MODERN ALGEBRA (MATH 210) PROBLEM SET 7

- **1.** Are the following ideals prime in $\mathbb{C}[x,y]$? (a) (x,y-1), (b) (x,y^2) (c) $(y-x^2,y-1)$.
- 2. Must any finite integral domain be a field?
- **3.** Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$. (*Hint:* Use the fact that $I = (\alpha)$ for some nonzero α and then use the division algorithm to see that every coset of I is represented by an element of norm less than $N(\alpha)$.)

4.

- (a) Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares. (For example, $13 = (1/5)^2 + (18/5)^2 = 2^2 + 3^2$.)
- (b) Determine all the representations of the integer $2130797 = 17^2 \cdot 73 \cdot 101$ as the sum of two squares.
- (c) Find gcd(47 13i, 53 + 56i) in $\mathbb{Z}[i]$.
- **5.** Let I and J be ideals of a commutative ring R.
 - (a) Prove that I + J is the smallest ideal of R containing both I and J.
 - (b) Prove that IJ is an ideal contained in $I \cap J$.
 - (c) Give an example where $IJ \neq I \cap J$.
 - (d) Prove that if I + J = R then $IJ = I \cap J$.
- **6.** ("Characterization of Noetherian rings") Show that a ring in which all ideals are finitely generated cannot have an infinite sequence of ideals

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$
.

Conversely, show that if a ring has no infinite sequence of ideals, then all ideals are finitely generated.

- 7. Note that $\omega = \frac{-1+\sqrt{-3}}{2}$ is a cube root of 1, and $\omega^2 + \omega + 1 = 0$.
 - (a) Prove that the subset $\{x + y\omega \in \mathbb{Z}[\omega] : x + y \text{ is divisible by 3} \}$ is an ideal of $\mathbb{Z}[\omega]$. Is it prime?
 - (b) Show that $\mathbb{Z}[\omega]$ is a Euclidean domain, hence a Unique Factorization Domain. (Hint: recall the proof for the Gaussian integers $\mathbb{Z}[i]$.)
 - (c) Factor 2, 3, 5, and 7 into primes in $\mathbb{Z}[\omega]$. (Which one of them has a repeated prime factor? This prime factor is key to an elementary proof of Fermat's Last Theorem for n = 3. If you'd like to see it, just ask me.)

This set is due Monday, Nov. 29 at noon at Jarod Alper's door, 380–J.