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Why should people care about Deformation Theory?
We will be working over C. And we take any kind of object and consider one, X. The question is,

imprecisely, how can we deform X. Infinitesimally generally means roughly power series.
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nice

In algebraic geometry, nice means flat, at the least.
Sample application: Suppose scheme M which parametrizes your objects. ”fine moduli space” means

that ”every time there is a nice family of objects, then that corresponds to a map to M , and vice versa”
and we also need this to be a functor so that we get base change right.

If you aren’t so lucky as to have a fine moduli space, then look for a coarse moduli space, which isn’t
perfect, but in a precise sense, it is the closest you can get. Otherwise, Deligne-Mumford stacks.

Questions with moduli spaces: pick a point (object) and look near that point. Find the formal nbhd, is
it smooth? unibranch?

Helpful thing is then that if you can prove something about an object X0 and show that it holds under
deformation, then you have it for many other objects.

Example(Deligne-Mumford ’69): The moduli space of genus g curves is irreducible. The space is called
Mg. The method used is to prove that it is connected and smooth. They solved the ”harder” problem of
compactifying the space.

So now, we take a moduli space which is a scheme, and let X be an object of the sort with (R,m) its
local ring. We want to look at R̂ and we build it level by level.

Example: Take M = V (y2−x3). So R = C[x, y]/(y2−x3). We get for the Tangent Space C[x, y]/(x, y)2 ←
C[x, y]/ < (x, y)3, y2 >← C[x, y]/ < (x, y)4, y2−x3 >. There is an obstruction space which, if zero, then the
space is smooth.

There are three relevant spaces: aut/def/ob, and so if X is a smooth variety, Def = H1(X, TX),
ob=H2(X, TX) and H0(X, TX) is aut.

Exercise: Mg for g ≥ 2, and M̄g. What if X is singular? Ext1(ΩX ,OX) = def , ob = Ext2 and aut = H0.
Fix X and deform E a vector bundle on X. Aut, the infinitesimal deformations, are hom(E,E).

(Note: Derived Categories are lurking here)
Example: Manifold in CPn, assume π : X → Pn is an embedding of a nonsingular projective variety.

def(X → Pn) = H0(X, NX/Pn), and to do things with it, we get the normal bundle sequence: 0 → TX →
π∗TPn → NX/Pn → 0, and we get the long exact sequence on homology.

0 → H0(TX) → H0(π∗TPn) → H0(NX/Pn) → H1(TX) → H1(π∗TPn) → H1(NX/Pn) → . . . which is
also 0 → Aut(X) → defπ(deform the embedding)→ def(π : X → Pn) → def(X) → ob(π) → ob(π : X →
Pn)→ . . ..

This generalizes, we can replace X by something singular and Pn by Y .
Max Lieblich
What is a Moduli Space?
Well, objects seem to come in types

1. Varieties

2. Curves of genus g

3. Line Bundles on X

4. Maps between X and Y

5. Closed Subschemes of X (often X = Pn)
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6. Subspaces of a vector space

So {pts of Mi} ↔ {objects of flavor i}
Q: How should a scheme be described?

1. ”Absolute”, ie, give affine charts and glue them together

2. ”Relative”

Analogy: Functions. Question: How should an element f ∈ C∞([0, 1]) be described.
There is the absolute method of just saying what f is at each point. The relative way uses the pairing

g ∈ C∞ and takes
∫ 1

0
fg ∈ R. So this gives Lf : C∞ → R by g 7→

∫
fg, and there is a theorem L : C∞ →

hom(C∞, R) is an injective linear transformation.
We can do the same thing in any category C. We take the pairing X, Y 7→ hom(X, Y ), a set. So

Y 7→ hom(Y, X) called hX(Y ), gives us a functor C → Func(C◦, Sets), and injectivity corresponds to being
fully faithful.

Z → Y gives hX(Y ) → hX(Z) by composition. hX is a contravariant functor from C to sets, or a
covariant functor from C◦ to Sets.

Example: C = SchZ, ie, all schemes. hA1(Y ) = Γ(Y,OY ) and Z → Y gives the pullback map on functions.
hGm

(Y ) = Γ(Y,O∗
Y ) and hPn(Y ) = {On+1

Y → L surjective, with L invertible on Y }/ '.
Now, Func is a category, with objects being functors and morphisms being natural transformations.
Analogue of Bumps is

Lemma 1 (Yoneda’s Lemma). h : C → Func(C◦, Sets) is fully faithful.

eg, hA1 → hPn will always come from a unique map of schemes A1 → Pn.

