WP defines a birational map for N >> 0).

Assume that 71(X) = 0. Then Hodge Theory implies that the signature of Q is (2h%° + 1,RL! — 1)
where h*? = h%(Kx). Consider the simplest case, where h?® = 0. Then Q is diag[l, —1,...,—1] for n -1’s,
for some n.

X ~ BI"P? (homeomorphic)

(Topologist: PZP24 ... P2 where f is a connected sum and P? is P? with orientation reversed.)

Severi, around 1920, asked if there is a surface X of general type such that X ~ }P’?c.

Yau, in 1976, showed no. By showing that ¢? = 3c; = X = B/I' where B C C? is the unit ball and T
acts on B as the proper discontinuous action of a discrete group.

Theorem 1 (Barlow 1982 (A student of Miles Reid)). There exists a surface of general type with X home-
omorphic to P? blown up at 8 points.

He did this by explicit construction.

Theorem 2 (Lee and Park 2006). There exists a surface of general type X homeomorphic to P? blown up
at 7 points.

(Yesterday posted 6)

Idea of Proof:

Assume that there exists such an X. Consider the moduli space .Z of deformations of X. Then
dim.# > h'(Tx) — h®(Tx) (because h%(Tx) = 0 because X being of general type implies that there
are no infinitesimal automorphisms.)

So then hl(Tx) — h2(Tx) = —X(Tx)

By Riemann-Roch, if E is a vector bundle on X, then x(F) = deg(ch(E).td(X))4im x and in this case,
X(Tx) = 1/6(7c? — 5ca) = 1/6(7 %2 — 5% 10) = —6, and so dim .#Z > 6.

We compactify .# by adding points corresponding to singular surfaces at the boundary (there exists a
natural way to do this using minimal model program).

To prove the theorem, we construct singular surface Y corresponding to a point of .# and proof that
there exists a smoothing.

Local Model

Notation: We will write 1(1,a) = C?/p, where p, 3 % : (z,y) — (Fz,Sy). we always assume that
(a,7) = 1 because that is iff it is free in codimension 1. Consider Y = 2 (1,na — 1).

Smoothing: Z = 1/n(1,—1) = (uv = w") C C* which corresponds to Y = 1/n?(1,na — 1) = (uv =
w™) C 1/n(1,-1,a).

(u=2a"v=y",w=umxy)soget ¥ = (uv=w"+1t) C 1/n(l,-1,a) x Cf,

Note that Ky is Q-Cartier.

Milnor Fibre

1. Milnor fibre M’ of smoothing 2 = (uv = w™ +t) of Z.

Brieskorn: there exists a simultaneous resolution of family of ADE singularities (after finite base
change). This tells us that M’ is diffeomorphic to a family of smooth manifolds, which is homotopy
equivalence to V' |'S2.

2. The Milnor fiber of Y = &, and then M’ %3 M étale implies that 7, (M) = Z/nZ and e(M’) = ne(M).



So M has the homotopy type of a CW complex of real dimension 2 via Morse Theory. Thus, M is a
rational homology ball, ie, H,(M,Q) = H.(B, Q).

From the Mayer-Vietoris sequence, we get e(X) = e(X*)+e(M)—e(OM), e(Y) = e(Y*) —e(C) —e(OM),
and e(C) = e(M) =1, so e(X) = e(Y) where C is the cone.

Now we must check 7.

OM = S3/(Z/n?Z), the lens space, and we have m(OM) — m1(M) surjective and by van Kampen’s
Theorem, we get 71(X) = 71 (X™) *x, (o) 71 (M) which is surjected onto by 71(X*) = 71(Y™*), and so it is
enough to show that 71 (Y™*) = 0.

Smoothability:

Let X be a surface with isolated singularities and Lx = L% Ik the cotangent complex. Then 0 — I —
A" — A — 0 exact, specifically, 0 — kt"T1 — k[t]/(t"F2) — k[t]/(t"T1) — 0 and X lying over Spec A. Can
we extend X to Spec A’?

