
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 1

RAVI VAKIL

This set is due at noon on Friday October 5. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 1 and 2.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in ten solutions, where each “-” problem
is worth half a solution. If you are ambitious (and have the time), go for more. Try to
solve problems on a range of topics. You are encouraged to talk to each other, and to me,
about the problems. Some of these problems require hints, and I’m happy to give them!

Class 1.

1-. A category in which each morphism is an isomorphism is called a groupoid.
(a) A perverse definition of a group is: a groupoid with one element. Make sense of this.
(b) Describe a groupoid that is not a group.
(For readers with a topological background: if X is a topological space, then the funda-
mental groupoid is the category where the objects are points of x, and the morphisms
from x → y are paths from x to y, up to homotopy. Then the automorphism group of
x0 is the (pointed) fundamental group π1(X, x0). In the case where X is connected, and
the π1(X) is not abelian, this illustrates the fact that for a connected groupoid — whose
definition you can guess — the automorphism groups of the objects are all isomorphic,
but not canonically isomorphic.)

2-. If A is an object in a category C, show that the isomorphisms of A with itself Isom(A, A)

form a group (called the automorphism group of A, denoted Aut(A)). What are the auto-
morphism groups of the objects in the Sets and Veck (k-vector spaces)? Show that two
isomorphic objects have isomorphic automorphism groups.

3. (if you haven’t seen tensor products before) Calculate Z/10 ⊗Z Z/12. (This exercise is in-
tended to give some hands-on practice with tensor products.)

4. (right-exactness of · ⊗A N) Show that · ⊗A N gives a covariant functor ModA → ModA.
Show that · ⊗A N is a right-exact functor, i.e. if

M ′ →M→M ′′ → 0

is an exact sequence of A-modules, then the induced sequence

M ′
⊗A N→M ⊗A N→M ′′

⊗A N→ 0

is also exact. (For experts: is there a universal property proof?)

Date: Thursday, September 27, 2007. Problem 2 fixed Oct. 13, 2007.
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5. In the universal property definition of tensor product, show that (T, t : M × N → T) is
unique up to unique isomorphism. Hint: first figure out what “unique up to unique iso-
morphism” means for such pairs. Then follow the analogous argument for the product.
(This exercise will prime you for Yoneda’s Lemma.)

6. Show that the construction of tensor product given in class satisfies the universal prop-
erty of tensor product.

7-. Show that any two initial objects are canonically isomorphic. Show that any two final
objects are canonically isomorphic.

Class 2.

8. Important Exercise that everyone should do once in their life. Prove the form of Yoneda’s
lemma stated in class. (See the class notes for a hint.)

9. Show that in Sets, show that

X ×Z Y = {(x ∈ X, y ∈ Y) : f(x) = g(y)}.

More precisely, describe a natural isomorphism between the left and right sides. (This
will help you build intuition for fibered products.)

10-. If X is a topological space, show that fibered products always exist in the category
of open sets of X, by describing what a fibered product is. (Hint: it has a one-word
description.)

11-. If Z is the final object in a category C, and X, Y ∈ C, then “X ×Z Y = X × Y”: “the”
fibered product over Z is canonically isomorphic to “the” product. (This is an exercise
about unwinding the definition.)

12-. Show that in the category Ab of abelian groups, the kernel K of f : A → B can be
interpreted as a fibered product:

K //

��

A

��
0 // B

13-. Prove a morphism is a monomorphism if and only if the natural morphism X →
X×Y X is an isomorphism. (What is this natural morphism?!) We may then take this as the
definition of monomorphism. (Monomorphisms aren’t very central to future discussions,
although they will come up again. This exercise is just good practice.)

14-. Suppose X → Y is a monomorphism, and W, Z → X are two morphisms. Show that
W×X Z and W×Y Z are canonically isomorphic. We will use this later when talking about
fibered products. (Hint: for any object V , give a natural bijection between maps from V

to the first and maps from V to the second.)
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15-. Given X→ Y → Z, show that there is a natural morphism X×Y X→ X×Z X, assuming
that both fibered products exist. (This is trivial once you figure out what it is saying. The
point of this exercise is to see why it is trivial.)

16-. Define coproduct in a category by reversing all the arrows in the definition of product.
Show that coproduct for Sets is disjoint union.

17. Suppose C → A, B are two ring morphisms, so in particular A and B are C-modules.
Define a ring structure A⊗C B with multiplication given by (a1 ⊗b1)(a2 ⊗b2) = (a1a2)⊗

(b1b2). There is a natural morphism A → A ⊗C B given by a 7→ (a, 1). (Warning: This is
not necessarily an inclusion.) Similarly, there is a natural morphism B → A ⊗C B. Show
that this gives a coproduct on rings, i.e. that

A ⊗C B Boo

A

OO

Coo

OO

satisfies the universal property of coproduct.

18. Important Exercise for Later. We continue the notation of the previous exercise. Let I be
an ideal of A. Let Ie be the extension of I to A ⊗C B. (These are the elements

∑
j ij ⊗ bj

where ij ∈ I, bj ∈ B.) Show that there is a natural isomorphism

(A/I) ⊗C B ∼= (A ⊗C B)/Ie.

(Hint: consider I→ A→ A/I→ 0, and use the right exactness of ⊗CB.)

19. Show that in the category Sets,

{(ai)i∈I ∈
∏

i

Ai : F(m)(ai) = aj for all [m : i→ j] ∈ Mor(I)},

along with the projection maps to each Ai, is the limit lim
←−I

Ai.

20-. (a) Interpret the statement “Q = lim
−→

1
n
Z”. (b) Interpret the union of some subsets of a

given set as a colimit. (Dually, the intersection can be interpreted as a limit.)

21. Consider the set {(i ∈ I, ai ∈ Ai)} modulo the equivalence generated by: if m : i → j

is an arrow in I, then (i, ai) ∼ (j, F(m)(aj)). Show that this set, along with the obvious
maps from each Ai, is the colimit.

22. Verify that the construction of colimits of A-modules given in class are indeed colimits.

23-. Write down what the condition not mentioned in class in the definition of adjoint
should be. (See the class notes.)

24. Suppose M, N, and P are A-modules. Describe a natural bijection MorA(M⊗A N, P) =

MorA(M, MorA(N, P)). (Hint: try to use the universal property.) If you want, you could
check that · ⊗A N and MorA(N, ·) are adjoint functors. (Checking adjointness is never any
fun!) We may later see why problem 24 implies problem 4.
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25. Define groupification H from the category of abelian semigroups to the category of
abelian groups. (One possibility of a construction: given an abelian semigroup S, the
elements of its groupification H(S) are (a, b), which you may think of as a − b, with the
equivalence that (a, b) ∼ (c, d) if a + d = b + c. Describe addition in this group, and
show that it satisfies the properties of an abelian group. Describe the semigroup map
S → H(S).) Let F be the forgetful morphism from the category of abelian groups Ab to
the category of abelian semigroups. Show that H is left-adjoint to F.

26-. Show that if a semigroup is already a group then groupification is the identity mor-
phism, by the universal property.

27. The purpose of this exercise is to give you some practice with “adjoints of forget-
ful functors”, the means by which we get groups from semigroups, and sheaves from
presheaves. Suppose A is a ring, and S is a multiplicative subset. Then S−1A-modules are
a fully faithful subcategory of the category of A-modules (meaning: the objects of the first
category are a subset of the objects of the second; and the morphisms between any two
objects of the second that are secretly objects of the first are just the morphisms from the
first). Then M→ S−1M satisfies a universal property. Figure out what the universal prop-
erty is, and check that it holds. In other words, describe the universal property enjoyed
by M→ S−1M, and prove that it holds.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 2

RAVI VAKIL

This set is due at noon on Friday October 12. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 3 and 4.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in ten solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

Class 3.

1. Suppose

0
d0

// A1
d1

// · · ·
dn−1

// An dn
// // 0

is a complex of k-vector spaces (often called A• for short). Show that
∑

(−1)i
dim Ai =∑

(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).) In particular, if A• is exact,
then

∑
(−1)i

dim Ai = 0. (If you haven’t dealt much with cohomology, this will give you
some practice.)

2. (important) Suppose C is an abelian category. Define the category ComC as follows. The
objects are infinite complexes

A• : · · · // Ai−1
fi−1

// Ai
fi

// Ai+1
fi+1

// · · ·

in C, and the morphisms A• → B• are commuting diagrams

A• :

��

· · · // Ai−1

��

fi−1
// Ai

fi
//

��

Ai+1
fi+1

//

��

· · ·

B• : · · · // Bi−1
fi−1

// Bi
fi

// Bi+1
fi+1

// · · ·

Date: Wednesday, October 3, 2007.
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Show that ComC is an abelian category. Show that a short exact sequence of complexes

0 :

��

· · · // 0 //

��

0 //

��

0 //

��

· · ·

A• :

��

· · · // Ai−1

��

fi−1
// Ai

fi
//

��

Ai+1
fi+1

//

��

· · ·

B• :

��

· · · // Bi−1

��

gi−1

// Bi
gi

//

��

Bi+1
gi+1

//

��

· · ·

C• :

��

· · · // Ci−1
hi−1

//

��

Ci
hi

//

��

Ci+1
hi+1

//

��

· · ·

0 : · · · // 0 // 0 // 0 // · · ·

induces a long exact sequence in cohomology

. . . // Hi−1(C•) //

Hi(A•) // Hi(B•) // Hi(C•) //

Hi+1(A•) // · · ·

3. Hom(X, ·) commutes with limits. Suppose Ai (i ∈ I) is a diagram in D indexed by I, and
lim
←−

Ai → Ai is its limit. Then for any X ∈ D, Hom(X, lim
←−

Ai) → Hom(X, Ai) is the limit
lim
←−

Hom(X, Ai).

4. (for those familiar with differentiable functions) In the “motivating example” of the sheaf
of differentiable functions, show that mx is the only maximal ideal of Ox.

5-. “A presheaf is the same as a contravariant functor” Given any topological space X, we can
get a category, called the “category of open sets” (discussed last week), where the objects
are the open sets and the morphisms are inclusions. Verify that the data of a presheaf is
precisely the data of a contravariant functor from the category of open sets of X to the
category of sets. (This interpretation is suprisingly useful.)

6-. (unimportant exercise for category-lovers) The gluability axiom may be interpreted as
saying that F(∪i∈IUi) is a certain limit. What is that limit?

