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Today, we will discuss the relationship between quasicoherent sheaves on projective
A-schemes and graded modules.

1. THE QUASICOHERENT SHEAF CORRESPONDING TO A GRADED MODULE

We now describe quasicoherent sheaves on a projective A-scheme. Recall that a pro-
jective A-scheme is produced from the data of Z=°-graded ring S., with So = A, and S
tinitely generated as an A-module. The resulting scheme is denoted Proj S..

Let X = ProjS,. Suppose M, is a graded S, module, graded by Z. (While reading the
next section, you may wonder why we don’t grade by Z*. You'll see that it doesn’t really
matter either way. The reason to prefer a Z-grading is when we produce an M, from a

quasicoherent sheaf on ProjS,.) We define the quasicoherent sheaf M, as follows. For

each f of positive degree, we define a quasicoherent sheaf M, (f) on the distinguished
open D(f) = {p : f(p) # 0} by

M.(f) = (M)o.
The subscript 0 here means “the 0-graded piece”. We have obvious isomorphisms of the

restriction of M, (f) and M,(g) to D(fg), satisfying the cocycle conditions. (Think through
this yourself, to be sure you agree with the word “obvious”!) Then by an earlier problem
set problem telling how to glue sheaves, these sheaves glue together to a single sheaf on

Mv. on X. We then discard the temporary notation M,(f).

This is clearly quasicoherent, because it is quasicoherent on each D(f), and quasicoher-
ence is local.
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1.A. EXERCISE.  Show that the stalk of M, at a point corresponding to homogeneous
prime p C S, is isomorphic to the Oth graded piece of (M,),.

1.B. UNIMPORTANT EXERCISE. Use the previous exercise to give an alternate definition
of M, in terms of “compatible stalks”.

Given a map of graded modules ¢ : M, — N,, we we get an induced map of sheaves
M. — N,. Explicitly, over D(f), the map M, — N, induces M,[1/f] — N,[1/f], which
induces ¢ : (M,[1/f])o — (N4[1/f])o; and this behaves well with respect to restriction to
smaller distinguished open sets, i.e. the following diagram commutes.

(ML [1/61)0 —2— (NL[1/f])o

L

(ML[1/(fg)])o — (No[1/(fg)])o.

Thus ~ is a functor from the category of graded S.,-modules to the category of quasicoher-
ent sheaves on ProjS,. We shall see that this isn’t quite an isomorphism, but it is close.
The relationship is akin to that between presheaves and sheaves, and the sheafification
functor.

1.C. EASY EXERCISE. Show that ~ is an exact functor.

1.D. EXERCISE.  Show that if M, and M, agree in high enough degrees, then M, =

M. Thus the map from graded S,-modules to quasicoherent sheaves on Proj S, is not a
bijection.

1.E. EXERCISE. Describe a map of Sy-modules My — F(I\W., X). (This foreshadows the
“saturation map” that takes a graded module to its saturation.)

1.E EXERCISE. Show that M, ® N, = M./@?;./ N.. (Hint: describe the isomorphism of
sections over each D(f), and show that this isomorphism behaves well with respect to
smaller distinguished open sets.)

1.1. Graded ideals of S, give closed subschemes of ProjS,. Recall that a graded ideal
I, C S, yields a closed subscheme. Proj S,/I, — Proj S,.

For example, suppose S, = k[w, x,y, z, so ProjS. = P3. The ideal I, = (wz — xy,x* —

wy, y% — xz) yields our old friend, the twisted cubic.

1.G. EXERCISE. Show that if the functor ~ is applied to the exact sequence of graded
S.-modules

0—=1,—S.—S./I. =0
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we obtain the closed subscheme exact sequence for Proj S,/I, — ProjS..

We will soon see (§4.E) that all closed subschemes of Proj S, arise in this way.

