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1. A USEFUL VERY GENERAL FACT FROM HOMOLOGICAL ALGEBRA
Here is a fact that is very useful, because it applies in so many situations.

1.A. IMPORTANT EXERCISE IN ABSTRACT NONSENSE. Suppose F : A — B is a covariant
additive functor from one abelian category to another. Suppose C* is a complex in A.

(a) Describe a natural morphism FH®* — H*F.
(b) If Fis exact, show that the morphism of (a) is an isomorphism.

If this makes your head spin, you may prefer to think of it in the following specific
case, where both A and B are the category of A-modules, and F is - ® N for some fixed
N-module. Your argument in this case will translate without change to yield a solution to
Exercise 1.A. If ®N is exact, then N is called a flat A-module.

For example, localization is exact, so S™'A is a flat A-algebra for all multiplicative sets
S. Thus taking cohomology of a complex of A-modules commutes with localization —
something you could verify directly.

2. HIGHER DIRECT IMAGE SHEAVES

Cohomology groups were defined for X — Spec A where the structure morphism is
quasicompact and separated; for any quasicoherent F on X, we defined H'(X, F). We'll
now define a “relative” version of this notion, for quasicompact and separated mor-
phisms 7t : X — Y: for any quasicoherent F on X, we’ll define R', F, a quasicoherent
sheafon Y.
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We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we did before.

(2) If0 - F - G — H — 0is a short exact sequence of quasicoherent sheaves on X,
then we know that 0 — m,F — m,G — m,H is exact, and higher pushforwards will
extend this to a long exact sequence.

(3) We'll later see that this will show how cohomology groups vary in families, espe-
cially in “nice” situations. Intuitively, if we have a nice family of varieties, and a
family of sheaves on them, we could hope that the cohomology varies nicely in
families, and in fact in “nice” situations, this is true. (As always, “nice” usually
means “flat”, whatever that means.)

All of the important properties of cohomology described earlier will carry over to this
more general situation. Best of all, there will be no extra work required.

In the notation R'f . F for higher pushforward sheaves, the “R” stands for “right derived
functor”, and corresponds to the fact that we get a long exact sequence in cohomology
extending to the right (from the Oth terms). Later this year, we will see that in good
circumstances, if we have a left-exact functor, there is be a long exact sequence going off
to the right, in terms of right derived functors. Similarly, if we have a right-exact functor
(e.g. if M is an A-module, then ® AM is a right-exact functor from the category of A-
modules to itself), there may be a long exact sequence going off to the left, in terms of left
derived functors.

Suppose 7t: X — Y, and F is a quasicoherent sheaf on X. For each Spec A C Y, we have
A-modules HY(7~'(Spec A), F). We will show that these patch together to form a quasi-
coherent sheaf. We need check only one fact: that this behaves well with respect to taking
distinguished open sets. In other words, we must check that for each f € A, the natu-
ral map H(m'(Spec A), F) — Hi(n'(Spec A), F)¢ (induced by the map of spaces in the
opposite direction — H' is contravariant in the space) is precisely the localization @ AA+.
But this can be verified easily: let {U;} be an affine cover of 1" (Spec A). We can compute
Hi(m~'(Spec A), F) using the Cech complex. But this induces a cover Spec A in a natural
way: If U; = Spec A; is an affine open for Spec A, we define U{ = Spec(A;)s. The resulting
Cech complex for Spec A¢ is the localization of the Cech complex for Spec A. As tak-
ing cohomology of a complex commutes with localization (as discussed in Exercise 1.A),
we have defined a quasicoherent sheaf on Y by one of our definitions of quasicoherent
sheaves by Definition 2" of a quasicoherent sheaf.

Define the ith higher direct image sheaf or the ith (higher) pushforward sheaf to be
this quasicoherent sheaf.

2.1. Theorem. —

(@) RO, Fis canonically isomorphic to . F.
(b) Rim, is a covariant functor from the category of quasicoherent sheaves on X to the category
of quasicoherent sheaves on Y, and a contravariant functor in Y-schemes X.
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(c) (the long exact sequence of higher pushforward sheaves) A short exact sequence
0 —=F —= G — H — 0o0f sheaves on X induces a long exact sequence

0 — RO, F —= R, —= ROy, H ———

R'n,F —R'n,g —R'm,H — -~

of sheaves on Y.

(d) (projective pushforwards of coherent are coherent) If T is a projective morphism and Oy is
coherent on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, R'7t, F is a coherent sheaf on Y.

Proof. Because it suffices to check each of these results on affine open sets, they all follow
from the analogous statements in Cech cohomology. [

The following result is handy, and essentially immediate from our definition.

2.A. EXERCISE. Show that if 7t is affine, then for i > 0, Rirt, F = 0.

Remark. This is in fact a characterization of affineness. Serre’s criterion for affineness
states that if f is quasicompact and separated, then f is affine if and only if f, is an exact
functor from the category of quasicoherent sheaves on X to the category of quasicoherent
sheaves on Y. exact on the category of quasicoherent sheaves (EGA I1.5.2). We won't use
this fact.

2.B. EXERCISE (HIGHER PUSHFORWARDS AND COMMUTATIVE DIAGRAMS). (a) Suppose
f : Z — Y is any morphism, and 7t : X — Y as usual is quasicompact and separated.
Suppose F is a quasicoherent sheaf on X. Let

Wf—/>X

b

L—=Y

is a fiber diagram. Describe a natural morphism f*(R'7t,F) — Ri7rtl(f')*F of sheaves on
Z. (Hint: Exercise 1.A.)