7. (important Exercise: constant presheaf and locally constant sheaf
(a) Let X be a topological space, and S a set with more than one element, and define
F(U) = S for all open sets U. Show that this forms a presheaf (with the obvious restriction
maps), and even satisfies the identity axiom. We denote this presheaf Spre. Show that this
needn’t form a sheaf. This is called the constant presheaf with values in S.
(b) Now let F(U) be the maps to S that are locally constant, i.e. for any point x in U, there
is a neighborhood of x where the function is constant. Show that this is a sheaf. (A better

2



description is this: endow S with the discrete topology, and let F(U) be the continuous
maps U→ S. Using this description, this follows immediately from Exercise 9 below.) We
will call this the locally constant sheaf. This is usually called the constant sheaf.

8-. (more examples of presheaves that are not sheaves) Show that the following are presheaves
on C (with the usual topology), but not sheaves: (a) bounded functions, (b) holomorphic
functions admitting a holomorphic square root.

9. Suppose Y is a topological space. Show that “continuous maps to Y” form a sheaf of
sets on X. More precisely, to each open set U of X, we associate the set of continuous maps
to Y. Show that this forms a sheaf.

10. This is a fancier example of the previous exercise.
(a) Suppose we are given a continuous map f : Y → X. Show that “sections of f” form a
sheaf. More precisely, to each open set U of X, associate the set of continuous maps s to Y

such that f ◦ s = id|U. Show that this forms a sheaf. (For those who have heard of vector
bundles, these are a good example.)
(b) (This exercise is for those who know topological group is. If you don’t know what a
topological group is, you might be able to guess.) Suppose that Y is a topological group.
Show that maps to Y form a sheaf of groups. (A special case turned up in class.)

11. (important exercise: the direct image sheaf or pushforward sheaf) Suppose f : X → Y is a
continuous map, and F is a sheaf on X. Then define f∗F by f∗F(V) = F(f−1(V)), where
V is an open subset of Y. Show that f∗F is a sheaf. This is called a direct image sheaf of
pushforward sheaf. More precisely, f∗F is called the pushforward of F by f.

12. (pushforward induces maps of stalks) Suppose F is a sheaf of sets (or rings or A-modules).
If f(x) = y, describe the natural morphism of stalks (f∗F)y → Fx. (You can use the explicit
definition of stalk using representatives, or the universal property. If you prefer one way,
you should try the other.)

Class 4.

13. Suppose f : X → Y is a continuous map of topological spaces (i.e. a morphism in the
category of topological spaces). Show that pushforward gives a functor from { sheaves of
sets on X } to { sheaves of sets on Y }. Here “sets” can be replaced by any category.

14. (important exercise and definition: “Sheaf Hom”) Suppose F and G are two sheaves on X.
(In fact, it will suffice that F is a presheaf.) Let Hom(F ,G) be the collection of data

Hom(F ,G)(U) := Hom(F |U,G|U).

(Recall the notation F |U, the restriction of the sheaf to the open set U, see last day’s notes.)
Show that this is a sheaf. This is called the “sheaf Hom”. Show that if G is a sheaf of
abelian groups, then Hom(F ,G) is a sheaf of abelian groups.
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15. Show that kerpre f is a presheaf. (Hint: if U ↪→ V , there is a natural map resV,U :

G(V)/fV(F(V))→ G(U)/fU(F(U)) by chasing the following diagram:

0 // kerpre fV

∃!

��

// F(V)

resV,U

��

// G(V)

resV,U

��

0 // kerpre fU
// F(U) // G(U)

You should check that the restriction maps compose as desired.)

16. (the cokernel deserves its name) Show that the presheaf cokernel satisfies the universal
property of cokernels in the category of presheaves.

17. If 0→ F1 → F2 → · · ·→ Fn → 0 is an exact sequence of presheaves of abelian groups,
then 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is also an exact sequence for all U, and
vice versa.

18. (important) Suppose f : F → G is a morphism of sheaves. Show that the presheaf kernel
kerpre f is in fact a sheaf. Show that it satisfies the universal property of kernels. (Hint:
the second question follows immediately from the fact that kerpre f satisfies the universal
property in the category of presheaves.)

19. (important exercise) Let X be C with the classical topology, let Z be the locally constant
sheaf on X with group Z, OX the sheaf of holomorphic functions, and F the presheaf of
functions admitting a holomorphic logarithm. (Why is F not a sheaf?) Show that

0 // Z // OX

f7→exp 2πif
// F // 0

where Z → OX is the natural inclusion. Show that this is an exact sequence of presheaves.
Show that F is not a sheaf. (Hint: F does not satisfy the gluability axiom. The problem is
that there are functions that don’t have a logarithm that locally have a logarithm.)

20+. (important exercise: sections are determined by stalks) Prove that a section of a sheaf is
determined by its germs, i.e. the natural map

(1) F(U)→
∏

x∈U

Fx

is injective. (Hint # 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint # 2: it is false for presheaves in general, see Exercise , so you will use the
identity axiom.)

21+. (important) Prove that any choice of compatible germs for F over U is the image of a
section of F over U. (Hint: you will use gluability.)

22. Show a morphism of (pre)sheaves (of sets, or rings, or abelian groups, or OX-modules)
induces a morphism of stalks. More precisely, if φ : F → G is a morphism of (pre)sheaves
on X, and x ∈ X, describe a natural map φx : Fx → Gx.
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23. (morphisms are determined by stalks) Show that morphisms of sheaves are determined
by morphisms of stalks. Hint: consider the following diagram.

(2) F(U) //

_�

��

G(U)
_�

��∏
x∈U Fx

//
∏

x∈U Gx

24. (tricky: isomorphisms are determined by stalks) Show that a morphism of sheaves is
an isomorphism if and only if it induces an isomorphism of all stalks. (Hint: Use (2).
Injectivity uses the previous exercise . Surjectivity will use gluability, and is more subtle.)

25. Problems 20, 21, 23, and 24 are all false for general presheaves. Give counterexamples
to three of them. (General hint for finding counterexamples of this sort: consider a 2-point
space with the discrete topology, i.e. every subset is open.)

26-. Show that sheafification (as defined by universal property) is unique up to unique

isomorphism. Show that if F is a sheaf, then the sheafification is F
id

// F .

27. Show that F sh (using the tautological restriction maps) forms a sheaf.

28-. Describe a natural map sh : F → F sh.

29+. Show that the map sh satisfies the universal property of sheafification.

30. Use the universal property to show that for any morphism of presheaves φ : F → G,
we get a natural induced morphism of sheaves φsh : F sh → Gsh. Show that sheafification
is a functor from presheaves to sheaves.

31+. (useful exercise for category-lovers) Show that the sheafification functor is left-adjoint
to the forgetful functor from sheaves on X to presheaves on X.

32. Show F → F sh induces an isomorphism of stalks. (Possible hint: Use the concrete
description of the stalks. Another possibility: judicious use of adjoints.)

33+. Suppose φ : F → G is a morphism of sheaves (of sets) on at topological space X.
Show that the following are equivalent.

(a) φ is a monomorphism in the category of sheaves.
(b) φ is injective on the level of stalks: φx : Fx → Gx injective for all x ∈ X.
(c) φ is injective on the level of open sets: φ(U) : F(U)→ G(U) is injective for all open

U ⊂ X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks, Ex-
ercise . For (a) implies (b), judiciously choose a skyscraper sheaf. For (a) implies (c),
judiciously the “indicator sheaf” with one section over every open set contained in U,
and no section over any other open set.)
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34. Continuing the notation of the previous exercise, show that the following are equiva-
lent.

(a) φ is a epimorphism in the category of sheaves.
(b) φ is surjective on the level of stalks: φx : Fx → Gx surjective for all x ∈ X.

35. Show that OX

exp
// O∗

X describes O∗
X as a quotient sheaf of OX. Show that it is not

surjective on all open sets.

36. Show that the stalk of the kernel is the kernel of the stalks: there is a natural isomor-
phism

(ker(F → G))x
∼= ker(Fx → Gx).

37. Show that the stalk of the cokernel is naturally isomorphic to the cokernel of the stalk.

38. (Left-exactness of the global section functor) Suppose U ⊂ X is an open set, and 0→ F →
G → H is an exact sequence of sheaves of abelian groups. Show that

0→ F(U)→ G(U)→ H(U)

is exact. Give an example to show that the global section functor is not exact. (Hint: the
exponential exact sequence.)

39+. (Left-exactness of pushforward) Suppose 0 → F → G → H is an exact sequence of
sheaves of abelian groups on X. If f : X→ Y is a continuous map, show that

0→ f∗F → f∗G → f∗H

is exact. (The previous exercise, dealing with the left-exactness of the global section func-
tor can be interpreted as a special case of this, in the case where Y is a point.)

40. Suppose φ : F → G is a morphism of sheaves of abelian groups. Show that the image
sheaf im φ is the sheafification of the image presheaf. (You must use the definition of
image in an abelian category. In fact, this gives the accepted definition of image sheaf for
a morphism of sheaves of sets.)

41. Show that if (X,OX) is a ringed space, then OX-modules form an abelian category.
(There isn’t much more to check!)

42. (important exercise: tensor products of OX-modules) (a) Suppose OX is a sheaf of rings on
X. Define (categorically) what we should mean by tensor product of two OX-modules.
Give an explicit construction, and show that it satisfies your categorical definition. Hint:
take the “presheaf tensor product” — which needs to be defined — and sheafify. Note:
⊗OX

is often written ⊗ when the subscript is clear from the context.
(b) Show that the tensor product of stalks is the stalk of tensor product.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 3

RAVI VAKIL

This set is due at noon on Friday October 19. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 5 and 6.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in eight solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

Class 5.

1. If f : X → Y is a continuous map, and G is a sheaf on Y, show that f−1Gpre(U) :=
lim−→V⊃f(U)

G(V) defines a presheaf on X. (Possible hint: Recall the explicit description of
direct limit: sections are sections on open sets containing f(U), with an equivalence rela-
tion.)

2. Show that the stalks of f−1G are the same as the stalks of G. More precisely, if f(x) = y,
describe a natural isomorphism Gy

∼= (f−1G)x. (Possible hint: use the concrete description
of the stalk, as a direct limit. Recall that stalks are preserved by sheafification.)

3-. (easy but useful) If U is an open subset of Y, i : U → Y is the inclusion, and G is a sheaf
on Y, show that i−1G is naturally isomorphic to G|U.

4-. (easy but useful) If y ∈ Y, i : {y} → Y is the inclusion, and G is a sheaf on Y, show that
i−1(G) is naturally isomorphic to the stalk Gy.