2. INVERTIBLE SHEAVES (LINE BUNDLES) ON PROJECTIVE A-SCHEMES

Suppose that S, is generated in degree 1. By an earlier exercise, this is not a huge
assumption, as we can change the grading by some multiple to arrange that this is the
case. Suppose M, is a graded S,-module. Define the graded module M(n), so that

M(n)m = My 4m. Thus the quasicoherent sheaf M (n), satisfies

F(D(f),Mn)s) = (M¢)n
where here the subscript means we take the nth graded piece. (These subscripts are ad-
mittedly confusing!)

2.A. IMPORTANT EXERCISE. If S, is generated in degree 1, show that Op,s,(n) is an
invertible sheaf.

2.B. EXERCISE. If S, = k[xo,...,Xml, so ProjS, = P, show that this definition of O(n)
agrees with our earlier definition involving transition functions.

If F is a quasicoherent sheaf on Proj S,, define 7(n) := F ® O(n). This is often called
twisting F by O(n). More generally, if £ is an invertible sheaf, then 7 ® L is often called
“twisting F by L”.

e~

2.C. EXERCISE. Show that M,(n) = M(n)..

2.D. EXERCISE. Show that O(m +n) = O(m) ® O(n).

2.1. Unimportant remark. Even if S, is not generated in degree 1, then by Exercise , S,
is generated in degree 1 for some d. In this case, we may define the invertible sheaves
O(dn) for n € Z. This does not mean that we can’t define O(1); this depends on S,. For
example, if S, is the polynomial ring k[x, y] with the usual grading, except without linear
terms, then S,, and S3, are both generated in degree 1, meaning that we may define O(2)
and O(3). There is good reason to call their “difference” O(1).

3. GENERATION BY GLOBAL SECTIONS, AND SERRE’S THEOREM

3.1. Generated by global sections. Suppose X is a scheme, and F is a Ox-module. We
say that F is generated by global sections at a point p if we can find ¢ : O%' — F that is
surjective at the stalk of p: ¢, : OF' — F,, is surjective. (Some what more precisely, the
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stalk of F at p is generated by global sections of F. The global sections in question are
the images of the 1’s in || factors of O;'.) We say that F is generated by global sections or
globally generated if it is generated by global sections at all p, or equivalently, if we can we
can find O%" — F that is surjective. (By our earlier result that we can check surjectivity
at stalks, so this is the same as saying that it is surjective at all stalks.) If I can be taken to
be finite, we say that F is generated by a finite number of global sections. We'll see soon
why we care.

3.A. EASY EXERCISE. If quasicoherent sheaves F and G are generated by global sections
at a point p, then so is 7 ® G. (This exercise is less important, but is good practice.)

3.B. EAsy EXERCISE. If F is a finite type sheaf, show that F is generated by global
sections at p if and only if “the fiber of F is generated by global sections at p”, i.e. the
map from global sections to the fiber F,,/mF,, is surjective, where m is the maximal ideal
of Ox . (Hint: Geometric Nakayama.)

3.C. EASY EXERCISE. An invertible sheaf £ on X is generated by global sections if and
only if for any point x € X, there is a section of £ not vanishing at x. We'll soon discuss
classifying maps to projective space in terms of invertible sheaves generated by global
sections, and we’ll see then why we care about such notions.

3.D. EASY EXERCISE. If F is finite type, and X is quasicompact, show that F is generated
by global sections if and only if it is generated by a finite number of global sections.

3.2. Lemma. — Suppose F is a finite type sheaf on X. Then the set of points where F is generated
by global sections is an open set.

Proof. Suppose F is generated by global sections at a point p. Then it is generated by
a finite number of global sections, say m. This gives a morphism ¢ : O™ — F, hence
im¢ — F. The support of the (finite type) cokernel sheaf is a closed subset not containing
P. ]

3.E. IMPORTANT EXERCISE (AN IMPORTANT THEOREM OF SERRE). Suppose Sy is a Noe-
therian ring, and S, is generated in degree 1. Let F be any finite type sheaf on ProjS..
Show that for some integer ny, for all n > ny, F(n) can be generated by a finite number
of global sections.

