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Again, I’ll be out of town next Tuesday (Nov. 7), so Jason Starr will kindly be
giving a guest lecture. He will likely tell you about applying Schlessinger’s criteria
to the Quot functor. I also encourage you to check out his talk at the Harvard-MIT
algebraic geometry seminar (meeting that day at Harvard at 3 pm).

1. Where we are: Schlessinger’s criterion for existence of universal

deformations and hulls (miniversal deformations)

Fix our functor F : C → Sets.

Let A′ → A and A′′ → A be morphisms in C, and consider the map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).(1)

Schlessinger’s Theorem. [Put on one board permanently!]

(1) F has a hull iff F has properties H1–H3:

H1. (You can glue.) (1) is a surjection whenever A′′ → A is a small extension.
Equivalently whenever A′′ → A is any surjection.

H2. (Uniqueness of gluing on k[ε]/ε2.) (1) is a bijection when A = k, A′′ = k[ε]/ε2.
Equivalently, A′′ = k[V ]. Then by previous lemma, tF is a k-vector space.

H3. (finite-dimensional tangent space) dimk(tF ) <∞.

(2) F is pro-representable if and only if F has the additional property
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H4. (bijection for gluing a small extension to itself)

F (A′ ×A A′)→ F (A′)×F (A) F (A′).(2)

is a bijection for any small extension A′ → A.

Recall from two times ago, repeated last time. Assume F satisfies H1–H3.
Now given a fairly small extension p : A′ → A. Given any a ∈ F (A), i.e. family
over A, the set of lifts to F (A′) has a transitive action by the group tF ⊗ I. H4 is
precisely the condition that this set is a principal homogeneous space under tF ⊗ I.
(Say more here.)

2. Proof of Schlessinger, take 3

We’ve proved everything except that if H1–H3 are satisfied, then we have a hull,
and we’re much of the way through dealing with that.

We have used H1–H3 to build a candidate hull. Here were the steps so far. By
H2 and H3, tF is a finite-dimensional vector space. Let T1, . . . , Tr be a dual basis
for tF . Let S = k[[T1, . . . , Tr]], with maximal ideal n. We constructed R = S/J ,
with r ∈ F (R), as follows.

We constructed Rq = S/Jq and rq ∈ Rq for q = 2, 3, ... J2 = n2; we had a
canonical family over R2, i.e. a canonical element r2 ∈ F (R2).

Suppose we have (Rq, rq), where Rq = S/Jq. We want Jq+1 in S, minimal among
S = (ideals J in S satisfying (a) nJq ⊂ J ⊂ Jq, and (b) rq lifts to SJ).

We then let J = ∩q>1Jq, and R = S/J , and let r be the inverse limit of the rq.

This will be our hull; we’ll check that now.

We immediately have hR → F . Note that tF ∼= tR by construction. It remains to
check that this is formally smooth, i.e. whether we always have lifts in the following
situation:

(A′, a′ ∈ F (A′))
u′?
↗ ↓ psurjective

(R, r ∈ F (R)) u→ (A, a ∈ F (A))
We can just deal with p small.

I claim it suffices to find that this is formally smooth.

(A′, b′ ∈ F (A′))
v′?
↗ ↓ p

(R, r ∈ F (R)) u→ (A, a ∈ F (A))

for any b′. That’s because we have a transitive action of tF ⊗ I on hR(p)−1(a) and
F (p)−1(a) (by earlier comment) and a surjection hR(p)−1(a) → F (p)−1(a) that
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respects this action, so by choosing σ ∈ tF ⊗ I to change b′ to a′, and applying it
to get v′, we get the desired u′.

So now we have just to lift

A′

u′?
↗ ↓ p small

R
u→ A

Now u factors through R→ Rq → A/I for some q, so it suffices to complete

Rq+1
u′?→ A′

↓ ↓ p
Rq

u→ A

This is all that’s left in the entire proof — and it’s an explicit algebra question.

Choose any lift S → A′ (possible as S is a power series). Rewrite as:

S
w→ Rq ×A A′ → A′

↓
v′

↗ ↓ π1 small ↓ p small
Rq+1 → Rq

u→ A.

If π1 has a section, then we win. Otherwise, we use the following aside.

2.1. Commutative algebra aside: Notation that will only be used once.
Definition. A surjection p : B → A in C is essential if for any q : C → B such that
pq is surjective, it follows that q is surjective.

Easy Lemma. Suppose p ∈ C is surjective. Then

(i) p is essential iff p∗ : t∗B → t∗A is an isomorphism.
(ii) If p is small, then p is essential iff p has no section s : A → B (i.e. with

A
s→ B

p→ A the identity).

Now π1 has no section, so it is essential. Hence S w→ Rq ×A A′ is a surjection. By
H1, rq lifts to something in F (Rq ×A A′). Thus kerw ⊃ Jq+1 by definition of Jq+1.
So w factors thorugh Rq+1 and v exists! We’re done!

3. Example: The Picard Functor

You’ll see three examples: the Picard functor, the Functor of deformations of a
scheme X, and the Quot functor (Jason). First, the Picard functor.
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Here’s the Picard functor I want to consider. Fix a scheme X. Recall the Picard
group PicX = H1(X,O∗X) (Cech cohomology). In fact this is a group scheme.

Side comment to Jim and Sharon: We have infinitesimal automorphisms, so
we don’t expect prorepresentability if we hadn’t done this “modulo isomorphism”
thing.

For convenience, let XA = X ×k SpecA. Fix L0 ∈ PicX. We will study
deformations of this line bundle.

Let P (A) be  L → L0

| |
X × SpecA = XA → X

 /isom.

Those are the families; morphisms are pullback diagrams.

