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Discussion of future topics

Last day: quasicoherence is affine-local, (locally) free sheaves and vector bundles,
invertible sheaves and line bundles, torsion-free sheaves, quasicoherent sheaves of
ideals and closed subschemes.

Today: Quasicoherent sheaves form an abelian category; finite type and coherent
sheaves; support; rank; quasicoherent sheaves of ideals and closed subschemes.

I'd like to start by restating some of the definitions and arguments from last day.

Suppose X is a scheme. Recall that Ox-module F is a quasicoherent sheaf if one of two
equivalent things is true.
(i) For every affine open Spec R and distinguished affine open Spec R¢ thereof, the restric-
tion map ¢ : I'(SpecR, F) — I'(Spec Ry, F) factors as:

¢ :T'(SpecR, F) — I'(Spec R, F)¢ = I'(Spec R¢, F).

(ii) For any affine open set Spec R, Flspecr = M for some R-module M.

I will use both definitions today.
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1. QUASICOHERENT SHEAVES FORM AN ABELIAN CATEGORY

Last day, I showed that the quasicoherent sheaves on X form an abelian category, and
in fact an abelian subcategory of Ox-modules. I restated the argument in a better way
today. I've moved this exposition back into the Class 14 notes.

2. FINITENESS CONDITIONS ON QUASICOHERENT SHEAVES: FINITELY GENERATED
QUASICOHERENT SHEAVES, AND COHERENT SHEAVES

There are some natural finiteness conditions on an A-module M. I will tell you three.
In the case when A is a Noetherian ring, which is the case that almost all of you will ever
care about, they are all the same.

The first is the most naive: a module could be finitely generated. In other words, there is
a surjection A? — M — 0.

The second is reasonable too: it could be finitely presented. In other words, it could
have a finite number of generators with a finite number of relations: there exists a finite
presentation

A9 5 AP - M = 0.

The third is frankly a bit surprising, and I'll justify it soon. We say that an A-module M
is coherent if (i) it is finitely generated, and (ii) whenenver we have a map A? — M (not
necessarily surjective!), the kernel is finitely generated.

Clearly coherent implies finitely presented, which in turn implies finitely generated.

2.1. Proposition. — If A is Noetherian, then these three definitions are the same.

Preparatory facts. If R is any ring, not necessarily Noetherian, we say an R-module is
Noetherian if it satisfies the ascending chain condition for submodules. Exercise. M
Noetherian implies that any submodule of M is a finitely generated R-module. Hence
for example if R is a Noetherian ring then finitely generated = Noetherian. Exercise. If
0 =M = M —= M"” = 0is exact, then M’ and M” are Noetherian if and only if M is
Noetherian. (Hint: Given an ascending chain in M, we get two simultaneous ascending
chainsin M’ and M".) Exercise. A Noetherian as an A-module implies A™is a Noetherian
A-module. Exercise. If A is a Noetherian ring and M is a finitely generated A-module,
then any submodule of M is finitely generated. (Hint: suppose M’ — M and A™ - M.
Construct N with N—— A™ )

o

M'——M

Proof. Clearly both finitely presented and coherent imply finitely generated.
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Suppose M is finitely generated. Then take any AP —— M . ker « is a submodule of a
tinitely generated module over A, and is thus finitely generated. (Here’s why submodules
of finitely generated modules over Noetherian rings are also finitely generated: Show it
is true for M = A™ — this takes some inspiration. Then given N C N, consider A™ —
M, and take the submodule corresponding to N.) Thus we have shown coherence. By
choosing a surjective AP — M, we get finite presentation. 0

Hence almost all of you can think of these three notions as the same thing.

2.2. Lemma. — The coherent A-modules form an abelian subcategory of the category of A-
modules.

I will prove this in the case where A is Noetherian, but I'll include a series of short
exercises in the notes that will show it in general.