5. Show that f−1 is an exact functor from sheaves of abelian groups on Y to sheaves of
abelian groups on X. (Hint: exactness can be checked on stalks.) The identical argument
will show that f−1 is an exact functor from OY-modules (on Y) to f−1OY-modules (on X),
but don’t bother writing that down. (Remark for experts: f−1 is a left-adjoint, hence right-
exact by abstract nonsense. The left-exactness is true for “less categorical” reasons.)

6+. (The construction of f−1 satisfies the adjoint property If f : X → Y is a continuous map,
and F is a sheaf on X and G is a sheaf on Y, describe a bijection

MorX(f−1G,F) ↔ MorY(G, f∗F).

Observe that your bijection is “natural” in the sense of the definition of adjoints.

Date: Sunday, October 13, 2007.

1



7. (a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the inclusion. If F is a sheaf on
Z, then show that the stalk (i∗F)y is 0 if y ∈ Z, and Fy if y ∈ Z.
(b) Important definition: Define the support of a sheaf F of sets, denoted SuppF , as the
locus where the stalks are non-empty:

SuppF := {x ∈ X : Fx 6= ∅}.

(More generally, if the sheaf has value in some category, the support consists of points
where the stalk is not the initial object. For sheaves of abelian groups, the support consists
of points with non-zero stalks.) Suppose SuppF ⊂ Z where Z is closed. Show that the
natural map F → f∗f

−1F is an isomorphism. Thus a sheaf supported in a closed subset
can be considered a sheaf on that closed subset.

8. Suppose F is a sheaf. Show that you can recover F from just knowing its behavior on
a base.

9+. In class, we mostly prove the following theorem: Suppose {Bi} is a base on X, and F is a
sheaf of sets on this base. Then there is a unique sheaf F extending F (with isomorphisms F(Bi) ∼=
F(Bi) agreeing with the restriction maps). In the proof, I did not describe a certain inverse
map F(B) → F(B). Do so, and verify that it is inverse to the obvious map F(B) → F(B).

10+. (morphisms of sheaves correspond to morphisms of sheaf on a base) Suppose {Bi} is a base
for the topology of X.
(a) Verify that a morphism of sheaves is determined by the induced morphism of sheaves
on the base.
(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

F(Bi) //

��

G(Bi)

��

F(Bj) // G(Bj)

commutes for all Bj ↪→ Bi) gives a morphism of the induced sheaves.

11+. Suppose X = ∪Ui is an open cover of X, and we have sheaves Fi on Ui along with
isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
that agree on triple overlaps (i.e. φij ◦φjk = φij on

Ui ∩ Uj ∩ Uk). Show that these sheaves can be glued together into a unique sheaf F on X,
such that Fi = F |Ui

, and the isomorphisms over Ui ∩ Uj are the obvious ones. (Thus we
can “glue sheaves together”, using limited patching information.) (You can use the ideas
of this section to solve this problem, but you don’t necessarily need to. Hint: As the base,
take those open sets contained in some Ui.)

12. (for those with a little experience with manifolds) Prove that a continuous function of
differentiable manifolds f : X → Y is differentiable if differentiable functions pull back
to differentiable functions. (Hint: check this on small patches. Once you figure out what
you are trying to show, you’ll realize that the result is immediate.)

13. Show that a morphism of differentiable manifolds f : X → Y with f(p) = q induces a
morphism of stalks f# : OY,q → OX,p. Show that f#(mY,q) ⊂ mX,p.
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14-. A small exercise about small schemes. (a) Describe the set Spec k[ε]/ε2. This is called the
ring of dual numbers, and will turn out to be quite useful. You should think of ε as a very
small number, so small that its square is 0 (although it itself is not 0).
(b) Describe the set Spec k[x](x). (We will see this scheme again later.)

15-. Show that for primes of the form p = (x2 + ax + b) in R[x], the quotient R[x]/p is
always isomorphic to C.

16-. Describe the set A
1
Q. (This is harder to picture in a way analogous to A

1
R; but the rough

cartoon of points on a line remains a reasonable sketch.)

Class 6.

17. Show that all the prime ideals of C[x, y] are of the form (0), (f(x, y)), or (x − a, y − b).

18. Ring elements that have a power that is 0 are called nilpotents. If I is an ideal of
nilpotents, show that Spec B/I → Spec B is a bijection. Thus nilpotents don’t affect the
underlying set.

19. (only if you haven’t already seen this fact) Prove that the nilradical N(A) is the intersection
of all the primes of A.

20-. Show that if (S) is the ideal generated by S, then V(S) = V((S)).

21. (a) Show that ∅ and Spec A are both open.
(b) Show that V(I1) ∪ V(I2) = V(I1I2). Hence show that the intersection of any finite
number of open sets is open.
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that ∩iV(Ii) = V(

∑
i Ii).

22. If I ⊂ R is an ideal, then define its radical by

√
I := {r ∈ R : rn ∈ I for some n ∈ Z

≥0}.

For example, the nilradical N is
√

(0). Show that V(
√

I) = V(I). We say an ideal is radical
if it equals its own radical.

23. (practice with the concept) If I1, . . . , In are ideals of a ring A, show that
√

∩n
i=1Ii =

∩n
i=1

√
Ii. (We will use this property without referring back to this exercise.)

24. (for future use) Show that
√

I is the intersection of all the prime ideals containing I.
(Hint: Use Problem 19 on an appropriate ring.)

25+. Suppose A → B is a ring homomorphism, and π : Spec B → Spec A is the induced
map of sets. By showing that closed sets pull back to closed sets, show that π is a continu-
ous map.

26+. Suppose that I, S ⊂ B are an ideal and multiplicative subset respectively. Show that
Spec B/I is naturally a closed subset of Spec B. Show that the Zariski topology on Spec B/I
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(resp. Spec S−1B) is the subspace topology induced by inclusion in Spec B. (Hint: compare
closed subsets.)

27. (useful for later) Suppose I ⊂ B is an ideal. Show that f vanishes on V(I) if and only if
fn ∈ I for some n.

28-. Describe the topological space Spec k[x](x).

29-. Show that on an irreducible topological space, any nonempty open set is dense. (The
moral of this is: unlike in the classical topology, in the Zariski topology, non-empty open
sets are all “very big”.)

30. Show that Spec A is irreducible if and only if A has only one minimal prime. (Mini-
mality is with respect to inclusion.) In particular, if A is an integral domain, then Spec A

is irreducible.

31-. Show that the closed points of Spec A correspond to the maximal ideals.

32-. If X = Spec A, show that [p] is a specialization of [q] if and only if q ⊂ p. Verify to your
satisfaction that we have made our intuition of “containment of points” precise: it means
that the one point is contained in the closure of another.

33. Verify that [(y − x2)] ∈ A2 is a generic point for V(y − x2).

34. (a) Suppose I = (wz − xy, wy − x2, xz − y2) ⊂ k[w, x, y, z]. Show that Spec k[w, x, y, z]
is irreducible, by showing that I is prime. (One possible approach: Show that quotient
ring is a domain, by showing that it is isomorphic to the subring of k[a, b] including only
monomials of degree divisible by 3. There are other approaches as well, some of which
we will see later. This is an example of a hard question: how do you tell if an ideal is
prime?) We will later see this as the cone over the twisted cubic curve.
(b) Note that the ideal of part (a) may be rewritten as

rank

(

w x y

x y z

)

= 1,

i.e. that all determinants of 2 × 2 submatrices vanish. Generalize this to the ideal of rank
1 2 × n matrices. This will correspond to the cone over the degree n rational normal curve.

35. Show that any decreasing sequence of closed subsets of A
2
C = Spec C[x, y] must even-

tually stabilize. Note that it can take arbitrarily long to stabilize. (The closed subsets of
A2

C were described in class.)

36. Suppose 0 → M ′ → M → M ′′ → 0, and M ′ and M ′′ satisfy the ascending chain
condition for modules. Show that M does too. (The converse also holds; we won’t use
this, but you can show it if you wish.)

37. If A is Noetherian, show that Spec A is a Noetherian topological space. Show that the
converse is not true. Describe a ring A such that Spec A is not a Noetherian topological
space.
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38. If A is any ring, show that the irreducible components of Spec A are in bijection with
the minimal primes of A.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 4

RAVI VAKIL

This set is due at noon on Friday October 26. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 7 and 8.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

1. Let A = k[x, y]. If S = {[(x)], [(x − 1, y)]} (see Figure 1), then I(S) consists of those
polynomials vanishing on the y axis, and at the point (1, 0). Give generators for this
ideal.

[(x − 1, y)]

[(x)]

FIGURE 1. The set S = {[(x)], (1, 0)}, pictured as a subset of A
2

2. Suppose X ⊂ A
3 is the union of the three axes. (The x-axis is defined by y = z = 0,

and the y-axis and z-axis are deined analogously.) Give generators for the ideal I(X). Be
sure to prove it! Hint: We will see later that this ideal is not generated by less than three
elements.

3. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S.

4+. (important) Show that V(·) and I(·) give a bijection between irreducible closed subsets of
Spec A and prime ideals of A. From this conclude that in Spec A there is a bijection between

Date: Thursday, October 18, 2007.
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points of Spec A and irreducible closed subsets of Spec A (where a point determines an ir-
reducible closed subset by taking the closure). Hence each irreducible closed subset of Spec A

has precisely one generic point — any irreducible closed subset Z can be written uniquely as
{z}.

The next six problems on distinguished open sets will be very useful. Please think
about them!

5. Show that the distinguished open sets form a base for the Zariski topology. (Hint:
Given an ideal I, show that the complement of V(I) is ∪f∈ID(f).)

6+. Suppose fi ∈ A as i runs over some index set J. Show that ∪i∈JD(fi) = Spec A if
and only if (fi) = A. (One of the directions will use the fact that any proper ideal of A is
contained in some maximal ideal.)

7. Show that if Spec A is an infinite union ∪i∈JD(fi), then in fact it is a union of a finite
number of these. (Hint: use the previous exercise.) Show that Spec A is quasicompact.

8-. Show that D(f) ∩ D(g) = D(fg).

9. Show that if D(f) ⊂ D(g), if and only if fn ∈ (g) for some n if and only if g is a unit in
Af. (Hint for the first equivalence: f ∈ I(V((g))). We will use this shortly.

