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1. PROPERTIES OF SCHEMES

We’re now going to define properties of schemes. We’ll start with some topological
properties.

I’ve already defined what it means for a topological space to be irreducible: if X is the
union of two closed subsets U ∪ V , then either X = U or X = V .

Problem A4 on problem set 3 implies that An
k is irreducible. There is a one-line answer.

This argument “behaves well under gluing”, yielding:

1.1. Exercise. Show that Pn
k is irreducible.

1.2. Exercise. You showed earlier that for affine schemes, there is a bijection between
irreducible closed subsets and points. Show that this is true of schemes as well.

In the examples we have considered, the spaces have naturally broken up into some
obvious pieces. Let’s make that a bit more precise.

A topological space X is called Noetherian if it satisfies the descending chain condition
for closed subsets: any sequence Z1 ⊇ Z2 ⊃ · · · of closed subsets eventually stabilizes:
there is an r such that Zr = Zr+1 = · · · .

I showed some examples on A
2, to show that it can take arbitrarily long to stabilize.
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All of the cases we have considered have this property, but that isn’t true of all rings.
The key characteristic all of our examples have had in common is that the rings were
Noetherian. Recall that a ring is Noetherian if ascending sequence I1 ⊂ I2 ⊂ · · · of closed
ideals eventually stabilizes: there is an r such that Ir = Ir+1 = · · · .

Here are some quick facts about Noetherian rings. You should be able to prove them
all.

• Fields are Noetherian. Z is Noetherian.
• If R is Noetherian, and I is any ideal, then R/I is Noetherian.
• If R is Noetherian, and S is any multiplicative set, then S−1R is Noetherian.
• In a Noetherian ring, any ideal is finitely generated. Any submodule of a finitely

generated module over a Noetherian ring is finitely generated.

The next fact is non-trivial.

1.3. The Hilbert basis theorem. — If R is Noetherian, then so is R[x].

Proof omitted. (This was done in Math 210.)

(I then discussed the game of Chomp. The fact that the game of infinite chomp is guar-
anteed to end is an analog of the Hilbert basis theorem. In fact, this is a consequence of the
Hilbert basis theorem — the fact that infinite chomp is guaranteed to end corresponds to
the fact that any ascending chain of monomial ideals in k[x, y] must eventually stabilize.
I learned of this cute fact from Rahul Pandharipande. If you prove the Chomp problem,
you’ll understand how to prove the Hilbert basis theorem.)

Using these results, then any polynomial ring over any field, or over the integers, is
Noetherian — and also any quotient or localization thereof. Hence for example any
finitely-generated algebra over k or Z, or any localization thereof is Noetherian.

1.4. Exercise. Prove the following. If R is Noetherian, then Spec R is a Noetherian
topological space. If X is a scheme that has a finite cover X = ∪n

i=1 Spec Ri where Ri is
Noetherian, then X is a Noetherian topological space.

Thus Pn
k and Pn

Z
are Noetherian topological spaces: we built them by gluing together a

finite number of Spec’s of Noetherian rings.

If X is a topological space, and Z is an irreducible closed subset not contained in any
larger irreducible closed subset, Z is said to be an irreducible component of X. (I drew a
picture.)

1.5. Exercise. If R is any ring, show that the irreducible components of Spec R are in
bijection with the minimal primes of R. (Here minimality is with respect to inclusion.)

For example, the only minimal prime of k[x, y] is (0). What are the minimal primes of
k[x, y]/(xy)?
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1.6. Proposition. — Suppose X is a Noetherian topological space. Then every non-empty closed
subset Z can be expressed uniquely as a finite union Z = Z1∪· · ·∪Zn of irreducible closed subsets,
none contained in any other.

As a corollary, this implies that a Noetherian ring R has only finitely many minimal
primes.

Proof. The following technique is often called Noetherian induction, for reasons that will
become clear.

Consider the collection of closed subsets of X that cannot be expressed as a finite union
of irreducible closed subsets. We will show that it is empty. Otherwise, let Y1 be one
such. If it properly contains another such, then choose one, and call it Y2. If this one
contains another such, then choose one, and call it Y3, and so on. By the descending chain
condition, this must eventually stop, and we must have some Yr that cannot be written as
a finite union of irreducible closed subsets, but every closed subset contained in it can be
so written. But then Yr is not itself irreducible, so we can write Yr = Y ′∪Y ′′ where Y ′ and Y ′′

are both proper closed subsets. Both of these by hypothesis can be written as the union of
a finite number of irreducible subsets, and hence so can Yr, yielding a contradiction. Thus
each closed subset can be written as a finite union of irreducible closed subsets. We can
assume that none of these irreducible closed subsets contain any others, by discarding
some of them.