Proof if A is Noetherian. Recall that we have four things to check (see our discussion earlier
today). We quickly check that 0 is finitely generated (=coherent), and that if M and N are
finitely generated, then M @ N is finitely generated. Suppose now that f : M — Nis a
map of finitely generated modules. Then coker f is finitely generated (it is the image of
N), and ker f is too (it is a submodule of a finitely generated module over a Noetherian
ring). O

Easy Exercise (only important for non-Noetherian people). Show A is coherent (as
an A-module) if and only if the notion of finitely presented agrees with the notion of
coherent.

I want to say a few words on the notion of coherence. There is a good reason for this
definition — because of this lemma. There are two sorts of people who should care.
Complex geometers should care. They consider complex-analytic spaces with the clas-
sical topology. One can define the notion of coherent Ox-module in a way analogous to
this. You can then show that the structure sheaf is coherent, and this is very hard. (Itis
called Oka’s theorem, and takes a lot of work to prove.) I believe the notion of coherence
may have come originally from complex geometry.

The second sort of people who should care are the sort of arithmetic people who some-
times are forced to consider non-Noetherian rings. (For example, for people who know
what they are, the ring of adeles is non-Noetherian.)

Warning: it is common in the later literature to define coherent as finitely generated. It’s
possible that Hartshorne does this. Please don’t do this, as it will only cause confusion. (In
fact, if you google the notion of coherent sheaf, you'll get this faulty definition repeatedly.)
I will try to be scrupulous about this. Besides doing this for the reason of honesty, it will
also help you see what hypotheses are actually necessary to prove things — and that
always helps me remember what the proofs are.



2.3. Exercise. If f € A, show that if M is a finitely generated (resp. finitely presented,
coherent) A-module, then M is a finitely generated (resp. finitely presented, coherent)
Amodule.

Exercise. If (fy,...,f,) = A, and My, is finitely generated (resp. coherent) A -module
for all i, then M is a finitely generated (resp. coherent) A-module.

I'm not sure if that exercise is even true for finitely presented. That’s one of several
reasons why I think that “finitely presented” is a worse notion than coherence.

Definition. A quasicoherent sheaf F is finite type (resp. coherent) if for every affine open
Spec R, I'(Spec R, F) is a finitely generated (resp. coherent) R-module.

Thanks to the affine communication lemma, and the two previous exercises, it suffices
to check this on the opens in a single affine cover.

3. COHERENT MODULES OVER NON-NOETHERIAN RINGS

Here are some notes on coherent modules over a general ring. Read this only if you
really want to! I did not discuss this in class, but promised it in the notes.

Suppose A is a ring. We say an A-module M is finitely generated if there is a surjection
A™ — M — 0. We say it is finitely presented if there is a presentation A™ — A™ - M — 0.
We say M is coherent if (i) M is finitely generated, and (ii) every map A™ — M has a finitely
generated kernel. The reason we like this third definition is that coherent modules form
an abelian category.

Here are some quite accessible problems working out why these notions behave well.
1. Show that coherent implies finitely presented implies finitely generated.
2. Show that 0 is coherent.

Suppose for problems 3-9 that
@) 0O—-M—->N-—-P—-0

is an exact sequence of A-modules.

Hint x. Here is a hint which applies to several of the problems: try to write

0 —> AP —= APHI —— Ad ——>

L

0 M N P 0

and possibly use the snake lemma.

3. Show that N finitely generated implies P finitely generated. (You will only need right-
exactness of (1).)



4. Show that M, P finitely generated implies N finitely generated. (Possible hint: x.) (You
will only need right-exactness of (1).)

5. Show that N, P finitely generated need not imply M finitely generated. (Hint: if I is an
ideal, we have 0 - T —- A —- A/I — 0.)

6. Show that N coherent, M finitely generated implies M coherent. (You will only need
left-exactness of (1).)

7. Show that N, P coherent implies M coherent. Hint for (i):

(You will only need left-exactness of (1).)
8. Show that M finitely generated and N coherent implies P coherent. (Hint for (ii): *.)