I'm going to sketch how you should tackle this exercise, after first telling you the reason
we will care.

3.3. Corollary. — Any coherent sheaf F on Proj S, can be presented as:
@ﬁniteo(_n) — F = 0.



We’re going to use this a lot! One clue of how this might be useful: we can use this to
build a resolution of F:

-o- = B0(—,) = &0(—my) - F — 0.

We understand the O(n)’s pretty well, so we can use this to prove things about coherent
sheaves (such as vector bundles) in general.

This Corollary is false for quasicoherent sheaves in general; consider ®,,<oO(m).

Proof. Suppose we have m global sections sy, ..., s;,, of F(n) that generate 7(n). This
gives a map

POmO —— F(n)

given by (f;,...,fn) — fis1 +--- + fis;, Oon any open set. Because these global sections
generate F, this is a surjection. Tensoring with O(—n) (which is exact, as tensoring with
any locally free is exact) gives the desired result. O

Here is now a hint/sketch for the Serre exercise 3.E.

Suppose degf = 1. Say Flp) = M, where M is a (S.[1/f])o-module, generated by m;,
..., My. As these elements generate the module, they clearly generate all the stalks over
all the points of D(f). They are sections over this (“big”) distinguished open set D(f). It
would be wonderful if we knew that they had to be restrictions of global sections, i.e. that
there was a global section m; that restricted to m; on D(f). If that were always true, then
we would cover X with a finite number of each of these D(f)’s, and for each of them, we
would take the finite number of generators of the corresponding module. Sadly this is
not true.

However, we will see that fNm “extends”, where m is any of the my’s, and N is suf-
ficiently large. We will see this by (easily) checking first that f™m extends over another
distinguished open D(g) (i.e. that there is a section of F(N) over D(g) that restricts to
fNmon D(g) N D(f) = D(fg)).

So we're done, right? Wrong — we still don’t that these extensions on various open
sets glue together, and in fact they might not! More precisely: we don’t know that the
extension over D(g) and over some other D(g’) agree on the overlap D(g) N D(g’) =
D(gg’). But after multiplying both extensions by fN' for large enough N’, we will see that
they agree on the overlap. By quasicompactness, we need to to extend over only a finite
number of D(g)’s, and to make sure extensions agree over the finite number of pairs of
such D(g)’s, so we will be done.

Let’s now begin to make this precise. We first investigate what happens on D(g) =
Spec A, where the degree of g is also 1. Say Flp(g) = N. Let f' = f/g be “the function
corresponding to f on D(g)”. We have a section over D(f’) on the affine scheme D(g),
i.e. an element of Ny, i.e. something of the form n/(f")™ for some n € N. So then if we
multiply it by f'N, we can certainly extend it! So if we multiply by a big enough power of
f, m certainly extends over any D(g).



As described earlier, the only problem is, we can’t guarantee that the extensions over
D(g) and D(g’) agree on the overlap (and hence glue to a single extensions). Let’s check
on the intersection D(g) N D(g’) = D(gg’). Say m = n/(f")N = n’/(f )N where we can
take N = N’ (by increasing N or N’ if necessary). We certainly may not have n = n’,
but by the (concrete) definition of localization, after multiplying with enough f”’s, they
become the same.

In conclusion: after multiplying with enough f’s, our sections over D(f) extend over
each D(g). After multiplying by even more, they will all agree on the overlaps of any two
such distinguished affine. Exercise 3.E is to make this precise.

4. EVERY QUASICOHERENT SHEAF ON A PROJECTIVE A-SCHEME ARISES FROM A
GRADED MODULE

We have gotten lots of quasicoherent sheaves on Proj S, from graded S,-modules. We’ll
now see that we can get them all in this way.

