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Abstract

These notes are a compilation of pieces from the notes by Julien Berestycki, [1] Anton
Bovier [2] and Ofer Zeitouni [13]. All mistakes are mine, all insights are theirs, even if
occasionally misinterpreted.

1 Branching Brownian motion

In these notes, we will be concerned with the time evolution of a large number of particles.
Usually, their number will grow in time as well. The simplest such example would be to take N
particles x1, x2(t), . . . , xN(t), with each particle performing an independent copy of a fixed
random process. For example, each xk(t) can be a standard Brownian motion in Rd, d ≥ 1,
starting at the point xj(0) = 0. However, if we fix the number N of particles and consider
what happens as t→ +∞, the configuration would become really sparse in space. Hence, it
may be more interesting to let the number of particles to grow in time, to keep their density
from vanishing.

Such models involving an increasing number of particles appear very naturally in the
context of biological invasions in ecology, as well as in SIR-type models of epidemics. A
simple and common process of this type is the binary branching Brownian motion. It is
described as follows. A single particle starts at a position x ∈ Rd at t = 0 and performs a
standard Brownian motion. The particle carries an exponential clock that rings at a random
time τ , with

P(τ > t) = e−t. (1.1)

At the time τ the particle splits into two particles that we will refer to as the children,
and the original particle is sometimes called the parent. The original particle is removed
at the branching event. The two children perform independent standard Brownian motions
for t > τ , both of them starting at the position of the branching event. Each of the children
carries its own exponential clock, and when the corresponding clock rings, the particle splits
into two, and the process continues. Thus, at each time t > 0 we have a collection of
particles x1(t), . . . , xNt(t). Here, Nt − 1 is the random number of times all the clocks rang
until the time t.
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A way to think of this process in terms of epidemics, is a SIR-type model where nobody
is ever removed, but can infect. Each particle meets other particles at the times when the
clock rings and infects one other particle at each ”infection event”.

The above model is usually referred to as a binary Brownian motion since the number of
children is limited to two. A simple modification of the above model is a process where the
particles may produce a random number of k children at each birth event, with

∞∑
k=2

pk = 1, (1.2)

and the average number of children

N̄ =
∞∑
k=2

kpk. (1.3)

We will usually assume that pk decay sufficiently fast as k → +∞.
The total number N(t) of particles present at the time t > 0 can be thought of as a pure

birth process – N(t) can go up but not down. As a warm-up, let us prove the following.

Proposition 1.1 Let N(t) be the number of particles present in the binary BBM with the
exponential clock as in (1.1), then

E(N(t)) = et. (1.4)

Proof. Let us consider the first branching time τ1. If τ1 > t, then N(t) = 1. On the other
hand, if τ1 ≤ t, then the total number of particles at the time t is the total number of particles
coming from the first child born at the time τ1 plus the total number of particles coming from
the second child born at the time τ1. The time elapsed between τ1 and t is t− τ1. This gives
the following recursion relation:

E(N(t)) = P(τ1 > t) + 2E(N(t− τ1))P(τ1 < t) = e−t + 2

∫ t

0

E(N(t− s))P(τ1 ∈ ds)

= e−t + 2

∫ t

0

E(N(t− s))e−sds.
(1.5)

Let us set u(t) = E(N(t)). Then we can write (1.5) as

u(t) = e−t + 2

∫ t

0

u(t− s)e−sds. (1.6)

Differentiating in t gives

du(t)

dt
= −e−t + 2u(0)e−t + 2

∫ t

0

du(t− s)
dt

e−sds = e−t − 2

∫ t

0

e−s
d

ds
(u(t− s))ds

= e−t − 2e−tu(0) + 2u(t)− 2

∫ t

0

e−su(t− s)ds.
(1.7)
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We used above the fact that u(0) = 1 and integrated by parts the last integral in the first
line. Now, we use (1.6) to replace the integral in the very right side of (1.7), and obtain

du(t)

dt
= −e−t + 2u(t)− (u(t)− e−t) = u(t). (1.8)

Since u(0) = 1, we deduce that u(t) = et. �
In the general case, with k children born with probabilities pk, the analog of (1.5) is

E(N(t)) = P(τ > t) +
∞∑
k=2

kpkE(N(t− τ1))P(τ1 < t)

= e−t +
∞∑
k=2

kpk

∫ t

0

E(N(t− s))P(τ1 ∈ ds) = e−t + N̄

∫ t

0

E(N(t− s))e−sds.
(1.9)

Hence, the function u(t) satisfies the following analog of (1.6):

u(t) = e−t + N̄

∫ t

0

u(t− s)e−sds. (1.10)

Exercise 1.2 Show that in this case EN(t) = exp((N̄ − 1)t).

We can actually say more about the total number of particles. Very naively, since the
number of particles is very large, one may think that, in the spirit of the law of large num-
bers, N(t) behaves as N∞e

t, as t→ +∞, where N∞ would be a fixed deterministic constant.