9. Show that M, P coherent implies N coherent. (Hint: x.) We don’t need exactness on the
left for this.

At this point, we have shown that if two of (1) are coherent, the third is as well.
10. Show that a finite direct sum of coherent modules is coherent.

11. Suppose M is finitely generated, N coherent. Then if ¢ : M — N is any map, then
show that Im ¢ is coherent.

12. Show that the kernel and cokernel of maps of coherent modules are coherent.

At this point, we have verified that coherent A-modules form an abelian subcategory
of the category of A-modules. (Things you have to check: 0 should be in this set; it should
be closed under finite sums; and it should be closed under taking kernels and cokernels.)

13. Suppose M and N are coherent submodules of the coherent module P. Show that
M + N and M N N are coherent. (Hint: consider the right map M @& N — P.)

14. Show that if A is coherent (as an A-module) then finitely presented modules are
coherent. (Of course, if finitely presented modules are coherent, then A is coherent, as A
is finitely presented!)

15. If M is finitely presented and N is coherent, show that Hom(M, N) is coherent. (Hint:
Hom is left-exact in its first entry.)



16. If M is finitely presented, and N is coherent, show that M & N is coherent.

17. If f € A, show that if M is a finitely generated (resp. finitely presented, coherent)
A-module, then M is a finitely generated (resp. finitely presented, coherent) A -module.
Hint: localization is exact. (This problem appears earlier as well, as Exercise 2.3.)

18. Suppose (f1,...,Tn) = A. Show that if My, is finitely generated for all i, then M is too.
(Hint: Say My, is generated by my; € M as an A¢,-module. Show that the mi; generate M.
To check surjectivity @; ;A — M, it suffices to check “on D(f;)” for all i.)

19. Suppose (fy,...,fn) = A. Show that if My, is coherent for all i, then M is too. (Hint
from Rob Easton: if ¢ : A2 — M, then (ker )¢, = ker(¢y, ), which is finitely generated for
all i. Then apply the previous exercise.)

20. Show that the ring A := k[x1,x2,...] is not coherent over itself. (Hint: consider
A — A with x;,x2,... = 0.) Thus we have an example of a finitely presented module
that is not coherent; a surjection of finitely presented modules whose kernel is not even
tinitely generated; hence an example showing that finitely presented modules don’t form
an abelian category.

4. SUPPORT OF A SHEAF

Suppose F is a sheaf of abelian groups (resp. sheaf of Ox-modules) on a topological
space X (resp. ringed space (X, Ox)). Define the support of a section s of F to be

Supps ={p € X:s, #0in F,}.
I think of this as saying where s “lives”. Define the support of F as
Supp F ={p € X: F, #0}.

It is the union of “all the supports of sections on various open sets”. I think of this as
saying where F “lives”.

4.1. Exercise. ~ The support of a finite type quasicoherent sheaf on a scheme is a closed
subset. (Hint: Reduce to an affine open set. Choose a finite set of generators of the
corresponding module.) Show that the support of a quasicoherent sheaf need not be
closed. (Hint: If A = C[t], then C[t]/(t — a) is an A-module supported at a. Consider
DaccClt]/(t—a).)

5. RANK OF A FINITE TYPE SHEAF AT A POINT

The rank F of a finite type sheaf at a point p is dim F,,/mF, where m is the maximal
ideal corresponding to p. More explicitly, on any affine set Spec A where p = [p] and
F(SpecA) = M, then the rank is dima,, M,/pM,. By Nakayama’s lemma, this is the
minimal number of generators of M,, as an A,-module.
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Note that this definition is consistent with the notion of rank of a locally free sheaf. In
that case, the rank is a (locally) constant function of the point. The converse is sometimes
true, as is shown in Exercise 5.2 below.

