MODERN ALGEBRA (MATH 210) PRACTICE FINAL EXAM

My office hours will be Sunday 2–4 pm, Monday 8–10 pm, Tuesday 8–10 pm.

- **1.** Suppose P and Q are two normal subgroups of a group G such that $P \cap Q = \{e\}$. Show that any two elements $p \in P$, $q \in Q$ commute.
- **2.** Suppose G is a finite subgroup, with only one Sylow subgroup for each prime. Show that G is isomorphic to the product of its Sylow subgroups.
- 3. (Burnside's Lemma) Let G act on a finite set X. If N is the number of orbits, then

$$N = \frac{1}{|G|} \sum_{\tau \in G} \operatorname{Fix}(\tau)$$

where $\operatorname{Fix}(\tau)$ is the number of $x \in X$ fixed by τ . (Hint: $\sum_{\tau \in G} \operatorname{Fix}(\tau) = \#\{(\tau \in G, x \in X) : \tau x = x\}$.)

- **4.** Let $\phi : R \to S$ be a homomorphism of commutative rings.
- (a) Prove that if $\mathfrak p$ is a prime ideal of S then either $\varphi^{-1}(\mathfrak p)=R$ or $\varphi^{-1}(\mathfrak p)$ is a prime ideal of R.
- (b) Prove that if \mathfrak{m} is a maximal ideal of S and φ is surjective then $\varphi^{-1}(\mathfrak{m})$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.
- **5.** Let R be a commutative ring. We say that an element $x \in R$ is *nilpotent* if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove that the set of nilpotent elements form an ideal called the *nilradical* of R and denoted by $\mathfrak{N}(R)$.
- **6.** Let τ be the golden mean $\frac{1+\sqrt{5}}{2}$. Show that $\mathbb{Z}[\tau]$ has infinitely many units.
- 7. Show that if an irreducible cubic in $\mathbb{Q}[x]$ has two complex roots and one real root, then its splitting field is a degree 6 extension of \mathbb{Q} .
- **8.** Suppose p is an odd prime. Let ζ be a primitive root of unity. Show that the minimal polynomial for ζ over $\mathbb Q$ is $t^{p-1}+t^{p-2}+\cdots+1$. Show that $\mathbb Q(\zeta)$ is Galois over $\mathbb Q$, of degree p, and describe the Galois group.
- **9.** Suppose q is a prime power. Show that there are $(q^3 q)/3$ irreducible monic degree 3 polynomials in $\mathbb{F}_q[x]$. (*Hint:* Consider the elements of \mathbb{F}_{q^3} and their minimal polynomials over q.)

Good luck!