We now show uniqueness. Suppose

Z = Z1 ∪ Z2 ∪ · · · ∪ Zr = Z ′

1 ∪ Z ′

2 ∪ · · · ∪ Z ′

s

are two such representations. Then Z ′

1 ⊂ Z1∪Z2∪· · ·∪Zr, so Z ′

1 = (Z1∩Z ′

1)∪· · ·∪(Zr∩Z ′

1).
Now Z ′

1 is irreducible, so one of these is Z ′

1 itself, say (without loss of generality) Z1 ∩ Z ′

1.
Thus Z ′

1 ⊂ Z1. Similarly, Z1 ⊂ Z ′

a for some a; but because Z ′

1 ⊂ Z1 ⊂ Z ′

a, and Z ′

1 is
contained in no other Z ′

i, we must have a = 1, and Z ′

1 = Z1. Thus each element of the list
of Z’s is in the list of Z ′’s, and vice versa, so they must be the same list. �

1.7. Connectedness and quasicompactness.

Definition. A topological space X is connected if it cannot be written as the disjoint
union of two non-empty open sets.

We say that a subset Y of X is a connected component if it is connected, and both open
and closed. Remark added later: Thanks to Anssi for pointing out that this is not the
usual definition of connected component. The usual definition, which deals with more
pathological situations, implies this one. At some point I might update these notes and
say more.

1.8. Exercise. Show that an irreducible topological space is connected.

1.9. Exercise. Give (with proof!) an example of a scheme that is connected but reducible.
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We have already defined quasicompact.

1.10. Exercise. Show that a finite union of affine schemes is quasicompact. (Hence Pn
k is

quasicompact.) Show that every closed subset of an affine scheme is quasicompact. Show
that every closed subset of a quasicompact scheme is quasicompact.

The last topological property I should discuss is dimension. But that will take me some
time, and it will involve some non-topological issues, so I’ll first talk about an important
non-topological property. Remember that one of the alarming things about schemes is
that functions are not determined by their values at points, and that was because of the
presence of nilpotents.

1.11. Definition. We will say that a ring is reduced if it has no nilpotents. A scheme is
reduced if OX(U) has no nonzero nilpotents for any open set U of X.

An example of a nonreduced affine scheme is k[x, y]/(xy, x2). Picture: y-axis with some
fuzz at the origin (I drew this). The fuzz indicates that there is some nonreducedness
going on at the origin. Here are two different functions: y and x + y. Their values agree
at all points. They are actually the same function on the open set D(y), which is not
surprising, as D(y) is reduced, as the next exercise shows.

1.12. Exercise. Show that
(

k[x, y]/(xy, x2)
)

y
has no nilpotents. (Hint: show that it is

isomorphic to another ring, by considering the geometric picture.)

1.13. Exercise. Show that a scheme is reduced if and only if none of the stalks have
nilpotents. Hence show that if f and g are two functions on a reduced scheme that agree
at all points, then f = g.

Definition. A scheme is integral if OX(U) is an integral domain for each open set U of
X.

1.14. Exercise. Show that an affine scheme Spec R is integral if and only if R is an integral
domain.

1.15. Exercise. Show that a scheme X is integral if and only if it is irreducible and
reduced.

1.16. Exercise. Suppose X is an integral scheme. Then X (being irreducible) has a generic
point η. Suppose Spec R is any non-empty affine open subset of X. Show that the stalk at
η, OX,η, is naturally Frac R. This is called the function field of X. It can be computed on any
non-empty open set of X (as any such open set contains the generic point).

1.17. Exercise. Suppose X is an integral scheme. Show that the restriction maps resU,V :
OX(U) → OX(V) are inclusions so long as V 6= ∅. Suppose Spec R is any non-empty affine
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open subset of X (so R is an integral domain). Show that the natural map OX(U) → OX,η =
FracR (where U is any non-empty open set) is an inclusion.

2. DIMENSION

Our goal is to define the dimension of schemes. This should agree with, and generalize,
our geometric intuition. (Careful: if you are thinking over the complex numbers, our
dimensions will be complex dimensions, and hence half that of the “real” picture.) We
will also use it to prove things; as a preliminary example, we will classify the prime ideals
of k[x, y].

