
MATH 210 PROBLEM SET 4

RAVI VAKIL

This problem set is due on Friday, February 23 at Jarod Alper’s office door.

In this problem set, you’ll compute an interesting Galois group, prove a famous theo-
rem (Hilbert’s “Theorem 90”), use it to cheaply get Pythagorean triples, and work through
a useful construction (the resultant).

1. (Dummit and Foote, p. 562, problem 16)
(a) Prove that x4 − 2x2 − 2 is irreducible over Q.
(b) Show that the roots of this quartic are α1 =

√

1 +
√

3, α2 =
√

1 −
√

3, α3 = −
√
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√

3,
α4 = −

√

1 −
√

3.
(c) Let K1 = Q(α1) and K2 = Q(α2). Show that K1 6= K2, and K1 ∩ K2 = Q(

√
3) = F .

(d) Prove that K1, K2, and K1K2 are Galois over F with Gal(K1K2/F ) the Klein 4-group.
Write out the elements of Gal(K1K2/F ) explicitly. Determine all the subgroups of the
Galois group and give their corresponding fixed subfields of K1K2 containing F .
(e) Prove that the splitting field of x4 − 2x2 − 2 over Q is of degree 8 with dihedral Galois
group.

2. (This is basically Dummit and Foote, p. 563, problem 23: Hilbert’s Theorem 90) If K is a
Galois extension of F , define the norm of an element α ∈ K to F by

NK/F (α) =
∏

σ∈Gal(K/F )

σ(α).

(See problem 17 on p. 563.) Now let K be a Galois extension of F with cyclic Galois group
of order n generated by σ. Suppose α ∈ K has NK/F (α) = 1. Prove that α is of the form
α = β/(σβ) for some nonzero β ∈ K. (Hint: By the linear independence of characters
show there exists some θ ∈ K such that

β = θ + ασ(θ) + (ασα)σ2(θ) + · · ·+ (ασα · · ·σn−2α)σn−1(θ)

is nonzero. Compute β/σβ using the fact that α has norm 1 to F .)

3. (This is basically Dummit and Foote, p. 564, problem 24.) Prove that the rational solutions
a, b ∈ Q of Pythagoras’ equation a2 + b2 = 1 are of the form a = s2

−t2

s2+t2
and b = 2st

s2+t2
for

some s, t ∈ Q and hence show that any right triangle with relatively prime integer sides
has sides of lengths (m2 − n2, 2mn, m2 + n2) for some integers m, n. Do this as follows:
note that a2 + b2 = 1 is equivalent to NQ(i)/Q(a + ib) = 1, then use Hilbert’s Theorem 90 in
the previous problem with β = s + it.

4. (This is basically Dummit and Foote, p. 600, problem 29.) This exercise gives an effective
method of seeing whether two polynomials have a common factor. In particular, this can
be used to check if a polynomial and its derivative have a common factor. Let F be a field
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and let f(x) = anxn +an−1x
n−1 + · · ·+a1x+a0 and g(x) = bmxm + bm−1x

m−1 + · · ·+ b1x+ b0

be two polynomials in F [x].
(a) Prove that a necessary and sufficient condition for f(x) and g(x) to have a common
root (in the splitting field, or, equivalently, a common divisor in F [x]) is the existence of a
polynomial a(x) ∈ F [x] of degree at most m − 1 and a polynomial b(x) ∈ F [x] of degree
at most n − 1 with a(x)f(x) = b(x)g(x).
(b) Writing a(x) and b(x) explicitly as polynomials show that equating coefficients in the
equation a(x)f(x) = b(x)g(x) gives a system of n + m linear equations for the coefficients
of a(x) and b(x). Prove that this system has a nontrivial solution (hence f(x) and g(x)
have a common zero) if and only if the determinant
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∣
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is zero. Here R(f, g), called the resultant of the two polynomials, is the determinant of
an (n + m) × (n + m) matrix R with m rows involving the coefficients of f(x) and n
rows involving the coefficients of g(x). As baby cases, find the resultant of the quadratic
ax2 + bx + c and its derivative; and of the cubic x3 + bx + c and its derivative.
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