10. Show that D(f) = ∅ if and only if f ∈ N.

11+. Prove base identity for the structure sheaf for any distinguished open D(f). (Possible
strategy: show that the argument is the same as the argument in class for Spec A.)

12+. Prove base gluability for any distinguished open D(f).

13+. Suppose M is an A-module. Show that the following construction describes a sheaf
M̃ on the distinguished base. To D(f) we associate Mf = M ⊗A Af; the restriction map is
the “obvious” one. This is an OSpec A-module! This sort of sheaf M̃ will be very important
soon; it is an example of a quasicoherent sheaf.

14. (important) Suppose f ∈ A. Show that under the identification of D(f) in Spec A with
Spec Af, there is a natural isomorphism of sheaves (D(f),OSpecA|D(f)) ∼= (Spec Af,OSpec Af

).

15. Show that if X is a scheme, then the affine open sets form a base for the Zariski
topology.

16. If X is a scheme, and U is any open subset, prove that (U,OX|U) is also a scheme.

17. (important) Show that the stalk of OSpec A at the point [p] is the ring Ap.

18. Show that the affine line with doubled origin is not an affine scheme. Hint: calculate
the ring of global sections, and look back at the argument for A

2 − (0, 0).
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19-. Define the affine plane with doubled origin. Use this example to show that the intersec-
tion of two affine open sets need not be an affine open set.

20+. Figure out how to define projective n-space P
n
k . Glue together n + 1 opens each iso-

morphic to A
n
k . Show that the only global sections of the structure sheaf are the constants,

and hence that P
n
k is not affine if n > 0. (Hint: you might fear that you will need some

delicate interplay among all of your affine opens, but you will only need two of your
opens to see this. There is even some geometric intuition behind this: the complement of
the union of two opens has codimension 2. But “Hartogs’ Theorem” (to be stated rigor-
ously later) says that any function defined on this union extends to be a function on all
of projective space. Because we’re expecting to see only constants as functions on all of
projective space, we should already see this for this union of our two affine open sets.)

21. Show that if k is algebraically closed, the closed points of P
n
k may be interpreted in

the same way as we interpreted the points of P
1
k. (The points are of the form [a0; . . . ; an],

where the ai are not all zero, and [a0; . . . ; an] is identified with [ca0; . . . ; can] where c ∈ k∗.)

22. (a) Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: say what the ring is.)
(b) Show that an infinite disjoint union of (non-empty) affine schemes is not an affine
scheme.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 5

RAVI VAKIL

This set is due at noon on Friday November 2. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 9 and 10.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

1-. Show that P
n
k is irreducible.

2. An earlier exercise showed that there is a bijection between irreducible closed subsets
and points. Show that this is true of schemes as well.

3. Prove that if X is a scheme that has a finite cover X = ∪n
i=1 Spec Ai where Ai is Noether-

ian (i.e. if X is a Noetherian scheme), then X is a Noetherian topological space.

4-. Show that an irreducible topological space is connected.

5-. Give (with proof!) an example of a scheme that is connected but reducible. (Possible
hint: a picture may help. The symbol “×” has two “pieces” yet is connected.)

6-. Show that a scheme X is quasicompact if and only if it can be written as a finite union
of affine schemes (Hence P

n
k is quasicompact.)

7. (quasicompact schemes have closed points) Show that if X is a nonempty quasicompact
scheme, then it has a closed point. (Warning: there exist non-empty schemes with no
closed points, so your argument had better use the quasicompactness hypothesis!)

FIGURE 1. A picture of the scheme Spec k[x, y]/(xy, y2)

8. Show that
(

k[x, y]/(y2, xy)
)

x
has no nilpotents. (Possible hint: show that it is isomor-

phic to another ring, by considering the geometric picture.)

Date: Friday, October 26, 2007.
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9. (reducedness is stalk-local) Show that a scheme is reduced if and only if none of the stalks
have nilpotents. Hence show that if f and g are two functions on a reduced scheme that
agree at all points, then f = g. (Two hints: OX(U) ↪→

∏
x∈U OX,x from an earlier Exercise,

and the nilradical is intersection of all prime ideals.)

10-. Suppose X is quasicompact, and f is a function (a global section of OX) that vanishes
at all points of x. Show that there is some n such that fn = 0. Show that this may fail if
X is not quasicompact. (This exercise is less important, but shows why we like quasicom-
pactness, and gives a standard pathology when quasicompactness doesn’t hold.) Hint:
take an infinite disjoint union of Spec An with An := k[ε]/εn.

11+. Show that a scheme X is integral if and only if it is irreducible and reduced.

12. Show that an affine scheme Spec A is integral if and only if A is an integral domain.

13. Suppose X is an integral scheme. Then X (being irreducible) has a generic point η.
Suppose Spec A is any non-empty affine open subset of X. Show that the stalk at η, OX,η,
is naturally FF(A), the fraction field of A. This is called the function field FF(X) of X. It can
be computed on any non-empty open set of X, as any such open set contains the generic
point.

14. Suppose X is an integral scheme. Show that the restriction maps resU,V : OX(U) →
OX(V) are inclusions so long as V 6= ∅. Suppose Spec A is any non-empty affine open sub-
set of X (so A is an integral domain). Show that the natural map OX(U) → OX,η = FF(A)
(where U is any non-empty open set) is an inclusion. Thus irreducible varieties (an im-
portant example of integral schemes defined later) have the convenient that sections over
different open sets can be considered subsets of the same thing. This makes restriction
maps and gluing easy to consider; this is one reason why varieties are usually introduced
before schemes.

15. Show that all open subsets of a Noetherian topological space (e.g. a Noetherian
scheme) are quasicompact.

16. Show that a Noetherian scheme has a finite number of irreducible components.

17. If X is a Noetherian scheme, show that every point p has a closed point in its closure.
(In particular, every non-empty Noetherian scheme has closed points; this is not true for
every scheme.)

18. If X is an affine scheme or Noetherian scheme, show that it suffices to check reduced-
ness at closed points.

19. Show that a locally Noetherian scheme X is integral if and only if X is connected and
all stalks OX,p are integral domains (informally: “the scheme is locally integral”). Thus
in “good situations” (when the scheme is Noetherian), integrality is the union of local
(stalks are domains) and global (connected) conditions.

20. Show that X is reduced if and only if X can be covered by affine opens Spec A where
A is reduced (nilpotent-free).
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21. Show that a point of a locally finite type k-scheme is a closed point if and only if
the residue field of the stalk of the structure sheaf at that point is a finite extension of
k. (Recall the following form of Hilbert’s Nullstellensatz, richer than the version stated
before: the maximal ideals of k[x1, . . . , xn] are precisely those with residue of the form a
finite extension of k.) Show that the closed points are dense on such a scheme.

22. Finish the proof that Noetherianness is an affine-local property: show that if A is a
ring, and (f1, . . . , fn) = A, and Afi

is Noetherian, then A is Noetherian.

23. Prove that reducedness is an affine-local property.

24. Show that finite-generatedness over k is an affine-local property (see the notes for an
outline).

25. Show that integrally closed domains behave well under localization: if A is an inte-
grally closed domain, and S is a multiplicative subset, show that S−1A is an integrally
closed domain. (The domain portion is easy. Hint for integral closure: assume that
xn + an−1x

n−1 + · · · + a0 = 0 where ai ∈ S−1A has a root in the fraction field. Turn
this into another equation in A[x] that also has a root in the fraction field.)

26. Show that a Noetherian scheme is normal if and only if it is the finite disjoint union of
integral Noetherian normal schemes.

27. If A is an integral domain, show that A = ∩Am, where the intersection runs over all
maximal ideals of A. (We won’t use this exercise, but it gives good practice with the ideal
of denominators.)

28. One might naively hope from experience with unique factorization domains that the
ideal of denominators is principal. This is not true. As a counterexample, consider our
new friend A = k[a, b, c, d]/(ad − bc) (which we will later recognize as the cone over the
quadric surface), and a/c = b/d ∈ FF(A). Show that I = (c, d). (If you can, show that this
is not principal.)

29. Show that any localization of a Unique Factorization Domain is a Unique Factoriza-
tion Domain.

30+. Show that unique factorization domains are integrally closed. Hence factorial schemes
are are normal, and if A is a unique factorization domain, then Spec A is normal. (How-
ever, rings can be integrally closed without being unique factorization domains, as we’ll
see in Exercise . An example without proof: Z[

√
17] again.)

31-. Show that the following schemes are normal: A
n
k , P

n
k , Spec Z.

32+. (this will give us a number of enlightening examples later) Suppose A is a Unique Fac-
torization Domain with 2 invertible, f ∈ A has no repeated prime factors, and z2 − f

is irreducible in A[z]. Show that Spec A[z]/(z2 − f) is normal. Show that if f is not
square-free, then Spec A[z]/(z2 − f) is not normal. (Hint: B := A[z]/(z2 − f) is a do-
main, as (z2 − f) is prime in A[z]. Suppose we have monic F(T) = 0 with F(T) ∈ B[T ]

which has a solution α in FF(B). Then by replacing F(T) by F(T)F(T), we can assume

3



F(T) ∈ A[T ]. Also, α = g + hz where g, h ∈ FF(A). Now α is the solution of monic
Q(T) = T 2 − 2gT + (g2 − h2f)T ∈ FF(A)[T ], so we can factor F(T) = P(T)Q(T) in K[T ]. By
Gauss’ lemma, 2g, g2 − h2f ∈ A. Say g = r/2, h = s/t (s and t have no common factors,
r, s, t ∈ A). Then g2 − h2f = (r2t2 − rs2f)/4t2. Then t = 1, and r is even.)

33+. Show that the following schemes are normal:

(a) Spec Z[x]/(x2 − n) where n is a square-free integer congruent to 3 (mod 4);
(b) Spec k[x1, . . . , xn]/x2

1 + x2
2 + · · · + x2

m where char k 6= 2, m ≥ 3;
(c) Spec k[w, x, y, z]/(wz − xy) where char k 6= 2 and k is algebraically closed. (This is

our cone over a quadric surface example.)

34+. Suppose A is a k-algebra where char k = 0, and l/k is a finite field extension. Show
that A is normal if and only if A ⊗k l is normal. Show that Spec k[w, x, y, z]/(wz − xy) is
normal if k is characteristic 0. (In fact the hypothesis on the characteristic is unnecessary.)
Possible hint: reduced to the case where l/k is Galois.

35-. Show that if q is primary, then
√

q is prime. If p =
√

q, we say that q is p-primary.
(Caution:

√
q can be prime without q being primary — consider our example (y2, xy) in

k[x, y].)