Exercise 1.3 Show this is impossible because, for example, the time of the first branching
event is random and the above guess would indicate that N(t) should also behave as 2N∞e

t−τ1 ,
which would be a contradiction.

However, the guess is not very far from the correct picture, except that N∞ is random.

Proposition 1.4 Let N(t) be the number of particles in the binary BBM, then

M(t) = e−tN(t) (1.11)

is a martingale. Moreover, M(t) converges, as t→ +∞, almost surely and in L1 to a random
variable M∞.

Proof. First, note that M(t) is a positive random variable with E(M(t)) = 1. Hence, it
is integrable. Let us first check that M(t) is a martingale. To see this, we first note that
for t > s we have

E(M(t)|Fs) = E(e−tN(t)|Fs) = e−tE(N(t)|Fs). (1.12)

Recall that the exponential clocks have the ”lack of memory” property:

P(τ > s+ t|τ > t) = P(τ > s). (1.13)
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This is because

P(τ > s+ t|τ > t) =
P(τ > s+ t and τ > t)

P(τ > t)
=

P(τ > s+ t)

P(τ > t)
=
e−(t+s)

e−t

= e−s = P(τ > s).

(1.14)

Note that the lack of memory property is very specific to the exponential clocks, and that is
one reason why using an exponential clock is convenient.

The lack of memory property means that we can reset all the clocks at the time s to zero,
without changing the law of the process for t > s, and deduce from Proposition 1.1 that

E(N(t)|Fs) = N(s)e(t−s). (1.15)

Using this in (1.12) gives

E(M(t)|Fs) = e−tE(N(t)|Fs) = e−tN(s)e(t−s) = e−sN(s) = M(s). (1.16)

Thus, M(t) is a martingale. Doob’s theorem implies that, as M(t) is a martingale, it converges
almost surely, as t → +∞ to a random limit M∞. To prove converges in L1, it suffices to
show that M(t) is uniformly integrable. For that, we can look at

E(M2(t)) = e−2tE(N2(t)). (1.17)

We have the following recursion relation for the function φ2(t) = E(N2(t)), analogous to (1.5):

φ2(t) = P(τ1 < t) +

∫ t

0

(2φ2(t− s) + 2e2(t−s))P(τ1 ∈ ds)

= e−t + 2

∫ t

0

(φ2(t− s) + e2(t−s))e−sds.

(1.18)

Hence, the function
ψ2(t) = φ2(t) + e2t (1.19)

satisfies

ψ2(t) = e−t + e2t + 2

∫ t

0

ψ2(t− s)e−sds. (1.20)

Differentiating in t gives

dψ2(t)

dt
= −e−t + 2e2t + 2e−tψ2(0) + 2

∫ t

0

dψ2(t− s)
dt

e−sds

= 3e−t + 2e2t − 2

∫ t

0

e−s
dψ2(t− s)

ds
ds = 3e−t + 2e2t − 2e−tψ2(0) + 2ψ2(t)

− 2

∫ t

0

e−sψ2(t− s).

(1.21)

Inserting (1.20) into (1.21) and using the fact that ψ2(0) = 2, gives

dψ2(t)

dt
= 2e2t − e−t + 2ψ2(t)− (ψ2(t)− e−t − e2t) = 3e2t + ψ2(t). (1.22)
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It follows that
ψ2(t) = 3e2t − et, (1.23)

and
φ2(t) = 2e2t − et. (1.24)

This gives
γ2(t) := E(M2(t)) = e−2tφ2(t) = 2− e−t. (1.25)

Thus, M(t) is uniformly integrable, and converges to M∞ in L1, as well. �
We can use the above recursive strategy to compute higher moments of N(t). Let us set

φk(t) = E(Nk(t)), γk(t) = E(Mk(t)) = e−ktφk(t).

These functions satisfy the following analog of (1.18):

φk(t) = P(τ1 < t) +

∫ t

0

k∑
m=0

(
k

m

)
φm(t− s)φk−m(t− s)P(τ1 ∈ ds)

= e−t +

∫ t

0

k∑
m=0

(
k

m

)
φm(t− s)φk−m(t− s)e−sds,

(1.26)

and

γk(t)e
kt = P(τ1 < t) +

∫ t

0

k∑
m=0

(
k

m

)
em(t−s)γm(t− s)γk−m(t− s)e(k−m)(t−s)e−sds. (1.27)

The last equation becomes

γk(t) = e−(k+1)t +

∫ t

0

k∑
m=0

(
k

m

)
γm(t− s)γk−m(t− s)e−(k+1)sds. (1.28)

Let us assume that the limits
γ̄k = lim

t→+∞
γk(t) (1.29)

exist. Then, passing to the limit t→ +∞ in (1.28) leads to a recursive equation

γ̄k =
1

k + 1

k∑
m=0

(
k

m

)
γ̄mγ̄k−m =

k!

k + 1

k∑
m=0

γ̄m
m!