We want to figure out how to “undo” the ~ construction. When you do the Exercise
computing the space of global sections of O(m) on P}, you will suspect that in good
situations,

M,, = I'(Proj S., M(n)).
Motivated by this, we define
Ih(F) :=T(ProjS., F(n)).

Then I,(F) is a graded S.-module, and we can dream that I,(F)~ = F. We will see that
this is indeed the case!

4.A. EXERCISE. Show that I, gives a functor from the category of quasicoherent sheaves
on Proj S, to the category of graded S.-modules. In other words, show thatif 7 — Gisa
morphism of quasicoherent sheaves on Proj S,, describe the natural map I, (F) — T.(G),
and show that such natural maps respect the identity and composition.

Note that ~ and I, cannot be inverses, as ~ can turn two different graded modules into
the same quasicoherent sheaf (see for example Exercise 1.D).

P

Our initial goal is to show that there is a natural isomorphism I, (F) — F, and that there

—~

is a natural map M, — I',(M,). The latter map is called the saturation map, although this
language isn’t important to us. We will show something better: that ~ and I', are adjoint.

We start by describing the saturation map M, — T.(M,). We describe it in degree n.

Given an element m,,, we seek an element of I'(Proj S,, Mv.(n)) = ['(Proj Se, M(n4e)). By
shifting the grading of M, by n, we can assume n = 0. For each D(f), we certainly have
an element of (M[1/f])o (namely m), and they agree on overlaps, so the map is clear.
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4.B. EXERCISE. Show that this canonical map need not be injective, nor need it be sur-
jective. (Hint: S, = k[x], M, = k[x] /x?or M, = { polynomials with no constant terms }.)

The natural map ILF — F is more subtle, but will have the advantage of being an
isomorphism.

4.C. EXERCISE. Describe the natural map ILF — F as follows. First describe it over
D(f). Note that sections of the left side are of the form m/f™ where m € I 4¢ ¢F, and
m/f* = m’/f" if there is some N with fN(f*m — f*m’) = 0. Show that your map
behaves well on overlaps D(f) N D(g) = D(fg).

4.D. LONGER EXERCISE. Show that the natural map I\F — F is an isomorphism, by
showing that it is an isomorphism over D(f) for any f. Do this by first showing that it is
surjective. This will require following some of the steps of the proof of Serre’s theorem
(Exercise 3.E). Then show that it is injective.

4.1. Corollary. — Every quasicoherent sheaf arises from this tilde construction.

4.E. EXERCISE. Show that each closed subscheme of Proj S, arises from a graded ideal
I, C S.. (Hint: Suppose Z is a closed subscheme of Proj S,. Consider the exact sequence
0 —Zz — Oprojs. — Oz — 0. Apply T, and then ~.)

4.F. EXERCISE (I, AND ~ ARE ADJOINT FUNCTORS, PART 1). Prove part of the statement

~

that I, and ~ are adjoint functors, by describing a natural bijection Hom(M,, I, (F)) =
Hom(M,, F). For the map from left to right, start with a morphism M, — T,(F). Apply
~, and postcompose with the isomorphism I, 7 — F, to obtain

M, = ILF — F.

Do something similar to get from right to left. Show that “both compositions are the
identity in the appropriate category”.

4.G. EXERCISE (I, AND ~ ARE ADJOINT FUNCTORS, PART 2) . Show that I, and ~ are
adjoint.

4.2. Saturated S,-modules. We end with a remark: different graded S,-modules give the
same quasicoherent sheaf on Proj S,, but the results of this section show that there is a
“best” (saturated) graded module for each quasicoherent sheaf, and there is a map from

—~

each graded module to its “best” version, M, — I,(M,). A module for which this is an
isomorphism (a “best” module) is called saturated. We won'’t use this term later.
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This “saturation” map M, — N(M,) is analogous to the sheafification map, taking
presheaves to sheaves. For example, the saturation of the saturation equals the satura-
tion.

There is a bijection between saturated quasicoherent sheaves of ideals on Proj S, and
closed subschemes of Proj S,.
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