36-. Show that if q and q ′ are p-primary, then so is q ∩ q ′.

37-. (reality check) Find all the primary ideals in Z. (Answer: (0) and (pn).)

38+. (existence of primary decomposition for Noetherian rings) Suppose A is a Noetherian
ring. Show that every proper ideal I ⊂ A has a primary decomposition. (Hint: mimic the
Noetherian induction argument we saw last week.)

39+. (a) Find a minimal primary decomposition of (y2, xy). (b) Find another one. (Pos-
sible hint: see Figure 1. You might be able to draw sketches of your different primary
decompositions.)

40+. (a) If p, p1, . . . , pn are prime ideals, and p = ∩pi, show that p = pi for some i. (Hint:
assume otherwise, choose fi ∈ pi − p, and consider

∏
fi.)

(b) If p ⊃ ∩pi, then p ⊃ pi for some i.
(c) Suppose I ⊆ ∪n

i=1pi. (The right side is not an ideal!) Show that I ⊂ pi for some i.
(Hint: by induction on n. Don’t look in the literature — you might find a much longer
argument!)
(Parts (a) and (b) are “geometric facts”; try to draw pictures of what they mean.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 6

RAVI VAKIL

This set is due at noon on Friday November 9. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 11 and 12.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

1. (associated primes behave well with respect to localization) Show that if A is a Noetherian
ring, and S is a multiplicative subset (so there is an inclusion-preserving correspondence
between the primes of S−1A and those primes of A not meeting S), then the associated
primes of S−1A are just the associated primes of A not meeting S.

2. (a) Show that the minimal primes of A are associated primes. We have now proved
important fact (1). (Hint: suppose p ⊃ ∩n

i=1qi. Then p =
√

p ⊃
√

∩n
i=1qi = ∩n

i=1

√
qi =

∩n
i=1pi, so by a previous exercise, p ⊃ pi for some i. If p is minimal, then as p ⊃ pi ⊂ (0),

we must have p = pi.)
(b) Show that there can be other associated primes that are not minimal. (Hint: we’ve
seen an example...) Your argument will show more generally that the minimal primes of
I are associated primes of I.

3. Show that if A is reduced, then the only associated primes are the minimal primes.
(This establishes (2).)

4. Show that
Z = ∪x6=0(0 : x) ⊆ ∪x6=0

√

(0 : x) ⊆ Z.

5-. (Rabinoff’s Theorem) Here is an interesting variation on (4): show that a ∈ A is nilpotent
if and only if it vanishes at the associated points of Spec A. Algebraically: we know that
the nilpotents are the intersection of all prime ideals; now show that in the Noetherian
case, the nilpotents are in fact the intersection of the (finite number of) associated prime
ideals.

6-. Prove fact (3).

Date: Thursday, November 1, 2007. Updated November 9.
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7-. Let ∨∨ : f.d. Veck → f.d. Veck be the double dual functor from the category of vector
spaces over k to itself. Show that ∨∨ is naturally isomorphic to the identity. (Without the
finite-dimensional hypothesis, we only get a natural transformation of functors from id

to ∨∨.)

8-. Show that V → f.d.Veck gives an equivalence of categories, by describing an “inverse”
functor. (You’ll need the axiom of choice, as you’ll simultaneously choose bases for each
vector space in f.d.Veck!)

9. Assuming that morphisms of schemes are defined so that Motivation (a) holds, show
that the category of rings and the opposite category of affine schemes are equivalent.

10. (morphisms of ringed spaces glue) Suppose (X,OX) and (Y,OY) are ringed spaces, X =
∪iUi is an open cover of X, and we have morphisms of ringed spaces fi : Ui → Y that
“agree on the overlaps”, i.e. fi|Ui∩Uj

= fj|Ui∩Uj
. Show that there is a unique morphism of

ringed spaces f : X → Y such that f|Ui
= fi. (An earlier exercise essentially showed this

for topological spaces.)

11+. Given a morphism of ringed spaces f : X → Y with f(p) = q, show that there is a
map of stalks (OY)q → (OX)p.

12++. Suppose f# : B → A is a morphism of rings. Define a morphism of ringed spaces
f : Spec A → Spec B as follows. The map of topological spaces was given earlier. To
describe a morphism of sheaves OB → f∗OA on Spec B, it suffices to describe a morphism
of sheaves on the distinguished base of Spec B. On D(g) ⊂ Spec B, we define

OB(D(g)) → OA(f−1D(g)) = OA(D(f#g))

by Bg → Af#g. Verify that this makes sense (e.g. is independent of g), and that this
describes a morphism of sheaves on the distinguished base. (This is the third in a series
of exercises. We showed that a morphism of rings induces a map of sets first, a map of
topological spaces later, and now a map of ringed spaces here.)

13-. Recall that Spec k[x](x) has two points, corresponding to (0) and (x), where the sec-
ond point is closed, and the first is not. Consider the map of ringed spaces Spec k(x) →

Spec k[x](x) sending the point of Spec k(x) to [(x)], and the pullback map f#OSpec k(x) →

OSpec k[x](x)
is induced by k ↪→ k(x). Show that this map of ringed spaces is not of the form

described in Key Exercise .

14. Show that morphisms of locally ringed spaces glue

15+. (a) Show that Spec A is a locally ringed space. (b) The morphism of ringed spaces
f : Spec A → Spec B defined by a ring morphism f# : B → A is a morphism of locally
ringed spaces.

16+. Show that a morphism of schemes f : X → Y is a morphism of ringed spaces that
looks locally like morphisms of affines. Precisely, if Spec A is an affine open subset of
X and Spec B is an affine open subset of Y, and f(Spec A) ⊂ Spec B, then the induced
morphism of ringed spaces is a morphism of affine schemes. Show that it suffices to
check on a set (Spec Ai, SpecBi) where the Spec Ai form an open cover X.
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17+. (This exercise will give you some practice with understanding morphisms of schemes
by cutting up into affine open sets.) Make sense of the following sentence: “A

n+1 \ {~0} →

P
n given by

(x0, x1, . . . , xn+1) 7→ [x0; x1; . . . ; xn]

is a morphism of schemes.” Caution: you can’t just say where points go; you have to say
where functions go. So you’ll have to divide these up into affines, and describe the maps,
and check that they glue.

18+. Show that morphisms X → Spec A are in natural bijection with ring morphisms
A → Γ(X,OX). (Hint: Show that this is true when X is affine. Use the fact that morphisms
glue.)

19-. Show that Spec Z is the final object in the category of schemes. In other words, if X is
any scheme, there exists a unique morphism to Spec Z. (Hence the category of schemes is
isomorphic to the category of Z-schemes.)

20-. Show that morphisms X → Spec Z[t] correspond to global sections of the structure
sheaf.

21-. Show that global sections of O∗
X correspond naturally to maps to Spec Z[t, t−1]. (Spec Z[t, t−1]

is a group scheme.)

22. Suppose i : U → Z is an open immersion, and f : Y → Z is any morphism. Show that
U ×Z Y exists. (Hint: I’ll even tell you what it is: (f−1(U),OY |f−1(U)).)

23-. Show that open immersions are monomorphisms.

24. Show that a morphism f : X → Y is quasicompact if there is cover of Y by open
affine sets Ui such that f−1(Ui) is quasicompact. (Hint: easy application of the affine
communication lemma!)

25-. Show that the composition of two quasicompact morphisms is quasicompact.

26. (the notions “locally of finite type” and “finite type” are affine-local on the target) Show that
a morphism f : X → Y is locally of finite type if there is a cover of Y by open affine sets
Spec Bi such that f−1(Spec Bi) is locally of finite type over Bi.

27. Show that a morphism f : X → Y is locally of finite type if for every affine open subsets
Spec A ⊂ X, Spec B ⊂ Y, with f(Spec A) ⊂ Spec B, A is a finitely generated B-algebra.
(Hint: use the affine communication lemma on f−1(Spec B).)

28+. (not hard, but important — )

(a) Show that a closed immersion is a morphism of finite type.
(b) Show that an open immersion is locally of finite type. Show that an open immer-

sion into a locally Noetherian scheme is of finite type. More generally, show that a
quasicompact open immersion is of finite type.

3



(c) Show that the composition of two morphisms of locally finite type is locally of
finite type. (Hence as quasicompact morphisms also compose, the composition of
two morphisms of finite type is also of finite type.)

(d) Suppose we have morphisms X
f

// Y
g

// Z , with f quasicompact, and g ◦ f of
finite type. Show that f is finite type.

(e) Suppose f : X → Y is finite type, and Y is Noetherian. Show that X is also Noether-
ian.

29. (the property of finiteness is affine-local on the target) Show that a morphism f : X → Y

is finite if there is a cover of Y by open affine sets Spec A such that f−1(Spec A) is the
spectrum of a finite A-algebra.

30-. Show that the composition of two finite morphisms is also finite.

31+. Show that finite morphisms are closed, i.e. the image of any closed subset is closed.
(Hint: going-up theorem.)

32. (a) Show that if a morphism is finite then it is quasifinite. (b) Show that the converse
is not true. (Hint: A

1 − {0} → A
1.)

33. Show that the property of being a closed immersion is affine-local on the target.

34. In analogy with closed subsets, define the notion of a finite union of closed sub-
schemes of X, and an arbitrary intersection of closed subschemes. Show that the under-
lying set of a finite union of closed subschemes is the finite union of the underlying sets,
and similarly for arbitrary intersections.

35-. Show that closed immersions are finite morphisms.
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 7

RAVI VAKIL

This set is due at noon on Friday November 16. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
class 13.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in six solutions, where each “-”
problem is worth half a solution, each “+” problem is worth one-and-a-half, and each
“++” problem is worth two. You are allowed to hand in up to two problems from previous sets
that you have not done. If you are ambitious (and have the time), go for more. Try to solve
problems on a range of topics. You are encouraged to talk to each other, and to me, about
the problems. Some of these problems require hints, and I’m happy to give them!

1+. (a useful criterion for when ideals in affine open sets define a closed subscheme) It will be
convenient to define certain closed subschemes of Y by defining on any affine subset
Spec B of Y an ideal IB ⊂ B. Show that these Spec B/IB ↪→ Spec B glue together to form
a closed subscheme precisely if for each affine open subset Spec B ↪→ Y and each f ∈ B,
I(Bf) = (IB)f.

You might hope that closed subschemes correspond to ideal sheaves of OY . Sadly not
every ideal sheaf arises in this way. Here is an example.