γ̄k−m
(k −m)!

(1.30)

We have already computed that γ̄1 = 1 and γ̄2 = 2. It is immediate to see from (1.30) that

γ̄k = k!. (1.31)

Exercise 1.5 Show that M∞ is an exponential variable with parameter 1. Explain why M∞
is determined by what happens early in the branching process.

Exercise 1.6 Generalize the claims of Proposition 1.4 and Exercise 1.5 to a general non-
binary branching with probabilities pk to have k children at each branching event, as in (1.2).
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2 Maximum of a family of independent particles

A consequence of Proposition 1.4 is that we can think of x1(t), . . . , xN(t)(t) as a collection
of approximately M∞e

t random particles, for t � 1, even though M∞ itself is random. An
important point is that the random variables x1(t), . . . , xN(t)(t) are correlated, and the nature
of these correlations will be crucial to us. In particular, the correlations will be very important
when we consider the extrema of such branching processes.

As a first step in this direction, in this section we consider a much simplified model where
no correlations are present. Let us think of N ∈ N as an analog of the time variable for
the BBM and take a large number M of independent particles X1, . . . , XM , with M that
depends on N . In order to mimic the concept that N is the time of the BBM, we assume
that Xk are mean zero Gaussian random variables with variance N . Thus, we can think of
each Xk as a snapshot of a Brownian motion at the time t = N . To make sure that the
number M of these variables also mimics BBM, we assume that it grows exponentially in N ,
as is the case for BBM. We take M = 2N , to ensure that M is an integer. To complete the
model we need to prescribe the correlations between Xk. The key difference with the BBM
is that here, for an infinitely greater simplicity, we assume that all Xk are independent. This
assumption will allow us to calculate many quantities explicitly.

To summarize, one can think of this model as an ”uncorrelated BBM”, in the sense that at
the time N we have 2N particles and each one has variance N , that of the standard Brownian
motion. We are interested in the large N behavior of this system.

2.1 The law of the maximum

The first object we would like to understand is the location of the maximal particle

M̄N = max(X1, . . . , XM). (2.1)

In this simple model, since all particles are identical, this can be done by writing

P(M̄N < y) =
(
P(X1 < y)

)2N
= (1− P(X1 > y)

)2N
. (2.2)

The first question is for which y is this probability of order one. In particular, we are interested
in the median location mN such that

P(M̄N > mN) = 1/2. (2.3)

The second is the width of the transition layer: if we fix ε0 ∈ (0, 1) and consider YN(ε0)
defined by

P(M̄N > YN) = ε0, (2.4)

the question is if the difference
|YN(ε0)−mN | (2.5)

grows in N or stays of order 1 as N → +∞, with ε0 ∈ (0, 1) fixed.
We see from (2.2) that for P(M̄N < y) to be of order one but not too close to 1, we

need P(X1 > y) to be of the order 2−N :

2NP(X1 > y) ∼ O(1). (2.6)
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Note that for large y we have

P(X1 > y) =

∫ ∞
y

e−x
2/(2N) dx√

2πN
=

∫ ∞
y/
√

2N

e−x
2 dx√

π
= (1 + o(1))

√
N

y
√

2π

∫ ∞
y/
√

2N

2xe−x
2

dx

= (1 + o(1))

√
N

y
√

2π
e−y

2/(2N), as N →∞.

(2.7)
Thus, we are looking for y such that

2N
√
N

y
√

2π
e−y

2/(2N) ∼ O(1), (2.8)

which means that, to the leading order, we should be looking at y such that

y2

2N
≈ N log 2, y ≈

√
2 log 2N. (2.9)

Note that y is growing linearly in the ”time” N , and not diffusively, which would be
√
N :

y ≈ c∗N, c∗ =
√

2 log 2. (2.10)

Going back to (2.8), we see that the next order correction requires that

2N
√
Ne−y

2/(2N) ∼ y ≈
√

2 log 2N. (2.11)

This gives

N log 2− y2

2N
≈ 1

2
logN, (2.12)

meaning that

y ≈
(

2N2 log 2−N logN)1/2 = N
√

2 log 2
(

1− logN

2N log 2

)1/2

≈ N
√

2 log 2
(

1− logN

4N log 2

)
= N

√
2 log 2− 1

2
√

2 log 2
logN.