The obstruction lies in Ext?(Lx, O ), if it is zero, then the extensions form a torsor under Ext'(Lx, Ox).

Local to Global

HP(&x19) = ExtP™? spectral sequence takes us to an exact sequence

0 — HY(&xt°) — Ext! — HY(&xt') — H*(&xt") — Ext?
Which gives
0 — HY(Tx) — Ext'(Lx, Ox) — H*(&xt'(Lx, Ox)) — H*(Tx) — Ext*(Lx, Ox)

Claim: H?(Tx) = 0 implies that every infinitesimal deformation of singularities is induced by a defor-
mation of X.

Proof: the first order is by the last long exact sequence

higher order: the spectral sequence gives Ext*(Lx, Ox) = H(&xt?*(Lx, Ox)), so if 3 a local lift, then
there exists a global lift. Now liftings are torsors under Extl(L x, Ox) which is global, and maps surjectively
onto H(&xt!(Lx, Ox)) which is local.

WARNING

If X is a surface of general type, then often H?(Tx) # 0. eg, X = X4z C P3, d > 5 implies that
H?(Tx) # 0. (Exercise)

Reason: H%(Tx) = H°(0x ® wx)* by Serre Duality and wx ample.

However, X may still have unobstructed deformations. eg, X = X; C P3, the embedded deformations of
X C P2 modulo isomorphism surjects onto the deformations of X modulo isomorphism for d # 4 (Exercise)

The Construction

First thing, Y is rational. There exist singular rational surfaces with ample canonical bundle.

If C is cubic, p, ¢, r flexes, B is a conic and A is a line in P2. Consider the pencil of cubics generated by
A+ B, C. Blow up the base points p, g, three times to get an elliptic fibration p: Z — P!

The degenerate fibers are Eg, A; and 2 nodes for C general.

Blow up 18 times to get ¢ : Z — Z.

Then we contract 5 chains of P'’s where a chain of P!’s with self intersection < —2, contracts to a cyclic
quotient singularity.

General Type

K; =g"Kz + E, with E effective and g-exceptional.

K; = h*Ky — F where F is effective and h-exceptional.

Then hW*Ky = h*Kz+ E+ F = E+ F — f where f is a fiber of 7 — P! and so h*Ky ~ D is effective,
now check that h* Ky is nef, ie, h*Ky.C' > 0 for all C' (We only need to check C' = Supp D).

So then K2 = 2 from Noether’s formula. (¢ + co = 12x(0y), K2 + e(Y) = 12x(0x) and h'(Oy) =
h?(0Oy) = 0 since Y is rational).

So why does H?(Tx) = 0?

Lemma 1. Y is a surface with cyclic quotient singularities and 7 : Z — 'Y is the minimal resolution with E
the exceptional locus. IF H*(T5(—log E)) = 0 then H*(Ty) = 0. (That is, the vector fields tangent to E)

Serre duality gives that H*(T;(—log E)) = H°(Q;(log E) ® wz)*, so now we use the elliptic fibration
Z — P! to get vanishing.



2 Conrad

Discrete Galois Modules

Let I be a field and F,/F' a fixed separable closure with Galois group Gp = Aut(Fs/F) = lim Gal(F'/F)
is a compact, profinite group.

Krull Correspondence says that closed subgroups correspond to intermediate fields and that open sub-
groups correspond to finite subextensions

Example 1. V a commutative group scheme of finite type over F
Then GF acts on M =V (Fg) (an abelian group)
This acts on Spec Fs — V', any such map factors as Spec Fy — Spec F' — V for a finite Galois extension
V' is quasiprojective, so V — ]P’J}’ and it acts on the homogeneous coordinates.
Gp action on any m € V(F') CV(Fs) = M has stabilizer Gal(Fs/F') C Gg an open subgroup.

Example 2. X — Spec F' separated and of finite type, then £ # char F, H',(Xr,,Z/("Z) has a GF action
with open stabilizers.

