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1. Curves 1

Last day: More on properness. Rational maps.

Today: Curves.

(I also discussed rational maps a touch more, but I’ve included that in the class 27 notes
for the sake of continuity.)

1. CURVES

Let’s now use our technology to study something explicit! For our discussion here,
we will temporarily define a curve to be an integral variety over k of dimension 1. (In
particular, curves are reduced, irreducible, separated, and finite type over k.)

I gave an incomplete proof to the following proposition. Because I don’t think I’ll use
it, I haven’t tried to patch it. But if there is interest, I’ll include the proof with the hole, in
case one of you can figure out how to make it work. (We showed that each closed point
gives a discrete valuation, and we showed that each discrete valuation gives a morphism
from the Spec corresponding discrete valuation ring to the curve, but we didn’t show that
it was the local ring of the corresponding closed point. I would like to do this without
invoking any algebra that we haven’t yet proved.)

1.1. Proposition. — Suppose C is a projective nonsingular curve. Then each closed point of C

yields a discrete valuation ring, and hence a discrete valuation on FF(C). This gives a bijection
from closed points of C and discrete valuations on FF(C).

Thus a projective nonsingular curve is a convenient way of seeing all the discrete valu-
ations at once, in a nice geometric package.

I had wanted to ask you the following exercise (for those with arithmetic proclivities),
but I won’t now: Suppose A is the ring of integers in a number field (i.e. the integral
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closure of Z in a finite field extension K/Q — K = FF(A)). Show that there is a natural
bijection between discrete valuations on K are in bijection with the maximal ideals of A.

1.2. Key Proposition. — Suppose C is a dimension 1 finite type k-scheme, and p is a nonsingular
point of it. Suppose Y is a projective k-scheme. Then any morphism C−p → Y extends to C → Y.

Note: if such an extension exists, then it is unique: The non-reduced locus of C is a
closed subset (we checked this earlier for any Noetherian scheme), not including p, so
by replacing C by an open neighborhood of p that is reduced, we can use our recently-
proved theorem that maps from reduced schemes to separated schemes are determined
by their behavior on a dense open set (Important Theorem 3.3 in last day’s notes).

I’d like to give two proofs, which are enlightening in different ways.

Proof 1. By restricting to an affine neighborhood of C, we can reduce to the case where C

is affine.

We next reduce to the case where Y = Pn
k . Here is how. Choose a closed immersion

Y → Pn
k . If the result holds for Pn, and we have a morphism C → Pn with C − p mapping

to Y, then C must map to Y as well. Reason: we can reduce to the case where the source
is an affine open subset, and the target is An

k ⊂ Pn
k (and hence affine). Then the functions

vanishing on Y ∩An
k pull back to functions that vanish at the generic point of C and hence

vanish everywhere on C, i.e. C maps to Y.

Choose a uniformizer t ∈ m − m2 in the local ring. By discarding the points of the
vanishing set V(t) aside from p, and taking an affine open subset of p in the remainder
we reduce to the case where t cuts out precisely m (i.e. m = (y)). Choose a dense open
subset U of C − p where the pullback of O(1) is trivial. Take an affine open neighborhood
Spec A of p in U ∪ {p}. Then the map Spec A − p → Pn corresponds to n + 1 functions,
say f0, . . . , fn ∈ Am, not all zero. Let m be the smallest valuation of all the fi. Then
[t−mf0; . . . ; t

−mfn] has all entries in A, and not all in the maximal ideal, and thus is defined
at p as well. �

Proof 2. We extend the map Spec FF(C) → Y to SpecOC,p → Y as follows. Note that OC,p

is a discrete valuation ring. We show first that there is a morphism SpecOC,p → Pn. The
rational map can be described as [a0; a1; · · · ; an] where ai ∈ OC,p. Let m be the minimum
valuation of the ai, and let t be a uniformizer of OC,p (an element of valuation 1). Then
[t−ma0; t

−ma1; . . . t
−man] is another description of the morphism Spec FF(OC,p) → Pn, and

each of the entries lie in OC,p, and not all entries lie in m (as one of the entries has valuation
0). This same expression gives a morphism SpecOC,p → Pn.

Our intuition now is that we want to glue the maps SpecOC,p → Y (which we picture
as a map from a germ of a curve) and C − p → Y (which we picture as the rest of the
curve). Let Spec R ⊂ Y be an affine open subset of Y containing the image of SpecOC,p.
Let Spec A ⊂ C be an affine open of C containing p, and such that the image of Spec A− p

in Y lies in Spec R, and such that p is cut out scheme-theoretically by a single equation (i.e.

