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1. WHEN 1S F(k[V]) A VECTOR SPACE?

Recall that if V' is a finite-dimensional k-vector space, we can define the Artin
ring k[V]. I will now always assume €2 = 0, so the dual numbers are k[e].

Recall that I defined the categorical product of rings A x ¢ B. Check that k[V &
W] = Ek[V] xp k[W].
Lemma. Suppose F is a functor (covariant, on C) such that
F(k[V] x k[W]) = F(k[W]) x F(k[W])
for finite dimensional vector spaces V and W over k. Then F(k[V]) and in particular

tr = F(k|e]), has a canonical vector space structure, such that F(k[V]) 2tp Q V.

I already essentially gave the proof for V' = (¢), and the general proof is essen-
tially the same.

Proof. k[V] is a “vector space object” in C. In other words, for each A € é,
Hom(A, k[V]) is a k-vector space. By:
Hom(A, k[V]) = Deri(A4,V).
The addition map is given by k[V] x,k[V] — k[V] (2,0), (0,z) — x (z € V). Scalar

multiplication by a is given by the endomorphism x — ax of k[V].

So if F' commutes with the necessary products, F(k[V]) gets a vector space
structure.
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For the last statement, here’s a sketch. Note that Hom(k[e]/€?, k[V]) is nat-
urally identified with V. For any element of Hom(k[e]/€?,k[V]) we get a map
tr = F(k[e]/e?) — F(k[V]), hence tr x V — F(k[V]). In fact this is ®. The
desired result is true if V is one-dimensional; then use induction, as V is finite-
dimensional, and k[V] = x{mVE[e] /(e?). (I said something wrong in class.) O

Note that this isn’t so hard to check. For example, deformation functors of
schemes of finite type over k have this property (not even nonsingularity required).

2. SCHLESSINGER’S CRITERION FOR EXISTENCE OF UNIVERSAL DEFORMATIONS
AND HULLS (MINIVERSAL DEFORMATIONS)

In C, define a small extension to be a surjection A” — A, so A = A”/I, and
manrI =0, and [ is one-dimensional.

For the purposes of this course only, define a fairly small extension to be a
surjection A” — A, so A = A”/I, and my.I = 0, without requiring that I is

one-dimensional.

Note: Then for any A in C, you can filter A into a series of fairly small extensions
(by powers of the maximal ideal).

Then you can filter A into a series of small extensions (explain).
Fix our functor F': C — Sets.
Let A’ — A and A” — A be morphisms in C, and consider the map

(1) F(A/ X A A”) — F(A/) XF(A) F(AN).

Note that if F' is a prorepresentable functor, by R € C say, then this map is
Hom(R, A’ x4 A”) — Hom(R, A") Xtom(r,4) Hom(R, A”)

is always a bijection (explain). This is because X is a categorical product!
Schlessinger’s Theorem. [Put on one board permanently!]
It has two parts, and I'll say it slowly, with translations and remarks.

(1) F has a hull iff F' has properties H1-H3:
H1. (1) is a surjection whenever A” — A is a small extension.

Translation: You can glue.

Remark: Hence equivalently whenever A” — A is any surjection.
2



H2. (1) is a bijection when A =k, A" = k[e] /€.
Translation: Uniqueness of gluing when adding k[e]/€2.
Remark: Hence true when A” = k[V] by induction.

Remark: Hence the criterion of the lemma above are satisfied, so ¢ is a k-vector
space.

H3. dlmk(tp) < 00.

Translation: finite-dimensional tangent space.

(2) F is pro-representable if and only if F' has the additional property

H4.
2) F(A x4 A') = F(A') x pay F(A).

is a bijection for any small extension A" — A.

Translation: bijection for gluing a small extension to itself.
That ends the statement. So we have four things to prove.

The first part is easy: if F' is prorepresentable, then H1-H4 are all satisfied.
Before two of the remaining 3 are quite short.

2.1. Initial remarks. Before I get to them, I want to make some initial remarks.
Suppose F' satisfies H1-H3.
Consider any fairly small extension p: A’ — A, ie. 0 -1 - A — A — 0, so
ma I = 0. We have an isomorphism
A XA’/I A = A Xk k[[]
induced by the map (z,y) — (z,z0 +y — ) (explain).

Now given a small extension p: A’ — I, By H2, we get
F(A" x4 A') = F(A x3, k[I)) = F(A) X pky F(k[I]) = F(A) x (tp®1).

Hence we get
F(A/) X (tF ®I)— F(A/) X F(A) F(A/)

For each n € F(A), this determines a group action of ¢y ® I on F(p)~'(n), i.e.
those F(A’)’s lifting F(A), assuming the set is nonempty. The fact that this is a
surjection (H1) means that the action is transitive. H4 is precisely the condition
that this set is a principal homogeneous space under tp ® I. (Say more here.)
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So explicitly, what this is telling us is explicitly is that if F' already has a hull,
then its obstruction to be representable is the existence of an automorphism of
an object y in some F(A), that cannot be extended to an automorphism of some
object y' € F(A’) for some A'.

3. PROOF OF SCHLESSINGER, PART 1

I'll show that hull and H4 imply prorepresentable. Then I'll show that hull
implies HI-H3. Finally, next time I’ll show that H1-H3 imply hull.

Hull and H4 imply prorepresentable.

Suppose we have hull + H4. Say (R,r € F(A)) is a hull. Hence get hr(A4) —
F(A). We want this to be an isomorphism.

We prove this by induction on the length of A. Trivially true for A = k.

Consider small p: A’ — A, kerp = I, one-dimensional.

Assume hr(A) = F(A). For each a € F(A), hr(p)~t(a) F(p)~'(a) are both
principal homogeneous spaces under tp ® I (or empty). Since hr(A’) maps onto
F(A’), we have hr(A’) = F(A’) (either both are empty, or both are principal
homogeneous spaces).

Coming next day:

Hull implies H1-H3, and vice versa.