2. Let X = Spec k[x](x), the germ of the affine line at the origin, which has two points,
the closed point and the generic point η. Define I(X) = {0} ⊂ OX(X) = k[x](x), and
I(η) = k(x) = OX(η). Show that this sheaf of ideals does not correspond to a closed
subscheme.

3. (a) Show that wz = xy, x2 = wy, y2 = xz describes an irreducible curve in P
3
k. This

curve is called the twisted cubic. The twisted cubic is a good non-trivial example of many
things, so it you should make friends with it as soon as possible. (b) Show that the
twisted cubic is isomorphic to P

1
k.

4. The usual definition of a closed immersion is a morphism f : X → Y such that f induces
a homeomorphism of the underlying topological space of Y onto a closed subset of the
topological space of X, and the induced map f# : OX → f∗OY of sheaves on X is surjective.
Show that this definition agrees with the one given above. (To show that our definition
involving surjectivity on the level of affine open sets implies this definition, you can use
the fact that surjectivity of a morphism of sheaves can be checked on a base, which you
can verify yourself.)

Date: Friday, November 9, 2007.
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5. Suppose X is an affine scheme, and Y is a closed subscheme locally cut out by one
equation (e.g. if Y is an effective Cartier divisor). Show that X − Y is affine. (This is clear
if Y is globally cut out by one equation f; then if X = Spec A then Y = Spec Af. However,
Y is not always of this form.)

6-. If X is reduced, show that the scheme-theoretic image of f : X → Y is also reduced.

7. If f : X → Y is a morphism of locally Noetherian schemes, show that the associated
points of the image subscheme are a subset of the image of the associated points of X.

8. Suppose X is a Noetherian scheme. Show that a subset of X is constructible if and only
if it is the finite disjoint union of locally closed subsets.

9. If X → Y is quasicompact and quasiseparated (e.g. if X is Noetherian) or if X is reduced,
show that the following three notions are the same.

(a) V is an open subscheme of X intersect a closed subscheme of X

(b) V is an open subscheme of a closed subscheme of X

(c) V is a closed subscheme of an open subscheme of X.

(Hint: it will be helpful to note that the scheme-theoretic image may be computed on each
open subset of the base.)

10. If f : X → Y is a locally closed immersion into a locally Noetherian scheme (so X

is also locally Noetherian), then the associated points of the scheme-theoretic image are
(naturally in bijection with) the associated points of X. (Hint: Exercise .) Informally, we
get no non-reduced structure on the scheme-theoretic closure not “forced by” that on X.

11. (the notions “locally of finite type” and “finite type” are affine-local on the target) Show that
a morphism f : X → Y is locally of finite type if there is a cover of Y by open affine sets
Spec Bi such that f−1(Spec Bi) is locally of finite type over Bi.

12. Show that a morphism f : X → Y is locally of finite type if for every affine open subsets
Spec A ⊂ X, Spec B ⊂ Y, with f(Spec A) ⊂ Spec B, A is a finitely generated B-algebra.
(Hint: use the affine communication lemma on f−1(Spec B).)

13-. Show that finite morphisms are of finite type. Hence closed immersions are of finite
type.

14+. (not hard, but important)

(a) Show that an open immersion is locally of finite type. Show that an open immer-
sion into a locally Noetherian scheme is of finite type. More generally, show that a
quasicompact open immersion is of finite type.

(b) Show that the composition of two morphisms of locally finite type is locally of
finite type. (Hence as quasicompact morphisms also compose, the composition of
two morphisms of finite type is also of finite type.)
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(c) Suppose we have morphisms X
f

// Y
g

// Z , with f quasicompact, and g ◦ f of
finite type. Show that f is finite type.

(d) Suppose f : X → Y is finite type, and Y is Noetherian. Show that X is also Noether-
ian.

The following are double-plus problems because I’d like to see people try them.

15++. Show that the notion of “locally finite presentation” is affine-local.

16++. A scheme is quasiseparated if the intersection of two affine open sets is the finite
union of affine schemes. Show that this notion is affine-local.

17++. A morphism is quasiseparated if the preimage of every affine scheme is a quasisepa-
rated scheme. Show that this notion is affine-local on the target.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 8

RAVI VAKIL

This set is due at noon on Friday November 30. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 14 through 16.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution, each “+” problem is worth one-and-a-half, and each
“++” problem is worth two. You are allowed to hand in up to three problems from previous sets
that you have not done. If you are ambitious (and have the time), go for more. Try to solve
problems on a range of topics. You are encouraged to talk to each other, and to me, about
the problems. Some of these problems require hints, and I’m happy to give them!

1-. If k is algebraically closed, describe a natural map of sets A1
k × A1

k → A2
k. Show that

this map is not surjective. On the other hand, show that it is a bijection on closed points.

2. The reason for the phrase or “base change” or “pullback” is the following. If X is a
point of Z (i.e. f is the natural map of Spec of the residue field of a point of Z into Z), then
W is interpreted as the fiber of the family. Show that in the category of topological spaces,
this is true, i.e., if Y → Z is a continuous map, and X is a point p of Z, then the fiber of Y

over p is naturally identified with X ×Z Y.

3++. (only for experts) Suppose X and Z are affine, and Yi is an affine open cover of Y.
Suppose the covariant functor FY : (SchY)opp → Sets is a sheaf on the category of Y-
schemes SchY , and FYi

is the “restriction of the sheaf to Yi” (where we include only those
Y-schemes that are in fact Yi-schemes, i.e. those T → Y whose structure morphisms factor
through Yi, T → Yi → Y). Show that if FYi

is representable, then so is FY .

4++. (only for experts) Suppose FY is given by

( T
f

// Y ) 7→



















T
f

//

��

Y

��

X // Z



















.

(The diagram on the right isn’t intended to have a blank line on top!) Check that this FY

is a sheaf.

Date: Friday, November 16, 2007. Last updated Nov. 27.
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5+. Show that if X and Y are schemes, then there is a natural bijection between morphisms
of schemes X → Y and morphisms of functor spaces hX → hY . (Hint: this has nothing to
do with schemes; your argument will work in any category.)

6++. (only for experts) If a functor-space h is a sheaf that has an open cover by representable
functor-spaces (“is covered by schemes”), then h is representable.

7++. (only for experts) Suppose (Zi)i is an affine cover of Z, (Xij)j is an affine cover of
the preimage of Zi in X, and (Yik)k is an affine cover of the preimage of Zi in Y. Show
that (hXij×Zi

Yik
)ijk is an open cover of the functor hX×ZY . (Hint: use the definition of open

covers!)

8. Show that B ⊗A A[t] ∼= B[t].

9. (repeat of older exercise; do this only if you haven’t done it before) Suppose C → A, B are two
ring morphisms, so in particular A and B are C-modules. Let I be an ideal of A. Let Ie be
the extension of I to A⊗C B. (These are the elements

∑
j ij ⊗bj where ij ∈ I, bj ∈ B.) Show

that there is a natural isomorphism

(A/I) ⊗C B ∼= (A ⊗C B)/Ie.

(Hint: consider I → A → A/I → 0, and use the right-exactness of ⊗CB.)

10. Suppose C → B, A are two morphisms of rings. Suppose S is a multiplicative set of
A. Then (S ⊗ 1) is a multiplicative set of A ⊗C B. Show that there is a natural morphism
(S−1A) ⊗C B ∼= (S ⊗ 1)−1(A ⊗C B).

11. (the three important types of monomorphisms of schemes) Show that the following are
monomorphisms: open immersions, closed immersions, and localization of affine schemes.
As monomorphisms are closed under composition, compositions of the above are also
monomorphisms (e.g. locally closed immersions, or maps from Spec of stalks at points of
X to X).

12-. Prove that An
R

∼= An
Z ×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z ×Spec Z Spec R.

13. Show that the underlying topological space of the (scheme-theoretic) fiber X → Y

above a point p is naturally identified with the topological fiber of X → Y above p.

14. Show that for finite-type schemes over C, the closed points (=complex-valued points
by the Nullstellensatz) of the fibered product correspond to the fibered product of the
complex-valued points. (You will just use the fact that C is algebraically closed.)

15. More generally, describe a natural bijection (X ×Z Y)(T) ∼= X(T) ×Z(T) Y(T). (The right
side is a fibered product of sets.) In other words, fibered products behaves well with
respect to T -valued points. This is one of the motivations for this notion.

16. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u] corresponding to
k[u] → k[t], t = u2, where char k 6= 2. Show that X ×Y X has 2 irreducible components.
(What happens if char k = 2? See problem 25...)
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17+. (exercise generalizing C ⊗R C) Suppose L/K is a finite Galois field extension. What is
L ⊗K L?

18++. (hard but fascinating exercise for those familiar with the Galois group of Q over Q) Show
that the points of Spec Q ⊗Q Q are in natural bijection with Gal(Q/Q), and the Zariski
topology on the former agrees with the profinite topology on the latter.

19. (weird but fun) Show that Spec Q(t) ⊗Q C has closed points in natural correspondence
with the transcendental complex numbers. (If the description Spec C[t] ⊗Q[t] Q(t) is more
striking, you can use that instead.) This scheme doesn’t come up in nature, but it is
certainly neat!

20-. Show that locally principal closed subschemes pull back to locally principal closed
subschemes.

21. (Each one of these counts for half a problem.) Show that the following properties of
morphisms are preserved by base change.

(a) quasicompact
(b) quasiseparated
(c) affine morphism
(d) finite
(e) locally of finite type
(f) finite type
(g) locally of finite presentation
(h) finite presentation

22+. Show that the notion of “quasifinite morphism” (finite type + finite fibers) is pre-
served by base change. (Warning: the notion of “finite fibers” is not preserved by base
change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point for
each element of Gal(Q/Q), see Exercise 18.)

23. Show that surjectivity is preserved by base change. (Surjectivity has its usual meaning:
surjective as a map of sets.) (You may end up using the fact that for any fields k1 and k2

containing k3, k1 ⊗k3
k2 is non-zero, and also the axiom of choice.)

24. If P is a property of morphisms preserved by base change, and X → Y and X ′ × Y ′ are
two morphisms of S-schemes with property P, show that X×S X ′ → Y ×S Y ′ has property
P as well.

25-. Suppose k is a field of characteristic p, so k(up)/k(u) is an inseparable extension.
By considering k(up) ⊗k(u) k(up), show that the notion of “reduced fibers” does not nec-
essarily behave well under pullback. (The fact that I’m giving you this example should
show that this happens only in characteristic p, in the presence of something as strange
as inseparability.)