(2.13)

Let us set
c∗ =

√
2 log 2, λ∗ =

√
2 log 2, (2.14)

then (2.13) can be written as

y ≈ c∗N −
1

2λ∗
logN. (2.15)

The fact that λ∗ = c∗ in (2.14) is an unfortunate coincidence and should be ignored. They
do not always coincide in other models and their roles are different, as we will see. This
structure will appear repeatedly later on, and, for reasons to become clear later, the pre-
factor 1/2 in (2.13) indicates that the particles are uncorrelated.
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Exercise 2.1 Make the above approximations precise, controlling the errors and show that
there exists x0 so that the median mN defined in (2.3) satisfies

mN = c∗N −
1

2λ∗
logN + x0 + o(1), as N → +∞. (2.16)

(ii) More generally, show that for any ε0 > 0 there exists xε so that YN(ε0) defined in (2.4)
satisfies

YN(ε0) = c∗N −
1

2λ∗
logN + xε + o(1), as N → +∞. (2.17)

Now that we know how we should choose the centering for y, let us consider the function

uN(y) = P( max
1≤k≤M

Xk > c∗N −
1

2λ∗
logN + y). (2.18)

Using (2.7), we obtain

2NP(X1 > c∗N −
1

2λ∗
logN + y)

=

√
N2N

(c∗N − (1/(2λ∗)) logN + y)
√

2π
e−(c∗N−(1/(2λ∗)) logN+y)2/(2N) + o(1)

=
1

c∗
√

2πN

(
1 +

logN

2λ∗
√
N
− y√

N

)
exp

(
N log 2− c2

∗
2
N +

c∗
2λ∗

logN − c∗y
)

+ o(1)

=
1

c∗
√

2π
e−λ∗y + o(1), as N → +∞.

(2.19)

We used the fact that c∗ = λ∗ above. Going back to (2.2), we see that

1− uN(y) =
(
1− P(X1 > c∗N −

1

2λ∗
logN + y)

)2N
=
(
1− 2−N

1

c∗
√

2π
e−λ∗y

)2N

+ o(1)

= exp
(
− 1

c∗
√

2π
e−λ∗y

)
+ o(1), as N → +∞,

(2.20)
so that

uN(y) = 1− exp
(
− 1

c∗
√

2π
e−λ∗y

)
+ o(1), as N → +∞. (2.21)

Note that the leading order term in the right side above is the Gumbel distribution.

Exercise 2.2 We have used both large y asymptotics in (2.7), and also large N asymptotics
later on. Check the above approximations, to make sure that y taken in (2.13) is sufficiently
large, so that (2.21) does hold for all y ∈ R.

2.2 An upper bound for the maximum: the first moment method

The above computation for the location of the maximum, and the asymptotics in (2.21) is a
little too explicit for an analyst’s taste. Let us now, instead, get some bounds on the location
of the maximum. They will not be as precise as (2.21) but will allow us to introduce two
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methods to bound the distribution of the maximum from above and from below that will be
useful in the analysis of the maximum of BBM.

For the upper bound, we will use what is known as the first moment method. The total
number of particles located to the right of a given y ∈ R can be written as follows (recall
that M = 2N):

MN(y) =
M∑
k=1

1(Xk > y). (2.22)

Note that we have, on one hand,

P( max
1≤k≤M

Xk > y) = P(MN(y) ≥ 1), (2.23)

and on the other,

E(MN(y)) =
M∑
k=1

kP(MN(y) = k) ≥
M∑
k=1

P(MN(y) = k) = P(MN(y) ≥ 1). (2.24)

This gives the following ballpark estimate which is the essence of the first moment method:

P( max
1≤k≤M

Xk > y) ≤ E(MN(y)) = 2NP(X1 > y). (2.25)

We used the fact that the particles are identically distributed in the last step.
This allows us to bound the function uN(y) introduced in (2.18) using (2.19):

uN(y) = P( max
1≤k≤M

Xk > c∗N −
1

2λ∗
logN + y)

≤ 2NP(X1 > c∗N −
1

2λ∗
logN + y) =

1

c∗
√

2π
e−λ∗y + o(1), as N → +∞.

(2.26)

Thus, we have an upper bound

uN(y) = P( max
1≤k≤M

Xk > c∗N −
1

2λ∗
logN + y) ≤ 1

c∗
√

2π
e−λ∗y + o(1), as N → +∞. (2.27)

2.3 A lower bound for the maximum: the second moment method

We may also get a lower bound for uN(x), using what is known as the second moment method.
The starting point is, again, (2.23):

P( max
1≤k≤M

Xk > y) = P(MN(y) ≥ 1). (2.28)

The second moment method estimates the probability in the right side of (2.28) using the
Cauchy-Schwartz inequality

(EMN(y))2 = (E[MN(y)1(MN(y) ≥ 1)])2 ≤ E(MN(y))2E(1(MN(y) ≥ 1))

= E(MN(y))2P(MN(y) ≥ 1).
(2.29)
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It follows that

P( max
1≤k≤M

Xk > y) = P(MN(y) ≥ 1) ≥ (EMN(y))2

E(MN(y))2
. (2.30)

This is convenient as it reduces the computation of a probability to a computation of moments.
The dominator in (2.30) can be written as

E(MN(y)2) = E
( M∑
k=1

1(Xk > y)
)2

= 2NP(X1 > y) + 2N(2N − 1)[P(X1 > y)]2

= E(MN(y)) + (1− 2−N)(E(MN(y)))2.