If F is quasicoherent (not necessarily finite type), then F,,/mF, can be interpreted as
the fiber of the sheaf at the point. A section of F over an open set containing p can be said
to take on a value at that point, which is an element of F,,/mF,,.

5.1. Exercise.

(@) If my, ..., m, are generators at P, they are generators in an open neighborhood of

1 fn ,
P. (Hint: Consider coker A™ i ) M and Exercise 4.1.)

(b) Show that at any point, rank(F @& G) = rank(F) + rank(G) and rank(F ® G) =
rank F rank G at any point. (Hint: Show that direct sums and tensor products com-
mute with ring quotients and localizations, i.e. (M@®N)®g(R/I) = M/IM®N/IN,
(M@RN) XR (R/I) = (M®R R/I) ®R/I (N KR R/I) = M/IM ®R/I N/IM, etc.) Thanks
to Jack Hall for improving this problem.

(c) Show that rank is an upper semicontinuous function on X. (Hint: Generators at P
are generators nearby.)

5.2. Important Exercise. If X is reduced, F is coherent, and the rank is constant, show that
F is locally free. (Hint: choose a point p € X, and choose generators of the stalk F,,. Let
U be an open set where the generators are sections, so we have a map ¢ : O™ — Flu.
The cokernel and kernel of ¢ are supported on closed sets by Exercise 4.1. Show that
these closed subsets don’t include p. Make sure you use the reduced hypothesis!) Thus
coherent sheaves are locally free on a dense open set. Show that this can be false if X is
not reduced. (Hint: Spec k[x]/x%, M = k.)

You can use the notion of rank to help visualize finite type sheaves, or even quasico-
herent sheaves. (We discussed first finite type sheaves on reduced schemes. We then
generalized to quasicoherent sheaves, and to nonreduced schemes.)

5.3. Exercise: Geometric Nakayama. Suppose X is a scheme, and F is a finite type
quasicoherent sheaf. Show that if 7, ® k(x) = 0, then there exists V such that F|y, = 0.
Better: if I have a set that generates the fiber, it generates the stalk.

5.4. Less important Exercise. Suppose F and G are finite type sheaves such that 7 ©® G =
Ox. Then F and ¢ are both invertible (Hint: Nakayama.)  This is the reason for the
adjective “invertible” these sheaves are the invertible elements of the “monoid of finite
type sheaves”.

6. QUASICOHERENT SHEAVES OF IDEALS, AND CLOSED SUBSCHEMES

This section is important, and short only because we have built up some machinery.
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We now define closed subschemes, and what it means for some functions on a scheme
to “cut out” another scheme. The intuition we want to make precise is that a closed
subscheme of X is something that on each affine looks like Spec R/1 “<—" SpecR.

Suppose Z — Ox is a quasicoherent sheaf of ideals. (Quasicoherent sheaves of ideals are,
not suprisingly, sheaves of ideals that are quasicoherent.) Not all sheaves of ideals are
quasicoherent.

6.1. Exercise. (A non-quasicoherent sheaf of ideals) Let X = Speck(x](y), the germ of the
affine line at the origin, which has two points, the closed point and the generic point 1.
Define Z(X) = {0} € Ox(X) = klxlx), and Z(n) = k(x) = Ox(n). Show that 7 is not a
quasicoherent sheaf of ideals.

The cokernel of 7 — Ox is also quasicoherent, so we have an exact sequence of quasi-
coherent sheaves

() 027 — Ox— Ox/IT —0.

(This exact sequence will come up repeatedly. We could call it the closed subscheme exact
sequence.) Now Ox/Z is finite tyupe (as over any affine open set, the corresponding mod-
ule is generated by a single element), so Supp Ox/Z is a closed subset. Also, Ox/Z is a
sheaf of rings. Thus we have a topological space Supp Ox/Z with a sheaf of rings. I claim
this is a scheme. To see this, we look over an affine open set Spec R. Here I'(Spec R, 7) is
anideal I of R. Then I'(Spec R, Ox/T) = R/I (because quotients behave well on affine open
sets).