Definition 1 (Discrete Galois Module). A discrete G p-module is a Gp-module M such that every element
m € M has an open stabilizer in Gp.

Example 3. A Gp-module M with |M| < oo is discrete iff Gg acts on M through a finite quotient Gal(F'/F)
(IE, Gp: C G open acts trivially on M )

Remark 1. If T' is any profinite group, then we can make the same discussion. Fzamples are I' =
Zyp,GL,(Zy) and 7§ (X, z).

Example 4. E/F is an elliptic curve, N € Z* and char F' f{N. Then E[N|:= E[N|(F;) ~Z/NZ x Z/NZ
with Gg acting through Gal(F(E[N])/F) extension generated by the coordinates of the N-torsion points.

pe.n : Gr 2 Aut(E[N)) ~ GLy(Z/NZ).

Consider N = p” where p is a prime not equal to char F’

Fact: E[p"| ~Z/p"Z x Z/p"Z.

If F =C then E ~C/A so E[N] ~ £A/A ~ A/NA which is surjected onto by A/NdA ~ E[Nd], and so
E[pt1] — E[p"] is surjective.

So we can set G acting on each thing in a way that is compatible. So we are going to deform this
compatible system, pg n.

Define T},(E) = the p-adic Tate module, which is lim E[p"] = Z, x Zy. So if F' = C, E ~ C/A, then
T,E =limA/p'A ~ A ®; Z, = Hi(E, Z,).

So now we have pg pe : Gp — GL2(Zy,) C M(Z,) open, and usually the kernel isn’t open. Now T}, (E)
is a Galois Module, but not a discrete one.

Arithmetic Application: Let F' be a finite field of order ¢, and choose ¢ # char F', so we get pg ¢~ : Gp —
GL2(Z¢) = Autz, (T,E). Let ¢ be the Frobenius element in Gr. Then the characteristic polynomial of ¢ is
X2 —aEX+there ap = |EF| — (q+1) €L CZy.

Example 5. Let E be an elliptic curve over Q, and E' another one. Define them by y*> = x® 4+ ax + b and
y? =% +dz+ V. Look at the Gy, -action on E[p”], E'lp’]. Then you get two maps Go, = GL2(Z/p"Z),
and suppose that |a’ — a, [ — b| << 1, then pg 7 =~ pgr p7 as Gg,-modules.

So then we have pg po, pgp~ : Gg, — GL2(Zy) both induce the same map to GL2(Z/pZ). "two p-adic
deformations” of the same induced p” representation.

Cohomology

Let T' be a profinite group (eg Gr). Define Modr to be the category of discrete I'-modules. (# Z[I']-
modules)

Exercise 1. Modr has enough injectives (follow Tohoku)
Modyr — Ab by M +— MY = {m € M|ym = m for all v € T'}.



Definition 2 (Cohomology). H*(T',—) : Modr — Ab are the derived functors of (—).
Remark: We can compute this using continuous cochains.

Example 6. H(I', M) = Z'(I', M)/BY(I", M) where BY(TI', M) = {T' — M continuous sending -y +— ~ymg —
mq for some mg € M}. This factors through T'/stabr(my).
Z' T, M) = {c: T — Mle(1172) = m1e(72) + ¢(n1), ¢ cont}.

Say that I' acts trivially on M, then BY(I', M) = 0 and Z!'(I', M) = {continuous homomorphisms
r— M}.

Remark 2. Given ¢ : T' — TIY continuous, then get Modr: — Modr and for M' € Modr/, we have
(M/)F’ c (M’)F.

This induces H*(IV, M') — H*(T', M’) by composition with ¢ on the level of cochains.

Example 7. F'/F a field extension, say Q,/Q, then fiz compatible separable closures and get an induces
G — Gp continuous and well defined up to conjugation, and H* (T, M") — H*(T', M") is invariant under
conjugation by I".