It turns out that the right definition is purely topological — it just depends on the topo-
logical space, and not at all on the structure sheaf. Define dimension by Krull dimension:
the supremum of lengths of chains of closed irreducible sets, starting indexing with 0.
This dimension is allowed to be ∞. Define the Krull dimension of a ring to be the Krull
dimension of its topological space. It is one less than the length of the longest chain of
nested prime ideals you can find. (You might think a Noetherian ring has finite dimen-
sion, but this isn’t necessarily true. For a counterexample by Nagata, who is the master of
all counterexamples, see Eisenbud’s Commutative Algebra with a View to Algebraic Geometry,
p. 231.)

(Scholars of the empty set can take the dimension of the empty set to be −∞.)

Obviously the Krull dimension of a ring R is the same as the Krull dimension of R/N:
dimension doesn’t care about nilpotents.

For example: We have identified the prime ideals of k[t], so we can check that dim A1 =
1. Similarly, dim Spec Z = 1. Also, dim Spec k = 0, and dim Spec k[x]/x2 = 0.

Caution: if Z is the union of two closed subsets X and Y, then dimZ = max(dim X, dim Y).
In particular, if Z is the disjoint union of something of dimension 2 and something of
dimension 1, then it has dimension 2. Thus dimension is not a “local” characteristic of a
space. This sometimes bothers us, so we will often talk about dimensions of irreducible
topological spaces. If a topological space can be expressed as a finite union of irreducible
subsets, then say that it is equidimensional or pure dimensional (resp. equidimensional of
dimension n or pure dimension n) if each of its components has the same dimension
(resp. they are all of dimension n).

The notion of codimension of something equidimensional in something equidimensional
makes good sense (as the difference of the two dimensions). Caution (added Nov. 6):
there is another possible definition of codimension, in terms of height, defined later. Hartshorne
uses this second definition. These two definitions can disagree — see e.g. the example of
“height behaving badly” in the Class 9 notes. So we will be very cautious in using then
word “codimension”.

An equidimensional dimension 1 (resp. 2, n) topological space is said to be a curve
(resp. surface, n-fold).

5



2.1. Reality check. Show that dim R/p ≤ dim R, where p is prime. Hope: equality holds if
and only if p = 0 or dim R/p = ∞. It is immediate that if R is a finite-dimensional domain,
and p 6= 0, then we have inequality.

Warning: in all of the examples we have looked at, they behave well, but dimension can
behave quite pathologically. But in good situations, including ones that come up more
naturally in nature, it doesn’t. For example, in cases involving a finite number variables
over a field, dimension follows our intuition. More precisely:

2.2. Big Theorem of today. — Suppose R is a finitely-generated domain over a field k. Then
dim Spec R is the transcendence degree of the fraction field Frac(R) over k.

(By “finitely generated domain over k”, I mean “a finitely generated k-algebra that is
an integral domain”. I’m just trying to save ink.)

Note that these finitely generated domains over k can each be described as the ring of
functions on an irreducible subset of some An: given such a domain, choose generators
x1, . . . , xn. Conversely, if p ⊂ k[x1, . . . , xn] is any prime ideal, then dim Spec k[x1, . . . , xn]/p
is the transcendence degree of k[x1, . . . , xn]/p over k.

Before getting to the proof, I want to discuss some consequences.

2.3. Corollary. — dim An
k = n.

We can now confirm that we have named all the primes of k[x, y] where k is alge-
braically closed. Recall that we have discovered the primes (0), f(x, y) where f is irre-
ducible, and (x − a, y − b) where a, b ∈ k. By the Nullstellensatz, we have found all
the closed points, so we have found all the irreducible subsets of dimension 0. As A2

k is
irreducible, there is only one irreducible subset of dimension 2. So it remains to show
that all the irreducible subsets of dimension 1 are of the form V(f(x, y)), where f is an
irreducible polynomial. Suppose p is a prime ideal corresponding to an irreducible sub-
set of dimension 1. Suppose g ∈ p is non-zero. Factor g into irreducibles: g1 · · ·gn ∈ p.
Then as p is prime, one of the gi’s, say g1, lies in p. Thus (g1) ⊂ p. Now (g1) is a prime
ideal, and hence cuts out an irreducible subset, which contains V(p). It can’t strictly con-
tain V(p), as its dimension is no bigger than 1, and the dimension of V(p) is also 1. Thus
V((g1)) = V(p). But they are both prime ideals, and by the bijection between irreducible
closed subsets and prime ideals, we have p = (g1).