(b) If f : Z — Y is an affine morphism, and for a cover Spec A; of Y, where f~'(Spec A;) =
Spec B, Biis aflat A-algebra, and the diagram in (a) is a fiber square, show that the natural
morphism of (a) is an isomorphism. (You can likely generalize this immediately, but this
will lead us into the concept of flat morphisms, and we’ll hold off discussing this notion
for a while.)

A useful special case of (a) if the following.

2.C. EXERCISE. Show thatify € Y, there is a natural morphism H'(Y, f.F)y, — H' (' (y), Fl¢1(y))-
(Hint: if you take a complex, and tensor it with a module, and take cohomology, there is
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a map from that to what you would get if you take cohomology and tensor it with a
module.)

We'll later see that in good situations this is an isomorphism, and thus the higher direct
image sheaf indeed “patches together” the cohomology on fibers.

2.D. EXERCISE (PROJECTION FORMULA). Suppose 7t: X — Y is quasicompact and sepa-
rated, and &, F are quasicoherent sheaves on X and Y respectively. (a) Describe a natural
morphism

(R'7m,.&) © F = R'm.(€ @ ' F).
(Hint: Exercise 1.A.) (b) If F is locally free, show that this natural morphism is an isomor-
phism.

3. FUN APPLICATIONS OF THE HIGHER PUSHFORWARD

Here are a series of useful geometric facts shown using similar tricks.

3.1. Theorem (relative dimensional vanishing). — If f : X — Y is a projective morphism and Ov
is coherent, then the higher pushforwards vanish in degree higher than the maximum dimension
of the fibers.

This is false without the projective hypothesis, as shown by the following exercise.

3.A. EXERCISE. Consider the open immersion 7t : A™ — 0 — A™ By direct calculation,
show that R, Oxn_o # 0.

Proof of Theorem 3.1. Let m be the maximum dimension of all the fibers.

The question is local on Y, so we'll show that the result holds near a point p of Y. We
may assume that Y is affine, and hence that X — P¥.

Let k be the residue field at p. Then f~'(p) is a projective k-scheme of dimension at
most m. Thus we can find affine open sets D(f1), ..., D(fy,1) that cover f~'(p). In other
words, the intersection of V(f;) does not intersect f~'(p).

If Y = Spec A and p = [p] (so k = A,/pA,), then arbitrarily lift each f; from an element
of k[xy, ..., Xn] to an element f{ of A,[xo, ..., xn]. Let F be the product of the denominators
of the f{; note that F ¢ p, i.e. p = [p] € D(F). Then f] € Aglxo,...,%nl. The intersection
of their zero loci NV(f;) C P}%_is a closed subscheme of P _. Intersect it with X to get
another closed subscheme of P} _. Take its image under f; as projective morphisms are
closed, we get a closed subset of D(F) = Spec Af. But this closed subset does not include
p; hence we can find an affine neighborhood Spec B of p in Y missing the image. But if
f! are the restrictions of f/ to B[xo, ..., xn], then D(f!) cover f!(Spec B); in other words,
over f~'(SpecB) is covered by m + 1 affine open sets, so by the affine-cover vanishing
theorem, its cohomology vanishes in degree at least m + 1. But the higher-direct image
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sheaf is computed using these cohomology groups, hence the higher direct image sheaf
Rif,F vanishes on Spec B too. O

3.B. IMPORTANT EXERCISE. Use a similar argument to prove semicontinuity of fiber di-
mension of projective morphisms: suppose 7t : X — Y is a projective morphism where Oy is
coherent. Show that{y € Y : dim f~'(y) > k} is a Zariski-closed subset. In other words, the
dimension of the fiber “jumps over Zariski-closed subsets”. (You can interpret the case
k = —1 as the fact that projective morphisms are closed.) This exercise is rather important
for having a sense of how projective morphisms behave!

Here is another handy theorem, that is proved by a similar argument. We know that
finite morphisms are projective, and have finite fibers. Here is the converse.

3.2. Theorem (projective + finite fibers = finite). — Suppose 7 : X — Y is such that Oy is
coherent. Then Ttis projective and finite fibers if and only if it is finite. Equivalently, 7 is projective
and quasifinite if and only it is finite.

(Recall that quasifinite = finite fibers + finite type. But projective includes finite type.)
It is true more generally that proper + quasifinite = finite.

Proof. We show it is finite near a point y € Y. Fix an affine open neighborhood Spec A of
y in Y. Pick a hypersurface H in P} missing the preimage of y, so H N X is closed. (You
can take this as a hint for Exercise 3.B!) Let H' = 7t,(H N X), which is closed, and doesn’t
contain y. Let U = SpecR — H’, which is an open set containing y. Then above U,
is projective and affine, so we are done by the Corollary from last day (that projective +
affine = finite). O

Here is one last potentially useful fact.

3.C. EXERCISE. Suppose f : X — Y is a projective morphism, with O(1) the invertible
sheaf on X. Suppose Y is quasicompact and Oy is coherent. Let F be coherent on X. Show
that

(@) f*f.F(n) — F(n) is surjective for n > 0. (First show that there is a natural map
for any n! Hint: by adjointness of f, with f,.) [Should I relate this to fact 1.A?]
Translation: for n >> 0, F(n) is relatively generated by global sections.

(b) Fori > 0and n > 0, R, F(n) = 0.
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