2



there is an element t ∈ A such that (t) is the maximal ideal corresponding to p. Then R and
A are domains, and we have two maps R → A(t) (corresponding to SpecOC,p → Spec R)
and R → At (corresponding to Spec A − p → Spec R) that agree “at the generic point”, i.e.
that give the same map R → FF(A). But At ∩ A(t) = A in FF(A) (e.g. by Hartogs’ theorem
— elements of the fraction field of A that don’t have any poles away from t, nor at t, must
lie in A), so we indeed have a map R → A agreeing with both morphisms. �

1.3. Exercise (Useful practice!). Suppose X is a Noetherian k-scheme, and Z is an irreducible
codimension 1 subvariety whose generic point is a nonsingular point of X (so the local
ring OX,Z is a discrete valuation ring). Suppose X 99K Y is a rational map to a projective
k-scheme. Show that the domain of definition of the rational map includes a dense open
subset of Z. In other words, rational maps from Noetherian k-schemes to projective k-
schemes can be extended over nonsingular codimension 1 sets. We saw this principle in
action with the Cremona transformation, in Class 27 Exercise 4.6. (By the easy direction
of the valuative criterion of separatedness, or the theorem of uniqueness of extensions of
maps from reduced schemes to separated schemes — Theorem 3.3 of Class 27 — this map
is unique.)

1.4. Theorem. — If C is a nonsingular curve, then there is some projective nonsingular curve C ′

and an open immersion C ↪→ C ′.

This proof has a bit of a different flavor than proofs we’ve seen before. We’ll use make
particular use of the fact that one-dimensional Noetherian schemes have a boring topol-
ogy.

Proof. Given a nonsingular curve C, take a non-empty=dense affine open set, and take
any non-constant function f on that affine open set to get a rational map C 99K P1 given
by [1; f]. As a dense open set of a dimension 1 scheme consists of everything but a finite
number of points, by Proposition 1.2, this extends to a morphism C → P1.

We now take the normalization of P1 in the function field FF(C) of C (a finite extension
of FF(P1)), to obtain C ′

→ P1. Now C ′ is normal, hence nonsingular (as nonsingular =
normal in dimension 1). By the finiteness of integral closure, C ′

→ P1 is a finite mor-
phism. Moreover, finite morphisms are projective, so by considering the composition of
projective morphisms C ′

→ P1
→ Spec k, we see that C ′ is projective over k. Thus we

have an isomorphism FF(C) → FF(C ′), hence a rational map C 99K C ′, which extends to a
morphism C → C ′ by Key Proposition 1.2.

Finally, I claim that C → C ′ is an open immersion. If we can prove this, then we are
done. I note first that this is an injection of sets:

• the generic point goes to the generic point
• the closed points of C correspond to distinct valuations on FF(C) (as C is separated,

by the easy direction of the valuative criterion of separatedness)
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Thus as sets, C is C ′ minus a finite number of points. As the topology on C and C ′ is
the “cofinite topology” (i.e. the open sets include the empty set, plus everything minus
a finite number of closed points), the map C → C ′ of topological spaces expresses C as
a homeomorphism of C onto its image im(C). Let f : C → im(C) be this morphism of
schemes. Then the morphism Oim(C) → f∗OC can be interpreted as Oim(C) → OC (where
we are identifying C and im(C) via the homeomorphism f). This morphism of sheaves
is an isomorphism of stalks at all points p ∈ im(C) (it is the isomorphism the discrete
valuation ring corresponding to p ∈ C ′), and is hence an isomorphism. Thus C → im(C)

is an isomorphism of schemes, and thus C → C ′ is an open immersion. �

We now come to the big theorem of today (although the Key Proposition 1.2 above was
also pretty big).

1.5. Theorem. — The following categories are equivalent.

(i) nonsingular projective curves, and surjective morphisms.
(ii) nonsingular projective curves, and dominant morphisms.

(iii) nonsingular projective curves, and dominant rational maps
(iv) quasiprojective reduced curves, and dominant rational maps
(v) function fields of dimension 1 over k, and k-homomorphisms.

(All morphisms and maps are assumed to be k-morphisms and k-rational maps, i.e.
they are all over k. Remember that today we are working in the category of k-schemes.)

This has a lot of implications. For example, each quasiprojective reduced curve is iso-
morphic to precisely one projective nonsingular curve.

This leads to a motivating question that I mentioned informally last day (and that isn’t
in the notes). Suppose k is algebraically closed (such as C). Is it true that all nonsingu-
lar projective curves are isomorphic to P1

k? Equivalently, are all quasiprojective reduced
curves birational to A1

k? Equivalently, are all transcendence degree 1 extensions of k gen-
erated (as a field) by a single element? The answer (as most of you know) is no, but we
can’t yet see that.