26. Show that the notion of “connected (resp. irreducible, integral, reduced)” geometric
fibers behaves well under base change.
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27. (for the arithmetically-minded) Show that for the morphism Spec C → Spec R, all geo-
metric fibers consist of two reduced points.

28. Recall the example of the projection of the parabola y2 = x to the x axis, corresponding
to the map of rings Q[x] → Q[y], with x 7→ y2. Show that the geometric fibers of this map
are always two points, except for those geometric fibers over 0 = [(x)].

29++. Suppose X is a k-scheme.

(a) Show that X is geometrically irreducible if and only if X ×k ks is irreducible if and
only if X ×k K is irreducible for all field extensions K/k. (Here ks is the separable
closure of k.)

(b) Show that X is geometrically connected if and only if X ×k ks is connected if and
only if X ×k K is connected for all field extensions K/k.

(c) Show that X is geometrically reduced if and only if X ×k kp is reduced if and only
if X ×k K is reduced for all field extensions K/k. (Here kp is the perfect closure of
k.) Thus if char k = 0, then X is geometrically reduced if and only if it is reduced.

(d) Combining (a) and (c), show that X is geometrically integral if and only if X ×k K

is geometrically integral for all field extensions K/k.

30. Check that the maps defined in class glue to give a well-defined morphism Pm
A ×A

Pn
A → Pmn+m+n

A .

31+. Show that the Segre scheme (the image of the Segre morphism) is cut out by the
equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

32. (A co-ordinate-free description of the Segre embedding) Show that the Segre embedding
can be interpreted as PV × PW → P(V ⊗ W) via the surjective map of graded rings

Sym•(V∨ ⊗ W∨) // //
∑∞

i=0

(

Symi V∨
)

⊗
(

Symi W∨
)

“in the opposite direction”.

33. (important but easy) Show that open immersions and closed immersions are separated.

34. (also important but easy) Show that every morphism of affine schemes is separated.

35. Show that the line with doubled origin X is not separated, by verifying that the image
of the diagonal morphism is not closed.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 9

RAVI VAKIL

This set covers classes 17 and 18.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution, each “+” problem is worth one-and-a-half, and each
“++” problem is worth two. You are allowed to hand in up to three problems from previous sets
that you have not done. If you are ambitious (and have the time), go for more. Try to solve
problems on a range of topics. You are encouraged to talk to each other, and to me, about
the problems. Some of these problems require hints, and I’m happy to give them!

1. Show that f : X → Y is quasiseparated if and only if for any affine open Spec A of Y,
and two affine open subsets U and V of X mapping to Spec A, U ∩ V is a finite union of
affine open sets. (Hint: compare this to the proposition showing that the intersection of
two affine open sets on a separated scheme over an affine scheme is affine.)

2. (a nonquasiseparated scheme) Let X = Spec k[x1, x2, . . . ], and let U be X − [m] where m is
the maximal ideal (x1, x2, . . . ). Take two copies of X, glued along U. Show that the result
is not quasiseparated. (This open immersion U ↪→ X came up earlier, as an example of a
nonquasicompact open subset of an affine scheme.)

3. Prove that the condition of being quasiseparated is local on the target. (Hint: the
condition of being quasicompact is local on the target; use a similar argument.)

4. Suppose π : Y → X is a morphism, and s : X → Y is a section of a morphism, i.e. π ◦ s is
the identity on X. Show that s is a locally closed immersion. Show that if π is separated,
then s is a closed immersion.

5. Show that a A-scheme is separated (over A) if and only if it is separated over Z. (In
particular, a complex scheme is separated over C if and only if it is separated over Z, so
complex geometers and arithmetic geometers can communicate about separated schemes
without confusion.)

6+. (useful exercise: The locus where two morphisms agree) Suppose f and g are two mor-
phisms X → Y, over some scheme Z. We can now give meaning to the phrase ’the locus
where f and g agree’, and that in particular there is a smallest locally closed subscheme
where they agree. Suppose h : W → X is some morphism (perhaps a locally closed im-
mersion). We say that f and g agree on h if f◦h = g◦h. Show that there is a locally closed
subscheme i : V ↪→ X such that any morphism h : W → X on which f and g agree factors

Date: Friday, November 30, 2007.
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uniquely through i, i.e. there is a unique j : W → V such that h = i ◦ j. (You may rec-
ognize this as a universal property statement.) Show further that if V → Z is separated,
then i : V ↪→ X is a closed immersion. Hint: define V to be the following fibered product:

V //

��

Y

δ
��

X
(f,g)

// Y ×Z Y.

As δ is a locally closed immersion, V → X is too. Then if h : W → X is any scheme such
that g ◦ h = f ◦ h, then h factors through V .

7. Show that the line with doubled origin X is not separated, by finding two morphisms
f1, f2 : W → X whose domain of agreement is not a closed subscheme. (Another argu-
ment was given in an exercise, I believe last day.)

8. Suppose P is a class of morphisms such that closed immersions are in P, and P is
closed under fibered product and composition. Show that if f : X → Y is in P then
fred : Xred

→ Yred is in P. (Two examples are the classes of separated morphisms and
quasiseparated morphisms.) Hint:

Xred //

%%K

K

K

K

K

K

K

K

K

K

K

X ×Y Yred

��

// Yred

��

X // Y

9-. Interpret rational functions on a separated integral scheme as rational maps to A1
Z
.

(This is analogous to functions corresponding to morphisms to A1
Z
, an earlier exercise.)

10. In class, we prove that two S-morphisms f1, f2 : U → Z from a reduced scheme
to a separated S-scheme agreeing on a dense open subset of U are the same. Give ex-
amples to show how this breaks down when we give up reducedness of the base or
separatedness of the target. Here are some possibilities. For the first, consider the two
maps Spec k[x, y]/(y2, xy) → Spec k[t], where we take f1 given by t 7→ x and f2 given by
t 7→ x + y; f1 and f2 agree on the distinguished open set D(x). (See Figure 1.) For the
second, consider the two maps from Spec k[t] to the line with the doubled origin, one of
which maps to the “upper half”, and one of which maps to the “lower half”. these to
morphisms agree on the dense open set D(f). (See Figure 2.)

11. Show that the graph of a rational map is independent of the choice of representative
of the rational map.

12. (important) Show that you can compose two rational maps f : X 99K Y, g : Y 99K Z

if f is dominant. In particular, integral separated schemes and dominant rational maps
between them form a category which is geometrically interesting.

13-. Show that dominant rational maps give morphisms of function fields in the opposite
direction.
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f1 f2

FIGURE 1. Two different maps from a nonreduced scheme agreeing on an
open set

f2f1

FIGURE 2. Two different maps to a nonseparated scheme agreeing on an
open set

14. Let K be a finitely generated field extension of k. Show there exists an irreducible k-
variety with function field K. (Hint: let x1, . . . , xn be generators for K over k. Consider the
map k[t1, . . . , tn] → K given by ti 7→ xi, and show that the kernel is a prime ideal p, and
that k[t1, . . . , tn]/p has fraction field K. This can be interpreted geometrically: consider
the map Spec K → Spec k[t1, . . . , tn] given by the ring map ti 7→ xi, and take the closure of
the image.)

15. Use our discussion in class to find a “formula” yielding all Pythagorean triples.

16. Show that the conic x2+y2 = z2 in P2
k is isomorphic to P1

k for any field k of characteristic
not 2. (We’ve done this earlier in the case where k is algebraically closed, by diagonalizing
quadrics.)

17. Find all rational solutions to y2 = x3+x2, by finding a birational map to A1, mimicking
what worked with the conic.

18. Find a birational map from the quadric Q = {x2 + y2 = w2 + z2} to P2. Use this to find
all rational points on Q. (This illustrates a good way of solving Diophantine equations.
You will find a dense open subset of Q that is isomorphic to a dense open subset of P2,
where you can easily find all the rational points. There will be a closed subset of Q where
the rational map is not defined, or not an isomorphism, but you can deal with this subset
in an ad hoc fashion.)
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19++. (a first view of a blow-up) Let k be an algebraically closed field. (We make this
hypothesis in order to not need any fancy facts on nonsingularity.) Consider the rational
map A2

k 99K P1
k given by (x, y) 7→ [x; y]. I think you have shown earlier that this rational

map cannot be extended over the origin. Consider the graph of the birational map, which
we denote Bl(0,0) A2

k. It is a subscheme of A2
k × P1

k. Show that if the coordinates on A2 are
x, y, and the coordinates on P1 are u, v, this subscheme is cut out in A2 × P1 by the single
equation xv = yu. Describe the fiber of the morphism Bl(0,0) A2

k → P1
k over each closed

point of P1
k. Describe the fiber of the morphism Bl(0,0) A2

k → A2
k. Show that the fiber over

(0, 0) is an effective Cartier divisor (a closed subscheme that is locally principal and not a
zero-divisor). It is called the exceptional divisor.

20. (the Cremona transformation, a useful classical construction) Consider the rational map
P2

99K P2, given by [x; y; z] → [1/x; 1/y; 1/z]. What is the the domain of definition? (It
is bigger than the locus where xyz 6= 0!) You will observe that you can extend it over
codimension 1 sets. This will again foreshadow a result we will soon prove.

21. Show that A1
C

→ Spec C is not proper, by finding a base change that turns this into a
non-closed map. (Hint: Consider A1

C
× P1

C
→ P1

C
.)

E-mail address: vakil@math.stanford.edu

4



FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 10

RAVI VAKIL

This set covers classes 19 and 20.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution, each “+” problem is worth one-and-a-half, and each
“++” problem is worth two. You are allowed to hand in up to three problems from previous sets
that you have not done. If you are ambitious (and have the time), go for more. Try to solve
problems on a range of topics. You are encouraged to talk to each other, and to me, about
the problems. Some of these problems require hints, and I’m happy to give them!

1. Show that if Y is an irreducible subset of a scheme X with generic point y, show that
the codimension of Y is the dimension of the local ring OX,y.

2-. Show that
(1) codimX Y + dim Y ≤ dim X.

3++. Show that if f : B → A is a ring homomorphism, and (b1, . . . , bn) = 1 in B, and
Bbi

→ Af(bi) is integral, then f is integral. Thus we can define the notion of integral
morphism of schemes.