(2.31)

Hence, if y in (2.31) is such that

E(MN(y)) ∼ O(1), (2.32)

then we have

P( max
1≤k≤M

Xk > y) ≥ (EMN(y))2

E(MN(y))2
=

(EMN(y))2

E(MN(y)) + (1− 2−N)(E(MN(y)))2

=
EMN(y)

1 + E(MN(y))
+ o(1), as N → +∞.

(2.33)

In order to have (2.32), we take y as in (2.26):

E(MN(c∗N −
1

2λ∗
logN + y)) =

1

c∗
√

2π
e−λ∗y + o(1), as N → +∞. (2.34)

The following lower bound follows then from (2.33):

P( max
1≤k≤M

Xk > c∗N −
1

2λ∗
logN + y) ≥ e−λ∗y

c∗
√

2π + e−λ∗y
+ o(1), as N → +∞. (2.35)

Summarizing, we have now obtained upper and lower bounds for the function uN(y):

e−λ∗y

c∗
√

2π + e−λ∗y
+ o(1) ≤ uN(y) ≤ 1

c∗
√

2π
e−λ∗y + o(1), as N → +∞. (2.36)

This tells us that the maximum of X1, . . . , XM is located around

mN = c∗N −
1

2λ∗
logN (2.37)

and gives us the limiting distribution when y is centered at that location. Of course, these
estimates are less precise than the exact expression (2.21) but they give a very good approx-
imation to it.

Let us also note that the upper and lower bounds in (2.36) match as y → +∞, so that,
in particular, we have

eλ∗yuN(y) =
1

c∗
√

2π
+ o(1), as N → +∞ and y → +∞. (2.38)
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2.4 The extremal process

Let us now try to understand how the collection X1, X2, . . . , XM , M = 2N , looks like as a
cloud of points on R. We recenter Xk according to the typical location of the maximum
in (2.37): set Zk by

Xk = mN + Zk. (2.39)

Here, mN is taken to be

mN = c∗N −
1

2λ∗
logN, (2.40)

with
c∗ = λ∗ =

√
2 log 2. (2.41)

Recall that the median m̄N of the maximum M̄N = max1≤k≤M Xk, defined as,

P(M̄N > m̄N) = 1/2, (2.42)

satisfies the asymptotics (2.16)

m̄N = c∗N −
1

2λ∗
logN + x0 + o(1), as N → +∞. (2.43)

Hence, the difference between m̄N and mN is just the constant x0 that is convenient to
eliminate, to shorten some computations.

Exercise 2.3 Show that there exists ε0 ∈ (0, 1) so that

P(M̄N > mN) = ε0 + o(1), as N → +∞. (2.44)

Consider the measure, called a random point process

EN(x) =
M∑
k=1

δ(x− Zk). (2.45)

The process EN is also known as the extremal process because it is re-centered near the
maximum of XN . One should note the difference between the process EN coming from Zk
that are centered at a deterministic location mN given by (2.40), and the process ĒN seen
from the tip:

ĒN(x) =
M∑
k=1

δ(x− Z̄k), (2.46)

generated by
Z̄k = Xk − M̄N , M̄N = max

1≤k≤M
Xk. (2.47)

The points Z̄k are centered at a random location M̄N . Here, we will focus on EN .
Note that the sum in (2.45) involves M = 2N terms, so the total mass of EN is 2N .

However, most of the points Zk are very large: each of Zk is a Gaussian with mean (−mN)
and variance

√
N . Thus, relatively few of Zk will lie in any given compact set, hence it is

perfectly plausible that the measure EN(x) may have a weak limit as N → +∞, even though
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its total mass blows up as N → +∞. We will see how this blowup of the mass is reflected in
the nature of the limit.

We will study EN via its Laplace transform. The Laplace transform of a random point
process EN is defined as follows: given a test function φ ∈ C+

b (R) (the set of bounded non-
negative continuous functions), set

ΨN(φ) = E
(

exp
[
−
∫
φ(x)EN(x)dx

])
= E

(
exp

[
−

M∑
k=1

φ(Zk)
])
. (2.48)

A basic result in the theory of point processes is that the Laplace transform determines the
law of a point process, and that convergence of the Laplace transforms implies convergence
in law of the point processes to some limit – see Appendix to [2].

