SKETCHES OF SOLUTIONS TO 18.024 PRACTICE QUIZ II

- 1. (16 points) Consider the curve given in polar coordinates by $r = e^{-t}$, $\theta = t$ for $0 \le t \le 2M\pi$ (M a positive integer).
 - (a) Sketch this curve when M=2.
 - (b) Find the length of this curve for general M. What happens as M becomes large?

Solution. (a) Your sketch should wind inwards counterclockwise around the origin twice. (b) Use the formula for \vec{v} (given at the top of the practice quiz) to get

$$\int_0^{2M\pi} \sqrt{(r)^2 + (r')^2} dt = \int_0^{2M\pi} \sqrt{e^{-2t} + e^{-2t}} dt = \sqrt{2} \left(1 - e^{-2M\pi} \right).$$

As $M \to \infty$, the length goes to $\sqrt{2}$.

2. (16 points) A particle moves along a curve C in space. Its acceleration vector has constant length 3 and its speed at time $t \ge 0$ is 1/(1+2t). Find the curvature of the curve in terms of t.

Solution. Use the formula

$$\vec{a} = v'\vec{T} + \kappa v^2 \vec{N}$$

(the second equation given at the top of the practice quiz) from which

$$||\vec{a}||^2 = (v')^2 + \kappa^2 v^4.$$

This gives

$$\kappa = \sqrt{36t^2 + 36t + 5}$$

- **3.** (20 points)
- (a) Complete the definition. A vector-valued function

$$\vec{f}: S \to \mathbb{R}^3$$

where $S \subset \mathbb{R}^2$ contains a ball $B(\vec{a};r)$ of radius r around $\vec{a} \in \mathbb{R}^2$ is said to be differentiable at \vec{a} if for all $\vec{v} \in [\text{blank}]$,

$$\vec{f}(\vec{a} + \vec{v}) = \vec{f}(\vec{a}) + T_a \vec{v} + |\vec{v}| E_{\vec{a}}(\vec{v})$$

where [blank]. (Hint: the second blank is a fact about the function $E_{\vec{a}}$.)

(b) Let f(x, y) be a function defined in \mathbb{R}^2 (the plane). Answer the following questions "yes" or "no" (+3 points for each correct answer, -3 for each incorrect answer).

Date: Spring 2001.

- (i) Suppose that D_1f and D_2f exist at (0,0). Does it follow that f is continuous at (0,0)? Y/N Does it follow that the functions g(t) = f(t,0)and h(t) = f(0,t) are continuous at t = 0? **Y/N**
- (ii) Suppose that D_1f and D_2f exist in a neighborhood of (0,0) and are continuous at (0,0). Does it follow that f is continuous at (0,0)? $\mathbf{Y/N}$ Does it follow that $f'(\vec{0}; \vec{y})$ exists for all \vec{y} ? $\mathbf{Y/N}$

Solution. (a) $\vec{v} \in B(\vec{0}; r)$ (not $B(\vec{a}; r)$ — do you see why?); $E_{\vec{a}}(\vec{v}) \to 0$ as $\vec{v} \to \vec{0}$ (remember to write $\vec{0}$ not 0 for the zero vector). (b) (i) NY (b) YY.

4. (16 points)

- (a) Suppose f(x, y, z) is a differentiable scalar-valued function such that f(1, 1, 1) =2, and the $\nabla f(1,1,1) = (3,4,5)$. Find the (Cartesian) equation of the tangent plane to the level surface f(x, y, z) = 2 at (x, y, z) = (1, 1, 1).
- (b) Suppose f(x,y) is a differentiable scalar-valued function such that f(1,1)=2, and $\nabla f(1,1) = (3,4)$. Find the (Cartesian) equation of the tangent plane to the graph of f (i.e. z = f(x, y)) when (x, y) = (1, 1).
- (c) Show that $f(x,y) = (\sin x)(\sin y)$ has a critical point (i.e. the gradient is $\overline{0}$) at (x, y) = (0, 0). Does f have a minimum, maximum, or saddle point here?

Solution. For (a) and (b), use the gradient. (a) 3(x-1)+4(y-1)+5(z-1)=0, or 3x + 4y + 5z = 12 (either is acceptable of course). (b) 3(x-1) + 4(y-1) - (z-2) = 0or (z-2) = 3(x-1) + 4(y-1) or z = 3x + 4y - 5. (c) Saddle points (using second derivative test). (You can also see this geometrically: which direction can you walk from (0,0) so f decreases? Increases?)

5. (16 points) Given a differentiable function F(u, v), consider the composite function f(x,y) = F(3x-y,2x-y). Find $\frac{\partial f}{\partial x}(1,1)$ if $D_1F(1,1) = -4$, $D_1F(2,1) = 7$, $D_2F(1,1) = 3, D_2F(2,1) = -3.$

Solution. Use the chain rule. Let u = 3x - y, v = 2x - y. Then

$$\begin{array}{ll} \frac{\partial f}{\partial x}(1,1) & = & \frac{\partial F}{\partial u}(u=2,v=1)\frac{\partial u}{\partial x}(x=1,y=1) + \frac{\partial F}{\partial v}(u=2,v=1)\frac{\partial v}{\partial x}(x=1,y=1) \\ & = & 7\times 3 + (-3)\times 2 \\ & = & 15. \end{array}$$

(Notice the red herring in the problem: we never use $D_iF(1,1)!$)

6. (16 points) The equation $x^2 + z^3 + yz = 3$ defines z implicitly as a function of x and y, say z = f(x,y). Find $\frac{\partial f}{\partial x}$ in terms of x, y, and z. Find $\frac{\partial^2 f}{\partial x^2}$ in terms of $x, y, z, \text{ and } \frac{\partial f}{\partial x}$.

Solution. Use implicit differentiation. Differentiate $x^2 + f(x,y)^3 + yf(x,y) = 3$ with respect to x to get

$$2x + 3f^2f_x + yf_x = 0$$

from which

from which
$$f_x = \frac{-2x}{3f^2 + y} = \frac{-2x}{3z^2 + y}.$$
 Differentiate this again with respect to x to get

$$f_{xx} = \frac{-2(3f^2 + y) - (-2x)(6ff_x)}{(3f^2 + y)^2} = \frac{-2(3z^2 + y) - (-2x)(6zf_x)}{(3z^2 + y)^2}.$$

If you wanted, you could substitute the formula for f_x (in terms of x, y, and z) into this one, but it would be ugly, and nothing much would be gained.)