1.6. Exercise. Show that all nonsingular proper curves are projective.

(We may eventually see that all reduced proper curves over k are projective, but I’m
not sure; this will use the Riemann-Roch theorem, and I may just prove it for projective
curves.)

Before we get to the proof, I want to mention a sticky point that came up in class. If
k = R, then we are allowing curves such as P1

C
that “we don’t want”. One way of making

this precise is noting that they are not geometrically irreducible (as C(t)⊗R
C ∼= C(t)⊕C(t)).

Another way is to note that this function field K does not satisfy k ∩ K = k in K. If this
bothers you, then add it to each of the 5 categories. (For example, in (i)–(iii), we consider
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only nonsingular projective curves whose function field K satisfies k ∩ K = k in K.) If this
doesn’t bother you, please ignore this paragraph!

Proof. Any surjective morphism is a dominant morphism, and any dominant morphism
is a dominant rational map, and each nonsingular projective curve is a quasiprojective
curve, so we’ve shown (i) → (ii) → (iii) → (iv). To get from (iv) to (i), we first note that
the nonsingular points on a quasiprojective reduced curve are dense. (One method, sug-
gested by Joe: we know that normalization is an isomorphism away from a closed subset.)
Given a dominant rational map between quasiprojective reduced curves C → C ′, we get
a dominant rational map between their normalizations, which in turn gives a dominant
rational map between their projective models D 99K D ′. The the dominant rational map
is necessarily a morphism by Proposition 1.2, and then this morphism is necessarily pro-
jective and hence closed, and hence surjective (as the image contains the generic point of
D ′, and hence its closure). Thus we have established (iv) → (i).

It remains to connect (i). Each dominant rational map of quasiprojective reduced curves
indeed yields a map of function fields of dimension 1 (their fraction fields). Each function
field of dimension 1 yields a reduced affine (hence quasiprojective) curve over k, and each
map of two such yields a dominant rational map of the curves. �

1.7. Degree of a morphism between projective nonsingular curves.

We conclude with a useful fact: Any non-constant morphism from one projective non-
singular curve to another has a well-behaved degree, in a sense that we will now make
precise. We will also show that any non-constant finite morphism from one nonsingular
curve to another has a well-behaved degree in the same sense.

Suppose f : C → C ′ is a surjective (or equivalently, dominant) map of nonsingular
projective curves.

It is a finite morphism. Here is why. (If we had already proved that quasifinite projec-
tive or proper morphisms with finite fibers were finite, we would know this. Once we do
know this, the contents of this section would extend to the case where C is not necessarily
non-singular.) Let C ′′ be the normalization of C ′ in the function field of C. Then we have
an isomorphism FF(C) ∼= FF(C ′′) which leads to birational maps C oo //___ C ′′ which ex-
tend to morphisms as both C and C ′′ are nonsingular and projective. Thus this yields an
isomorphism of C and C ′′. But C ′′

→ C is a finite morphism by the finiteness of integral
closure.

We can then use the following proposition, which applies in more general situations.

1.8. Proposition. — Suppose that π : C → C ′ is a surjective finite morphism, where C is an
integral curve, and C ′ is an integral nonsingular curve. Then π∗OC is locally free of finite rank.

As π is finite, π∗OC is a finite type sheaf on O ′

C. In case you care, the hypothesis “inte-
gral” on C ′ is redundant.
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Before proving the proposition. I want to remind you what this means. Suppose d is the
rank of this allegedly locally free sheaf. Then the fiber over any point of C with residue
field K is the Spec of an algebra of dimension d over K. This means that the number of
points in the fiber, counted with appropriate multiplicity, is always d.

As a motivating example, consider the map Q[y] → Q[x] given by x 7→ y2. (We’ve
seen this example before.) I picture this as the projection of the parabola x = y2 to the
x-axis. (i) The fiber over x = 1 is Q[y]/(y2 − 1), so we get 2 points. (ii) The fiber over
x = 0 is Q[y]/(y2) — we get one point, with multiplicity 2, arising because of the nonre-
ducedness. (iii) The fiber over x = −1 is Q[y]/(y2 + 1) ∼= Q[i] — we get one point, with
multiplicity 2, arising because of the field extension. (iv) Finally, the fiber over the generic
point Spec Q(x) is Spec Q(y), which is one point, with multiplicity 2, arising again be-
cause of the field extension (as Q(y)/Q(x) is a degree 2 extension). We thus see three sorts
of behaviors (as (iii) and (iv) are the same behavior). Note that even if you only work
with algebraically closed fields, you will still be forced to this third type of behavior, be-
cause residue fields at generic points tend not to be algebraically closed (witness case (iv)
above).

Note that we need C ′ to be nonsingular for this to be true. (I gave a picture of the
normalization of a nodal curve as an example. A picture would help here.)

We will see the proof next day.
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