In the present case, the asymptotics of the Laplace transform of Z1, . . . , ZM can be com-
puted essentially explicitly in the limit N → +∞. First, we write

ΨN(φ) = E
(

exp
[
−

2N∑
k=1

φ(Zk)
])

=
[
E(exp(−φ(Z1)))

]2N
, (2.49)

and decompose

E(exp(−φ(Z1))) = 1 +
[
E(exp(−φ(Z1)))− 1

]
. (2.50)

Let us look at the second term in the parentheses: recall that Z1 is a Gaussian with the
mean (−mN) and variance N . Hence, we have

E(exp(−φ(Z1)))− 1 =
1√

2πN

∫
e−(x+mN )2/2N

[
e−φ(x) − 1

]
dx

=
1√

2πN

∫
exp

{
− x2

2N
− m2

N

2N
− mNx

N

}[
e−φ(x) − 1

]
dx

=
1√

2πN

∫
exp

{
− c2

∗N
2 − (c∗/λ∗)N logN + 1/(4λ2

∗) log2N

2N
− (c∗N − 1/(2λ∗) logN)x

N

}
× exp

(
− x2

2N

)[
e−φ(x) − 1

]
dx.

(2.51)
Recall that c∗ =

√
2 log 2 and λ∗ = c∗. This gives

E(exp(−φ(Z1)))− 1 =
2−N√

2π

∫
e−λ∗x

[
e−φ(x) − 1

]
dx+ o

(
2−N

)
, as N → +∞. (2.52)

Thus, the second term in the parentheses in (2.50) is of the order 2−N . Hence we have,
combining (2.49), (2.50) and (2.52):

ΨN(φ) =
(

1 +
[
E(exp(−φ(Z1)))− 1

])2N

= exp
(

2N
[
E(exp(−φ(Z1)))− 1

])
+ o(1)

= exp
(∫

e−λ∗x
[
e−φ(x) − 1

] dx√
2π

)
+ o(1), as N → +∞.

(2.53)
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We deduce that the process EN(x) converges as N → +∞ to a point process with the Laplace
transform

Ψ(φ) = exp
(∫

e−λ∗x
[
e−φ(x) − 1

] dx√
2π

)
. (2.54)

In order to identify this limit, let us recall the definition of a Poisson point process with
intensity µ. Here, µ is a σ-finite non-negative measure on Rd. The Poisson point process N
with intensity µ is characterized by the following properties: first, given any Borel set B ⊂ Rd,
we have, for any k ≥ 0:

P [N(B) = k] =
(µ(B))k

k!
e−µ(B), if µ(B) < +∞,

P [N(B) = k] = 0, if µ(B) = +∞.
(2.55)

Second, if A and B are two Borel sets such that A ∩ B = ∅, then N(A) and N(B) are
independent random variables. The Laplace transform of a Poisson point process is described
by the following exercise.

Exercise 2.4 Let N be a Poisson point process with intensity µ, then its Laplace transform
is defined, by its action on non-negative continuous bounded functions as

Ψ(φ) = exp
(∫ [

e−φ(x) − 1
]
µ(dx)

)
. (2.56)

It is helpful to start with non-negative simple functions (even though they are not continuous).
If in doubt, this is Proposition 4.8 of [2].

Comparing the limit (2.54) of the Laplace transforms ΨN of the point processes EN
and (2.56), we see that we have proved the following.

Theorem 2.5 The point processes

EN =
2N∑
k=1

δ(x− Zk), (2.57)

converges in law as N → +∞ to a Poisson point process with intensity

µ(x) =
1√
2π
e−λ∗x. (2.58)

Thus, λ∗ is the exponential rate of growth of the density of the random point process associated
to X1, . . . , XM . Note that the limit process has an infinite mass, and that the density of the
measure µ(x) grows exponentially as x → −∞. The former property reflects the fact that
the original extremal point process EN , before the limit N → +∞, had the mass 2N . The
latter comes from the fact that most of the particles Xk are located far to the left of the
maximum M̄N .

Exercise 2.6 Perform a similar analysis of the extremal process seen from the tip, that is, ĒN ,
defined in (2.46), and describe the limit of ĒN .

Exercise 2.7 Perform the analysis of this section for independent Gaussian random variables
with mean zero and variance σ2N . Compute the resulting c∗(σ) and λ∗(σ).
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3 The connection of the BBM to partial differential

equations

Before continuing with the random processes points of view, let us describe the connection
between branching random processes and nonlinear partial differential equations. The starting
point is the following fact. Let Bt be the d-dimensional Brownian motion with variance σ,
and g(x) be a bounded function. Consider the function

u(t, x) = Exg(B(t)). (3.1)

The notation in the right side means that B(t) starts at the point x at t = 0. A key property
of the Brownian motion we will be using is that u(t, x) satisfies the heat equation

∂u

∂t
=
σ2

2
∆u, t > 0, x ∈ Rd, (3.2)

with the initial condition u(0, x) = g(x). This result can be found in numerous textbooks on
stochastic analysis.

3.1 Discrete linear equations and random walks

Let us first explain informally how the linear partial differential equation (3.2) can be ex-
plained in the context of random walks, in a very simple way. The starting point is a discrete
time Markov jump process Xnτ , with a time step τ > 0, defined on one-dimensional a lattice
with mesh size h:

hZ = {0,±h,±2h, . . . }.

