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1. First order deformations of nonsingular varieties X/k

Definition. First-order deformations of f : X → k are precisely fibered dia-
grams of the form

X → X̃
↓ f ↓

Spec k → Spec k[ε]/ε2

where f is flat.

(Note that the left side is X/k; automorphisms of X don’t come into it!)

Denote these Def(X/k). I’ll define deformations (with no adjective) later today.

Exercise. Suppose we have some nice moduli stack, e.g. Mg. Sow that there is
a bijection between first-order deformations and the tangent space to the Deligne-
Mumford stack.

Note that the tangent space to a Deligne-Mumford stack has a natural k-vector
space structure, but it isn’t clear that these diagrams do!

Theorem. Def(X/k) is naturally in bijection with H1(X,TX).

(Note that the right side also has a vector space structure!)

Proof in a few minutes.

Exercise. IfX is a nonsingular curve of genus at least 2, then h1(X,TX) = 3g−3.

We’ll later see that this means thatMg is smooth.
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Remark. Note that the automorphism group of the curve acts on H1(X,TX).
(Make geometric comment about Mg.)

Flatness lemma. (Eisenbud Cor. 6.2, p. 163 — this is one of the five basic things
one should know about flatness.) If M is a k[ε]/ε2-module, then M is flat iff

M/εM
ε×→ εM

is an isomorphism. (Clearly it is surjective. This states that multiplication doesn’t
kill any more than necessary.)

Using the above, we see that first-order deformations of X are precisely given by
infinitesimals extensions of X by OX , completing the proof of the theorem.

2. Artin rings

Motivation. Show that Mg is nonsingular. By way of: Mg is nonsingular at
a point [C] ∈Mg. Infinitesimal lifting property (and finite type) gives it to us.

More generally,Mg is nonsingular, and boundary divisors intersect transversely.
We’ll show this by understanding the “deformation space of a node”. (Sketch.)

Definition. An Artin ring is a ring satisfying the ascending chain condition.
For rings over a field k, this precisely those rings that are finite-dimensional vector
spaces. (Draw picture.) A local Artin ring is an Artin ring with only one maximal
ideal, e.g. k[x, y, z]/(x2, y3, z4 − x− y).

Example: The nth-order formal neighborhood of a k-valued point of a scheme
X. Locally, it looks like (A,m); the neighborhood is A/mn+1.

Let C be the category of local Artin rings over k, with residue field k. In other
words, the objects are (A,m) with residue field k, and morphisms induce isomor-
phim of the residue field.

Non-example. We’ve lost some Artin rings. For example, the second-order formal
neighborhood of (p) in SpecZ is (Spec of ) Z/p2, which is not a Z/p-algebra.

Universal example. These are precisely the nth order formal neighbourhoods of
schemes over k that are locally of finite type (or even locally of finite presentation).

Let Ĉ be the category of complete Noetherian local k-algebras, with residue field
k, for which A/mn is in C for all n. Notice that C is a full subcategory of C.

Example. A formal neighborhood of a k-valued point of a scheme over k, i.e.
the inverse limit of its nth order rings. Usually denoted Spf rather than Spec, to
remind you of the limit, and the topology involved.

Denote t∗A by m/m2; the Zariski cotangent space of SpecA.
2



Here are some basic facts about Artin rings.

I forgot to mention (but will next day): Algebra exercise. A morphism B → A
in C is surjective if and only if the induced map t∗B → t∗A is surjective. C replaced
by Ĉ.

We can also check when a morphism C is (formally) smooth. (I’ve put formally
in brackets, as quasicompactness is automatic.)

Definition. Suppose G→ F , in Ĉ. Then we need to check if

Spf A → Spf F

↓
?

↗ ↓
Spf B → Spf G

where B is an extension of A by a square-zero ideal, and B and A are in C. Then
we say SpecF → SpecG is smooth.

Don’t be scared by Spf; just do this on rings. I’ve written Spf so as to keep the
arrows going in the geometric direction.

Remove square-zero! Replace by surjection B → A, again, to check this, just
need to check on tangent spaces.

Similarly, you can define etale (exists exactly one) and unramified (at most one).

Thus Spf F → Spf G in Ĉ is smooth (etale, unr) if for all Spf A → Spf B in C,
where B → A is surjective,

Hom(F,B)→ Hom(F,A)×HomG,A Hom(G,B)

as sets, is surjective, (bijective, injective).

Exercise. It is equivalent to require that B and A are in Ĉ. (Sketch why.)

Exercise. (a) Spf F → Spf G is smooth iff F is a power series ring over G. (Etale:
isomorphism; unramified: closed immersion.)

(b) A composition of smooth morphisms is smooth. (Etale, unr.)

(c) If u : Spf F → Spf G and v : Spf G → Spf H and u is surjective and vu is
smooth, then v is smooth.

(d) Smoothness is preserved by base change. (Etale, unr.)

We talked at length about Spf.
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