Thus, H*(Gp, M) — H*(Gp, M) is canonical, and often we just say H*(F,M) — H*(F', M), it’s like
the pullback map with respect to Spec F’ — Spec F'.

Example 8. Tuke F = Q and look at H'(Gg,Z/27Z) = homon: (G, Z/2Z) = {Q,Q(V/d)|d € Z\ {0} square
free}

This is not finite dimensional over Z/2Z. We want to work with a quotient of Gg subject to restricted
ramification.

Let F' be a number field ([F' : Q] < co) then Spec O is "like” an algebraic curve. What should replace
Gr? Take F'/F finite, then get Spec O — Spec O and let ¥ be a finite set of ramified primes. Want to
consider F'/F ramified C ¥ = the fixed finite set of maximal ideals of O, ie, we want to replace Gp with
7§ (Spec OF 5)

ie, Gpy = Gal(Fx/F) composition of F'/F finite and unramified outside X.

Algebraic Number Theory (+¢) implies

Theorem 3 (Tate). If M is a finite discrete G x-module, then H (Gx, M) are finite for all i and vanish
for i > 2 so long as |M| is odd.

If instead, [L : Q] < oo, then HY(GL, M) are finite for M a finite discrete Gr-module and are O for
7> 2.

Example 9. F = Q, ¥ = {2,3,7}, then H (G5, Z/2Z) = {Q(/d)| for d|42}, which is finite.

Deformations

Motivation: Hida constructed certain representations p : Ggx — Gla(Zp[[z]]) such that under z —
(1+p)k —1 for k > 2 gave interesting representations py, : Go,x — GL2(Z,).

Now, fix p: ' = GL(Vp) a finite dimensional representation over a finite field of a profinite group.

Remember, GL(Vp) ~ GLy(k)

@1, = the complete local noetherian rings with residue field k (= coeff ring A = W (k)) (If k = F), then
AN=17Z,.)

A lifting of p to A € @y, is a pair (V4,0) where Vy4 is a finite free A-module equipped with a continuous
p: T — GL(Vy) and 0 : Vi /mu V4 ~ Vy as k[[]-module.

Say (Va,0) ~ (V},0') if V4 ~ V) as A[['l-modules such that mod my carries 6 to 6'. (ie, respects
identification with Vj)

A deformation of p to A is an equivalence class of lifts.

Matrix Meaning: p: I' — GLy(k).

Lifting: p : I' — GLy(A) continuous such that p mod m4 = p and p ~ p’ corresponds to p = Mp'M~1
with M € GLy(A) and M =1 mod my4.

WARNING: If E — S (S is a p-adic variety) is a family of elliptic curves, for all s € S(Q,) set ps :

Gq, — GL3(Zy) from E, but these don’t come from a single representation Gg, — GLz(Zy[[z1, .. .]])

P



Definition 3. Def; : ¢ — Set takes A to the set of deformations of p to A.

This is easily seen to be a covariant functor using V4 — A’ ®4 Va.
Note: These are deformations, not liftings. EQUIVALENCE CLASSES.

Exercise 2. Def;(k[e]) = H'(I', Endy(Vp)) with gamma acting by conjugation on linear maps.

"Proof’: p: ' — GLNn(k), p : T' — GLN(k[e]) and p(y) = (1 + ec(y))p(y). p continuous liftings
correspond to C' € Z1(I', End(Vp)) and p ~ p’ corresponds to ¢ — ¢’ € BY(T, End(Vp)).

Theorem 4 (Mazur). If dim H*(T', End V) < oo, then Def; satisfies Schlessinger’s criteria (H1) to (HS).
If Endr(Vo) = k (eg p is absolutely irreducible) then (H4) also holds, so get a universal deformation

IE, given p : I' — GLx(k) and a lifting p : T' — GLy(A), then there exists a unique %}j”iv — A such
that it carries p“™ to p up to l-unit matrix conjugation.

Example 10. I' = Gg x, want to impose more conditions.