The particle position evolves as follows: if the particle is located at a position x ∈ hZ at the
time t = nτ then at the time t = (n + 1)τ it jumps to a random position y ∈ hZ, with the
transition probability

P (X(n+1)τ = y| Xnτ = x) = k(x− y), x, y ∈ hZ. (3.3)

Here, k(x) is a prescribed non-negative kernel such that∑
y∈hZ

k(y) = 1. (3.4)

The classical symmetric random walk with a spatial step h and a time step τ corresponds to
the choice k(±h) = 1/2, and k(y) = 0 otherwise – the particle may only jump to the nearest
neighbor on the left and on the right, with equal probabilities.

In order to connect this process to an evolution equation, let us take a function f : hZ→ R,
defined on the lattice, and introduce

u(t, x) = E(f(Xt(x))). (3.5)

Here, Xt(x), t ∈ τN, is the above Markov process starting at a position X0(x) = x ∈ hZ at
the time t = 0. If f ≥ 0 then one may think of u(t, x) as the expected value of a “prize” to
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be collected at the time t at a (random) location of Xt(x) given that the process starts at the
point x at the time t = 0. An important special case is when f is the characteristic function
of a set A. Then, u(t, x) is the probability that the jump process Xt(x) that starts at the
position X0 = x is inside the set A at the time t.

As the process Xt(x) is Markov, the function u(t, x) satisfies the following relation

u(t+ τ, x) = E(f(Xt+τ (x))) =
∑
y∈hZ

P (Xτ = y|X0 = x)E(f(Xt(y))) =
∑
y∈hZ

k(x− y)u(t, y).

(3.6)
This is because after the initial step when the particle jumps at the time τ from the starting
position x to a random position y, the process “starts anew”, and runs for time t between the
times τ and t+ τ – this is where the second equality in (3.6) comes from. The third equality
simply uses the definition (3.3) of k(x). Equation (3.6) can be re-written, using (3.4) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

k(x− y)[u(t, y)− u(t, x)]. (3.7)

The key point is that the discrete equation (3.7) leads to various interesting continuous limits
as h ↓ 0 and τ ↓ 0, depending on the choice of the transition kernel k(y), and on the
relative size of the spatial mesh size h and the time step τ . In other words, depending on
the microscopic model – the particular properties of the random walk – we will end up with
different macroscopic continuous models.

The heat equation and random walks

Let us show how this can be done to obtain the heat equation

∂u

∂t
= a

∂2u

∂x2
, (3.8)

with a constant diffusivity constant a > 0. This gives an informal explanation for the inter-
pretation (3.1)-(3.2) of the heat equation in terms of Brownian motion. We will assume that
the transition probability kernel has the form

k(x) = φ
(x
h

)
, x ∈ hZ, (3.9)

with a non-negative function φ(m) ≥ 0 defined on Z, such that∑
m

φ(m) = 1. (3.10)

This form of k(x) allows us to re-write (3.7) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

φ

(
x− y
h

)
[u(t, y)− u(t, x)], (3.11)

or, equivalently,

u(t+ τ, x)− u(t, x) =
∑
m∈Z

φ(m)[u(t, x−mh)− u(t, x)]. (3.12)
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In order to arrive to the heat equation in the limit, we will make the assumption that jumps
are symmetric on average: ∑

m∈Z

mφ(m) = 0. (3.13)

Then, expanding the right side of (3.12) in h and the left side in τ , we obtain

τ
∂u(t, x)

∂t
=
ah2

2

∂2u

∂x2
(t, x) + lower order terms, (3.14)

with
a =

∑
m

|m|2φ(m). (3.15)

To balance the left and the right sides of (3.14), we need to take the time step τ = h2 – note
that the scaling τ = O(h2) is essentially forced on us if we want to balance the two sides of
this equation. Then, in the limit τ = h2 ↓ 0, we obtain the heat equation

∂u(t, x)

∂t
=
a

2

∂2u(t, x)

∂x2
. (3.16)

The diffusion coefficient a given by (3.15) is the second moment of the jump size – in other
words, it measures the “overall jumpiness” of the particles. This is a very simple example of
how the microscopic information, the kernel φ(m), translates into a macroscopic quantity –
the overall diffusion coefficient a in the macroscopic equation (3.16).

Exercise 3.1 Show that if (3.13) is violated and

b =
∑
m∈Z

mφ(m) 6= 0, (3.17)

then one may take τ = h, and the formal limit of (3.12) is the advection equation

∂u(t, x)

∂t
+ b

∂u(t, x)

∂x
= 0, (3.18)

without any diffusion.

Exercise 3.2 Relate the limit in (3.18) to the law of large numbers and explain the rela-
tion τ = h in these terms. How can (3.16) and the relation τ = h2 between the temporal and
spatial steps be explained in terms of the central limit theorem?