I claim that on this open set, Supp Ox/Z is the closed subset V(I), which I can identify
with the topological space Spec R/I. Reason: [p] € Supp(Ox/Z) if and only if (R/I), # 0 if
and only if p contains I if and only if [p] € SpecR/I.

(Remark for experts: when you have a sheaf supported in a closed subset, you can
interpret it as a sheaf on that closed subset. More precisely, suppose X is a topological
space, i: Z — Xis an inclusion of a closed subset, and F is a sheaf on X with Supp F C Z.
Then we have a natural map F — 1,i~'F (corresponding to the map i~'F — i~'F, using
the adjointness of 1! and 1,). You can check that this is an isomorphism on stalks, and
hence an isomorphism, so F can be interpreted as the pushforward of a sheaf on the
closed subset. Thanks to Jarod and Joe for this comment.)

I next claim that on the distinguished open set D(f) of Spec R, the sections of Ox/Z are
precisely (R/I)f = R¢/I;. (Reason that (R/I)¢ = R¢/Iy: take the exact sequence 0 — I —
R — R/I — 0 and tensor with Ry, which preserves exactness.) Reason: On SpecR, the
sections of Ox/Z are R/I, and Ox/T is quasicoherent, hence the sections over D(f) are

(R/D)s.
That's it!

We say that a closed subscheme of X is anything arising in this way from a quasicoherent
sheaf of ideals. In other words, there is a tautological correspondence between quasico-
herent sheaves of ideals and closed subschemes.
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Important remark. Note that closed subschemes of affine schemes are affine. (This is
tautological using our definition, but trickier using other definitions.)

Exercise. Suppose F is a locally free sheaf on a scheme X, and s is a section of F.
Describe how s = 0 “cuts out” a closed subscheme. (A picture is very useful here!)

6.2. Reduction of a scheme. The reduction of a scheme is the “reduced version” of the
scheme. If R is a ring, then the nilradical behaves well with respect to localization with
respect to an element of the ring: 91(R)¢ is naturally isomorphic to 9(R¢) (check this!).
Thus on any scheme, we have an ideal sheaf of nilpotents, and the corresponding closed
subscheme is called the reduction of X, and is denoted X™4. We will soon see that Xrd
satisfies a universal property; we will need the notion of a morphism of schemes to say
what this universal property is.

6.3. Unimportant exercise.

(a) X4 has the same underlying topological space as X: there is a natural homeomor-
phism of the underlying topological spaces X™ = X. Picture: taking the reduction
may be interpreted as shearing off the fuzz on the space.

(b) Give an example to show that it is ot true that I'(X™, Oywa) = T(X, Ox)/+/T (X, Ox).
(Hint: [ [, Speck[t]/(t™) with global section (t,t,t,...).) Motivation for this ex-
ercise: this is true on each affine open set.

By Exercise 4.1, we have that the reduced locus of a locally Noetherian scheme is open.
More precisely: Let Z be the ideal sheaf of X4, so on X we have an exact sequence

027 — Ox — Oxea = 0

of quasicoherent sheaves on X. Then 7 is coherent as X is locally Noetherian. Hence
the support of I is closed. The complement of the support of I is the reduced locus.
Geometrically, this says that “the fuzz is on a closed subset”. (A picture is really useful
here!)

6.4. Important exericse (the reduced subscheme induced by a closed subset). Suppose
X is a scheme, and K is a closed subset of X. Show that the following construction de-
termines a closed subscheme Y: on any affine open subset Spec R of X, consider the ideal
I(K N SpecR). This is called the reduced subscheme induced by K. Show that Y is reduced.

7. DISCUSSION OF FUTURE TOPICS

I then discussed the notion of when a sheaf is generated by global sections, and gave a
preview of quasicoherent sheaves on projective A-schemes. These ideas will appear in
the notes for class 16.
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