4+. Show that the notion of integral homomorphism is well behaved with respect to
localization and quotient of B, and quotient of A, but not localization of A. Show that
the notion of integral extension is well behaved with respect to localization and quotient
of B, but not quotient of A. If possible, draw pictures of your examples.

5. Show that if B is an integral extension of A, and C is an integral extension of B, then C

is an integral extension of A.

6-. (finite = integral + finite type) Show that a morphism is finite if and only if it is integral
and finite type.

7-. (reality check) The morphism k[t] → k[t](t) is not integral, as 1/t satisfies no monic
polynomial with coefficients in k[t]. Show that the conclusion of the Going-up theorem
fails.

8. Show that the special case of the Going-Up Theorem where A is a field translates to: if
B ⊂ A is a subring with A integral over B, then B is a field. Prove this. (Hint: all you need
to do is show that all nonzero elements in B have inverses in B. Here is the start: If b ∈ B,
then 1/b ∈ A, and this satisfies some integral equation over B.)

Date: Friday, December 7, 2007.
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9+. (important but straightforward exercise, sometimes also called the going-up theorem) Show
that if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain of prime ideals of B, and p1 ⊂ · · · ⊂ pm is a chain of
prime ideals of A such that pi “lies over” qi (and m < n), then the second chain can be
extended to p1 ⊂ · · · ⊂ pn so that this remains true.

10++. Show that if f : Spec A → Spec B corresponds to an integral extension of rings, then
dim Spec A = dim Spec B. (Hint: show that a chain of prime ideals downstairs gives a
chain upstairs, by the previous exercise, of the same length. Conversely, a chain upstairs
gives a chain downstairs. We need to check that no two elements of the chain upstairs
goes to the same element [q] ∈ Spec B of the chain downstairs. As integral extensions
are well-behaved by localization and quotients of Spec B (Exercise ), we can replace B by
Bq/qBq (and A by A⊗B (Bq/qBq)). Thus we can assume B is a field. Hence we must show
that if φ : k → A is an integral extension, then dim A = 0. Outline of proof: Suppose
p ⊂ m are two prime ideals of p. Mod out by p, so we can assume that A is a domain. I
claim that any non-zero element is invertible: Say x ∈ A, and x 6= 0. Then the minimal
monic polynomial for x has non-zero constant term. But then x is invertible — recall the
coefficients are in a field.)

11. (Nakayama’s lemma version 3) Suppose A is a ring, and I is an ideal of A contained in all
maximal ideals. Suppose M is a finitely generated A-module, and N ⊂ M is a submodule.
If N/IN → M/IM an isomorphism, then M = N. (This can be useful, although it won’t
come up again for us.)

12+. (Nakayama’s lemma version 4) Suppose (A, m) is a local ring. Suppose M is a finitely-
generated A-module, and f1, . . . , fn ∈ M, with (the images of) f1, . . . , fn generating M/mM.
Then f1, . . . , fn generate M. (In particular, taking M = m, if we have generators of m/m2,
they also generate m.)

13. (Nakayama’s lemma version 5) Prove Nakayama version 1 without the hypothesis that
M is finitely generated, but with the hypothesis that In = 0 for some n. (This argument
does not use the trick.) This result is quite useful, although we won’t use it.

14+. (used in the proof of Algebraic Hartogs’ Lemma) Suppose S is a subring of a ring A, and
r ∈ A. Suppose there is a faithful S[r]-module M that is finitely generated as an S-module.
Show that r is integral over S. (Hint: look carefully at the proof of Nakayama’s Lemma
version 1, and change a few words.)

15+. (Nullstellensatz from dimension theory)
(a) Suppose A = k[x1, . . . , xn]/I, where k is an algebraically closed field and I is some
ideal. Then the maximal ideals are precisely those of the form (x1 − a1, . . . , xn − an),
where ai ∈ k. This version (the “weak Nullstellensatz”) was stated earlier.
(b) Suppose A = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of A has a residue field that is a finite extension of k. This version
was stated in earlier. (Hint for both parts: the maximal ideals correspond to dimension 0

points, which correspond to transcendence degree 0 extensions of k, i.e. finite extensions
of k. If k = k, the maximal ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix
one such surjection. Let ai = f(xi), and show that the corresponding maximal ideal is
(x1 − a1, . . . , xn − an).)
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16. (important) Suppose X is an irreducible variety. Show that dim X is the transcendence
degree of the function field (the stalk at the generic point) OX,η over k. Thus (as the generic
point lies in all non-empty open sets) the dimension can be computed in any open set of
X. (This is not true in general, see the pathology in the notes.)

17. Suppose f(x, y) and g(x, y) are two complex polynomials (f, g ∈ C[x, y]). Suppose f

and g have no common factors. Show that the system of equations f(x, y) = g(x, y) = 0

has a finite number of solutions. (This isn’t essential for what follows. But it is a basic
fact, and very believable.)

18. Suppose X ⊂ Y is an inclusion of irreducible k-varieties, and η is the generic point of
X. Show that dim X + dimOY,η = dim Y. Hence show that dim X + codimY X = dim Y. Thus
for varieties, the inequality dim X + codimY X ≤ dim Y is always an equality.

19. Show that Spec k[w, x, y, z]/(wz − xy, wy − x2, xz − y2) is an integral surface. You
might expect it to be a curve, because it is cut out by three equations in 4-space. (You may
recognize this as the affine cone over the twisted cubic.) It turns out that you actually
need three equations to cut out this surface. The first equation cuts out a threefold in four-
space (by Krull’s theorem, see later). The second equation cuts out a surface: our surface,
along with another surface. The third equation cuts out our surface, and removes the
“extraneous component”. One last aside: notice once again that the cone over the quadric
surface k[w, x, y, z]/(wz − xy) makes an appearance.)

20++. Reduce the proof of Chevalley’s theorem to the following statement: suppose f :
X = Spec A → Y = Spec B is a dominant morphism, where A and B are domains, and f

corresponds to φ : B → B[x1, . . . , xn]/I ∼= A. Then the image of f contains a dense open
subset of Spec B. (Hint: Make a series of reductions. The notion of constructable is local,
so reduce to the case where Y is affine. Then X can be expressed as a finite union of affines;
reduce to the case where X is affine. X can be expressed as the finite union of irreducible
components; reduce to the case where X is irreducible. Reduce to the case where X is
reduced. By considering the closure of the image of the generic point of X, reduce to the
case where Y also is integral (irreducible and reduced), and X → Y is dominant. Use
Noetherian induction in some way on Y.)

21. What is the dimension of Spec k[w, x, y, z]/(wz − xy, y17 + z17)? (Be careful to check
they hypotheses before invoking Krull!)

22. (important for later) (a) (Hypersurfaces meet everything of dimension at least 1 in projective
space — unlike in affine space.) Suppose X is a closed subset of Pn

k of dimension at least
1, and H a nonempty hypersurface in Pn

k . Show that H meets X. (Hint: consider the
affine cone, and note that the cone over H contains the origin. Use Krull’s Principal Ideal
Theorem.)
(b) (Definition: Subsets in Pn cut out by linear equations are called linear subspaces.
Dimension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X ↪→
Pn

k is a closed subset of dimension r. Show that any codimension r linear space meets X.
Hint: Refine your argument in (a). (In fact any two things in projective space that you
might expect to meet for dimensional reasons do in fact meet. We won’t prove that here.)
(c) Show further that there is an intersection of r + 1 hypersurfaces missing X. (The key
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step: show that there is a hypersurface of sufficiently high degree that doesn’t contain
every generic point of X. Show this by induction on the number of generic points. To get
from n to n + 1: take a hypersurface not vanishing on p1, . . . , pn. If it doesn’t vanish on
pn+1, we’re done. Otherwise, call this hypersurface fn+1. Do something similar with n+1

replaced by i (1 ≤ i ≤ n). Then consider
∑

i f1 · · · f̂i · · · fn+1.)

23-. Show that it is false that if X is an integral scheme, and U is a non-empty open set,
then dim U = dim X.

24. Suppose f is an element of a normal domain A, and f is contained in no codimension
1 primes. Show that f is a unit.

25. Suppose f and g are two global sections of a Noetherian normal scheme, not vanishing
at any associated point, with the same poles and zeros. Show that each is a unit times the
other.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 11

RAVI VAKIL

This set covers classes 21 through 27.

Please read all of the problems in these classes, and ask me about any statements that you
are unsure of, even of the many problems you won’t try.

Hand in seven solutions. Also, pick one problem (which need not be one of the seven)
that you find the most interesting, and explain why (in a couple of sentences).

If you are ambitious (and have the time), hand in more problems. Try to solve problems
on a range of topics, perhaps even one from each class. Try some hard problems as well
as some easy problems. You are encouraged to talk to each other, and to me, about the
problems. Some of these problems require hints, and I’m happy to give them!

Please hand in the problem sets in my mailbox by the afternoon of Friday, February 15.
E-mail address: vakil@math.stanford.edu

Date: Tuesday, February 5, 2008.
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 12

RAVI VAKIL

This set covers classes 17 through 29.

Please read all of the problems in these classes (if you haven’t before), and ask me about any
statements that you are unsure of, even of the many problems you won’t try.

Hand in six solutions, including at least three from classes 28 and 29. Also, pick one
problem (which need not be one of the seven) that you find the most interesting, and
explain why (in a couple of sentences).

If you are ambitious (and have the time), hand in more problems. Try to solve problems
on a range of topics, perhaps even one from each class. Try some hard problems as well
as some easy problems. You are encouraged to talk to each other, and to me, about the
problems. Some of these problems require hints, and I’m happy to give them!

Please hand in the problem sets in my mailbox by the afternoon of Wednesday, Febru-
ary 20.

E-mail address: vakil@math.stanford.edu

Date: Friday, February 8, 2008.
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 13

RAVI VAKIL

This set covers all classes this quarter.

Please read all of the problems in these classes for which there are notes (if you haven’t before),
and ask me about any statements that you are unsure of, even of the many problems you
won’t try.

Hand in six solutions, including at least three from class 30 onward. Also, pick one
problem (which need not be one of the six) that you find the most interesting, and explain
why (in a couple of sentences).

If you are ambitious (and have the time), hand in more problems. Try to solve problems
on a range of topics, perhaps even one from each class. Try some hard problems as well
as some easy problems. You are encouraged to talk to each other, and to me, about the
problems. Some of these problems require hints, and I’m happy to give them!

Please hand in the problem sets in my mailbox by the afternoon of Sunday, March 23.
E-mail address: vakil@math.stanford.edu

Date: Friday, March 14, 2008.
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