Proof. Faithful: Let f, g : X → Y in C, then hf , hg : hX → hY . Show that hf = hg implies f = g. If
hf (T ) : hX(T )→ hY (T ) for all T ∈ C and hf (X) = hX(X)→ hY (X), that is idX 7→ f .

hg(X) : hX(X)→ hY (X) takes idX 7→ g.
Full: Given F : hX → hY , show that F = hf for some f : X → Y , take φ : T → X. Then hX(X) →

hX(T ) takes idX → φ.
DIAGRAM CHASE

hX is called the functor of points of X.
Example: Gm → Gm by x 7→ x2 works on all points and describes a natural transformation hGm

→ hGm
.

Philosophy: Functor=generalized space and schemes are a distinguished class of spaces.
Instead of F : C◦ → Sets think of F and take its internal structure as F (T ).
Exercise of Yoneda Type: ∃ a natural bijection hom(hT ,F ) ' F (T )

Definition 1 (Representable Functor). A functor F is representable if there exists X ∈ C such that F ' hX .

Anything we can do with sets, we can do with functors to sets.
eg: F,G→ H lets us create fiber product F ×H G(T ) = F (T )×H(T ) G(T ). This works!
Q: What is the functor of points of Mi?
Look at M0(T ) = {X → T |finite presentation, flat, geometrically integral fibers}/ '.
M1(T ) = {C → T |proper, smooth, finite presentation, fibers are smooth of genus g}/ '.
M2(T ) = {L invertible on X × T}/ '.
M3(T ) = {homT (X × T, Y × T )}
M4(T ) = {Z → X × T over T , Z is T -flat closed immersion of X × T , finite presentation}/ '.
M5(T ) = {W ⊂ V ⊗ OT such that coker is locally free}
Martin Olsson
Goal for first week is examples, second week is to get to cotangent complexes.
Motivation: k = k̄, X/k is a scheme of finite type over k, and x ∈ X(k).

Definition 2 (Tangent Space). The tangent space of X at x is the dual of the k-vector space m/m2 where
m ⊆ OX is the maximal ideal.
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Dual Numbers. Let R be a ring, I an R-module, and R[I] the ring of dual numbers. As a group,
R[I] = R⊕ I with (r, i)(r′, i′) = (rr′, r′i + ri′)

We have the inclusion of R→ R[I] followed by the projection equal to id.
Remark 1: R[I] is functorial in I. g : I → J induces a map R[I]→ R[J ] over R.
Remark 2: I = R, we write R[ε] for R[I] (really should be R[ε]/ε2)
Remark 3: Let X be a topological space and O is a sheaf of rings on X and I is an O-module. We can

define O[I].
In particular, if X is a scheme and I is a quasi-coherent OX -module, then we get a ringed space X[I]

given by (|X|,OX [I]).
Exercise: Show that X[I] is a scheme.
Relationship with Derivations:
Let A→ R be a ring homomorphism and M and R-module. An A-derivation from R to M is an A-linear

map ∂ : R→M such that ∂(xy) = ∂(x)y + x∂(y). This gives an R-module DerA(R,M).
We look at A-algebras over R, that is, the category of pairs (C, f) where C is an A-algebra and f : C → R

is a map of A-algebras.

Lemma 2. For any A-derivation ∂ : R → I the induced map R → R[I], x 7→ x + ∂(x) is a morphism in
A-alg/R and the induced map DerA(R, I)→ homA−alg/R(R,R[I]) is a bijection.

Proof. s : R→ R[I] in A− alg/R by x 7→ (x, ∂(x)). A map of A-algebras corresponds to δ(x) = 0 if x is in
the image of A.

Composition with multiplication corresponds to (xy, δ(xy)) = (x, δ(x))(y, δ(y)) = (xy, xδ(y)+yδ(x)) says
that δ is a derivation.

Remark: f : C → R surj in A − alg/R and that I = ker f is square-zero. Then any section s : R → C
induces an isomorphism R[I] ' C by the short 5-lemma.

Special Case: C = R⊗A R/J2 where J is ker(R⊗A R→ R) maps to R via f . If I = J/J2 = Ω1
R/A then

s : R→ C by x 7→ x⊗ 1 induces an isomorphism R⊗A R/J2 ' R[Ω1
R/A].

This implies that DerA(R,Ω1
R/A)→ sections of the diagonal map R⊗A R/J2 → R is an isomorphism.

So what is the universal derivation R
d→ Ω1

R/A?
We have Ω1

R/A = J/J2 and d : R → Ω1
R/A = J/J2 given by x 7→ x⊗ 1− 1⊗ x causes us to get the dual

number (x, 1⊗ x− x⊗ 1)
??? Exercise: Work This Out.
The Tangent Space of a Functor: Take ModR to be the category of finitely generated R-modules and

H : ModR → Set a functor which commutes with finite products. IE, H(I × J) = H(I)×H(J).