Here are two more exercises added to the notes on November 5.

2.4. Exercise: Nullstellensatz from dimension theory. (a) Prove a microscopically
stronger version of the weak Nullstellensatz: Suppose R = k[x1, . . . , xn]/I, where k is
an algebraically closed field and I is some ideal. Then the maximal ideals are precisely
those of the form (x1 − a1, . . . , xn − an), where ai ∈ k.
(b) Suppose R = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of R has a residue field that is a finite extension of k. [Hint for both:
the maximal ideals correspond to dimension 0 points, which correspond to transcendence
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degree 0 extensions of k, i.e. finite extensions of k. If k is algebraically closed, the max-
imal ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix one such surjection. Let
ai = f(xi), and show that the corresponding maximal ideal is (x1 − a1, . . . , xn − an).]

2.5. Important Exercise. Suppose X is an integral scheme, that can be covered by open
subsets of the form Spec R where R is a finitely generated domain over k. Then dim X is
the transcendence degree of the function field (the stalk at the generic point) OX,η over k.
Thus (as the generic point lies in all non-empty open sets) the dimension can be computed
in any open set of X.

Here is an application that you might reasonably have wondered about before thinking
about algebraic geometry. I don’t think there is a simple proof, but maybe I’m wrong.

2.6. Exercise. Suppose f(x, y) and g(x, y) are two complex polynomials (f, g ∈ C[x, y]).
Suppose f and g have no common factors. Show that the system of equations f(x, y) =
g(x, y) = 0 has a finite number of solutions.

Let’s start to prove the big theorem! If R is a finitely generated domain over k, tem-
porarily define dimtr R = dimtr Spec R to be the transcendence degree of Frac(R) over k.
We wish to show that dimtr R = dim R. After proving the big theorem, we will discard the
temporary notation dimtr.

2.7. Lemma. — Suppose R is an integral domain over k (not necessarily finitely generated,
although that is the case we will care most about), and p ⊂ R a prime. Then dimtr R ≥ dimtr R/p,
with equality if and only p = (0), or dimtr R/p = ∞.

You should have a picture in your mind when you hear this: if you have an irreducible
space of finite dimension, then any proper subspace has strictly smaller dimension —
certainly believable!

This implies that dim R ≤ dimtr R.

Proof. You can quickly check that if p = (0) or dimtr R/p = ∞ then we have equality, so
we’ll assume that p 6= (0), and dimtr R/p = n < ∞. Choose x1, . . . , xn in R such that their
residues x1, . . . , xn are algebraically independent. Choose any y 6= 0 in p. Assume for the
sake of contradiction that dimtr R = n. Then y, x1, . . . , xn cannot be algebraically inde-
pendent over k, so there is some irreducible polynomial f(Y, X1, . . . , Xn) ∈ k[Y, X1, . . . , Xn]
such that f(y, x1, . . . , xn) = 0 (in R). This irreducible f is not (a multiple of) Y, as otherwise
f(y, x1, . . . , xn) = y 6= 0 in R. Hence f contains monomials that are not multiples of Y, so
F(X1, . . . , Xn) := f(0, X1, . . . , Xn) ∈ k[X1, . . . , Xn] is non-zero. Reducing f(y, x1, . . . , xn) = 0

modulo p gives us

F(x1, . . . , xn) = f(0, x1, . . . , xn) = 0 in R/p

contradicting the algebraic independence of x1, . . . , xn. �
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At the end of the class, I stated the following, which will play off of our lemma to prove
the big theorem.

2.8. Krull’s principal ideal theorem (transcendence degree version). — Suppose R is a finitely
generated domain over k, f ∈ R, p a minimal prime of R/f. Then if f 6= 0, dimtr R/p = dimtr R−1.

This is best understood geometrically:

2.9. Theorem (geometric interpretation of Krull). — Suppose X = Spec R where R is a finitely
generated domain over k, g ∈ R, Z an irreducible component of V(g). Then if g 6= 0, dimtr Z =
dimtr X − 1.

In other words, if you have some irreducible space of finite dimension, then any non-
zero function on it cuts out a set of pure codimension 1.

We’ll see how these two geometric statements will quickly combine to prove our big
theorem.

E-mail address: vakil@math.stanford.edu
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