Theorem. Assume H0(X,OX) = k, and h1(X,OX) is finite (e.g. if X is proper
and connected). Then P is prorepresentable and tp ∼= H1(X,OX).

3.1. Important remark: Relative version. This result is more interesting in a
relative situation, if X is deforming at the same time. Fix

X0 → X
↓ ↓ flat

Spec k → Spf Λ

where Λ is a complete local Noetherian ring. (For example, k[[x1, . . . , xn]]; or else,
k = Fp, Λ = Zp.)

Schlessinger’s theorem applies in this relative setting; the proof is actually iden-
tical to the one I’ve given to the more limited version. (I decided to just state the
simpler version to keep notation to a minimum, as it’s already pretty hairy.)

Theorem. If H0(X0,OX0) = k, and h1(X0,OX0) is finite, then P is prorepre-
sentable (and tP = H1(X0,OX0)).

What this means: Spf R→ Spf Λ.

The proof to this is also identical to the proof I’m going to give to the more
limited case.

4. Flatness lemmas

In order to prove this theorem, I’ll need a couple of flatness lemmas. The first
is easy and fun. The second will need motivation, but is also easy once you parse
the complicated diagram.
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Fun lemma. Let A be a ring, J a nilpotenti ideal in A (e.g. A ∈ C, J 6= (1)), and
u : M → N a homomorphism of A modules, N flat over A. If u : M/JM → N/JN
is an isomorphism, then u is an isomorphism too.

Proof. (Let K be the cokernel, and show that it is zero. Then let K ′ be the
kernel, and use flatness to show that it is zero too; see Schlessinger’s paper.)

Fun corollary. A module N over an Artinian ring A is flat if and only if it is
free.

This is great, because flatness is sometimes scary, but freeness isn’t!

Proof. Free modules are clearly flat, so that’s easy. Suppose N is flat, and say
N/mN = kn (where m is the max ideal and k the res field of A; n needn’t be finite).
Let M = An, and pick M → N sending basis vectors of M to lifts of basis vectors
of N/mN . By the lemma, this is an isomorphism.

The next lemma looks scarier, but is fundamental, and in fact well-motivated.
I’m going to try to motivate it, and then state it precisely. The proof will then be
shorter than the statement!

In Schlessinger’s criteria. we have a situation like this. We have a diagram of
rings

B := A′ ×A A′′ → A′′

↓ ↓ surjection
A′ → A

and you want to check that if you have elements of F (A′) and F (A′′) restricting to
the same thing in F (A), then there is something in F (B) mapping to it (H1), and in
fact that it is uniquely defined (H2 and H4). (Say again in terms of gluing.) These
functors in practice are often flat families of some sort. So you can imagine having
a flat families over A′ and A′′ (restricting to the same thing over A), and that you
can glue them together to get a family over B. Million dollar question: how do you
know that the resulting family is flat?!! This lemma answers that question.

The lemma will be in terms of modules over a ring, as (a) that’s the natural
simplest way in which to discuss flatness, and (b) you really cook up families of all
sorts by having modules or sheaves of modules with given additional structures.

Lemma.

The bottom square is

B := A′ ×A A′′ → A′′

↓ ↓ surjection
A′ → A

(in C).
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Over it, you have

? → M ′′

↓ ↓ u′′

M ′
u′→ M

Each of these three squares (incident to A in the cube) are tensor products, i.e.
M ∼= M ′ ⊗A A′ (via u′), and M ∼= M ′′ ⊗A A′′ (via u′′).

Also, M ′ is a flat A′-module and M ′′ is a flat A′′-module, and M is a flat
A-module.

It’s easy to fill in the upper corner with N : N = M ′ ×M M ′′, which is indeed a
B-algebra:

N = M ′ ×M M ′′ → M ′′

↓ ↓
M ′ → M

Then: N is a flat B-module! And the remaning two squares are pullback squares,
i.e. N ×B A′ ∼→M ′ and N ×B A′′ ∼→M ′′.

In terms of pseudo-geometry: we have this glued together family, and it has the
properties we want: it is a flat family, and these two squares are pullback squares.

The proof of the lemma is actually shorter than the statement!

Proof. In our situation, flat is free by the fun corollary, so M ′ is free; choose a
basis (x′i)i∈I for it.

Then M = M ′ ⊗A A′, so M is free too with basis u′(x′i).

Now as A′′ → A is a surjection, M is M ′′ modulo J (the kernel of the surjection).
Choose any lift x′′i ∈ M ′′ such that u′′(x′′i ) = xi. Then there’s a map of A′′-
modules

∑
A′′x′′i → M ′′ of A′′ whose reduciton mod J is an isomorphism, so it is

an isomorphism by the fun lemma. So M ′′ is free (which we already knew), with
generators x′′i .

It follows quickly that N = M ′ ×M M ′′ is free on generators x′i × x′′i (hence
flat), and that projections on the factors induce isomorphisms N ×B A′ ∼→M ′ and
N ×B A′′ ∼→M ′′.

That lemma will be useful for testing H1, i.e. it shows existence of a gluing. We
also want uniqueness for H2 and H4, and for this we will use
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Corollary. With the same notation as above, let L be a B-module in a com-
mutative diagram

L
q′′→ M ′′

q′ ↓ ↓ u′′

M ′
u′→ M

such that q′ induces an isomorphism L×BA′ →M ′. Then the canonical morphism
q′ × q′′ : L→M ′ ×M M ′′ = N is an isomorphism.

Proof. This follows by applying the fun lemma to q′×q′′. B → A′ is a surjection
(as A′′ → A was), and q′×q′′ is an isomorhpism modulo that ideal, so that’s it.

Next day (i.e. next Thurs.): Proof of existence of hull of the Picard
functor
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