Proposition 1. H factors canonically through the category of R-modules as ModR → R−Mod→ Set with
the last being a forgetful functor.

Proof. I × I → I by (i, j) 7→ i + j gives an additive structure by H(I)×H(I) ' H(I × I)→ H(I).

Thus we get a multiplicative structure f ∈ R, ·f : H(I)
H(·H)→ H(I).

A − alg/R has finite products, so f : C → R and f ′ : C ′ → R is given by (C, f) × (C ′, f ′) = (C ×R

C ′, (x, y) 7→ f(x) = f ′(y))

Lemma 3. The functor ModR → A− alg/R by I 7→ (R[I], π : R[I]→ R) commutes with finite products

Proof. Let I, J ∈ModR. Then R[I × J ]→ R[I]×R R[J ] is an isomorphism over R.

Corollary 1. F : A− alg/R→ Set such that I, J ∈ModR the map F (R[I]×R R[J ])→ F (R[I])× F (R[J ])
is an isomorphism, then for all I ∈ModR the set F (R[I]) has a canonical R-module structure.

Reason: F (R[I]) is the image of I under I 7→ R[I] so ModR → A− alg/R→ Sets commutes with finite
products.

Definition 3 (Tangent Space of a Functor). Let F : A− alg/R→ Set be a functor satisfying the condition
in the corollary. Then the tangent space of F denoted TF is the R-module F (R[ε]).
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Remark: Enough that F is defined on full subcategory C ⊂ A− alg/R closed under finite products and
containing R[I]’s.

Brian Osserman
Functors of Artin Rings: Representability and Schlessinger’s Criterion.
We’ve seen that a scheme X can be completely recovered from its functor of points (Yoneda) and under

mild hypotheses, the tangent space is recovered by looking at maps Spec k[ε]→ X.
We’ll look at something in between: Spec A→ X (with image some x ∈ X)
From a Moduli perspective, we’re studying families over Spec A (one point) with a fixed restriction to

Spec k. These are called infinitesimal thickenings and the data obtained is the complete local ring of the
moduli space at the chosen point.

Recovering Complete Local Rings: Temporary Notation: Art(k) is the category of local Artin rings
with residue field k (morphisms compatible with map to k). Given X a locally Noetherian scheme and
x ∈ X, with k = k(x). Let FX,x : Art(k) → Set given by (A → k) 7→ {f : Spec A → X| such that
[Spec k

x→ X] = f ◦ [Spec k → Spec A]}.

Proposition 2. Given X locally Noetherian, x ∈ X, then the canonical map Spec ÔX,x → X induces
FSpec ÔX,x,X ' FX,x, and any complete local Noetherian ring R (with residue field k) with Spec R → X

inducing a bijection is canonically isomorphic to ÔX,X

Note: The last part anticipates prorepresentability

Proof. The first statement is equivalent to saying that any map Spec A→ X with image x factors uniquely
Spec ÔX,x → X. It’s an easy exercise that it factors uniquely through Spec OX,x → X (indeed, this is true for
any local ring). So we need OX,x → A factors uniquely through OX,x → ÔX,x. But since A is an Artin ring,
so some power mn

x maps to 0 in A. IE OX,x → A factors through some OX,x/mn
x . So we get a factorization

through ÔX,x.
The second part is that ÔX,x/mn

x and R/mn
R both give Artin rings for all n. Using a Yoneda style trick,

construct compatible maps R→ ÔX,x/mn
x and ÔX,x → R/mn

R, we construct ????

Remarks: What data is in ÔX,x?

1. Dimension of X at x

2. Singularity type of X at x, something similar to a local ring of an analytic space

3. eg: Cohen then X is smooth over k of dimension n we have ÔX,x ' k[[x1, . . . , xn]].

4. eg: y2 = t3 − t2 is a nodal cubic, then ÔX,x ' k[[u, v]]/(uv).

5. eg: y2 = t3 is a cuspidal cubic, get k[[x, y]]/(y2 − x3) 6' k[[s]] even though homeomorphic.

The functors of interest.
We work in the relative setting. We’ll fix Λ a complete local Noetherian ring with residue field k, we’ll

consider Art(Λ, k) of Artin local Λ-algebras with residue field k.
Nonstandard terminology: A predeformation functor is a functor F : Art(Λ, k)→ Set such that F (k) is

the one-point set.
Roughly, these arise by considering families over Spec A restricting to a fixed object over Spec k. Starting

with a global moduli functor, can obtain a predeformation functor by choosing an object over k and restricting
attention to Artin rings (not necessarily a good idea).
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