3.2 Linear parabolic equations and branching random walks

Let us now explain how we can obtain a probabilistic interpretation for a parabolic equation
with a zero-order term:

∂u

∂t
=
σ2

2

∂2u

∂x2
+mu, (3.19)

with some m ∈ R fixed. Let us consider a branching Brownian motion of variance σ > 0,
with an exponential clock such that

P(τ > t) = e−t. (3.20)
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We consider general branching so that a particle branches into k children with probabilities pk,
so that

∞∑
k=1

pk = 1,

and the average number of off-spring is

N̄ =
∞∑
k=1

kpk. (3.21)

Let us assume that the BBM starts at t = 0 at the position x and denote the locations of
the BBM particles at the time t > 0 by X1(t), . . . , XNt(t). Given a bounded function g(x),
consider the function

u(t, x) = Ex
Nt∑
k=1

g(Xk(t)). (3.22)

This is the analog of (3.1) that led to the standard heat equation in the case of the standard
Brownian motion, with no branching. In order to get an equation for u(t, x) let us write a
recursive relation, very similar to what we have seen in the proofs of Propositions 1.1 and 1.4.
Looking at the first branching event gives the renewal relation

u(t, x) = Ex(g(Bt))P(τ1 > t) +
∞∑
k=1

kpk

∫ t

0

Ex(u(t− s, Bs))P(τ1 ∈ ds)

= Ex(g(Bt))e
−t +

∞∑
k=1

kpk

∫ t

0

Ex(u(t− s, Bs))e
−sds.

(3.23)

Note that (3.1)-(3.2) implies that the function

v(t, x) = Ex(g(Bt))

is the solution to the heat equation
∂v

∂t
=
σ2

2
∆v, (3.24)

with the initial condition v(0, x) = g(x). Hence, it can be written as

v(t, x) = [eσ
2t∆/2g(·)](x). (3.25)

In addition, for 0 < s < t fixed, the function

w(τ, x) = Ex(u(t− s, Bτ )) (3.26)

is the solution to the heat equation

∂w

∂τ
=
σ2

2
∆w, (3.27)

with the initial condition w(0, x) = u(t− s, x). That is, we have

w(τ, x) = [eσ
2τ∆/2u(t− s, ·)](x). (3.28)
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It follows that
Ex(u(t− s, Bs)) = w(s, x) = [eσ

2s∆/2u(t− s, ·)](x). (3.29)

Hence, (3.23) has the form

u(t, x) = e−t[eσ
2t∆/2g(·)](x) + N̄

∫ t

0

[eσ
2s∆/2u(t− s, ·)](x)e−sds. (3.30)

This is simply a way to write the Duhamel formula for the initial value problem

∂u

∂t
=
σ2

2
∆u+ (N̄ − 1)u,

u(0, x) = g(x).
(3.31)

This is exactly (3.19), with m = N̄ − 1.

Exercise 3.3 Show why (3.30) implies (3.31). More generally, consider an evolution equation
of the form

du

dt
= Lu+ F (t), (3.32)

with an initial condition u(0) = u0. Show that, at least, on the formal level, we have

u(t) = eLtu0 +

∫ t

0

eLsF (t− s)ds, for t > 0. (3.33)

The assumption in Exercise 3.3 is that the exponential exp(Lt) is well-defined for all t > 0.
We will often use this result for L = ∆, for which this condition holds on most reasonable
function spaces. A typical example when this is not the case is L = −∆.

Exercise 3.4 Note that we have obtained (3.19) with m = N̄ −1 > 0. Modify the branching
process to cover also equations with m < 0. Which range of m can be obtained this way?
What needs to be done to get m < −1?

Exercise 3.5 (i) Given an open set A ⊂ Rn with a smooth boundary, let NA(t) be the
number of the binary BBM particles inside A at a time t > 0. Use (3.31) wih an appropriate
initial condition to find E(NA(t)).
(ii) Let N(t) be the total number of BBM particles present at a time t > 0. Use (3.31) to
show that E(N(t)) = exp((N̄ − 1)t). This is the same as the result of Proposition 1.1.
(iii) Use (3.31) and the properties of the standard heat equation to show that M(t) = N(t)e−t

is a martingale.
(iv*) Find out if it is possible to use the properties of the standard heat equation to show
that M∞ = limt→+∞M(t) is exponentially distributed.

3.3 The Fisher-KPP equation and the branching Brownian motion

3.3.1 Derivation of the Fisher-KPP equation

Let us now explain how the Fisher-KPP equation

∂u

∂t
=
σ2

2
∆u+ u− u2 (3.34)
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arises from very similar considerations, in the context of BBM. This was discovered by Henry
McKean in [12].

Given a bounded function g(x), we now consider a functional of the branching Brownian
motion not of the additive form (3.22) but multiplicative:

v(t, x) = Ex
( Nt∏
k=1

g(Xk(t))
)
. (3.35)

In order to get an equation for v(t, x) let us write a renewal relation, very similar to what
we have seen in (3.23). Looking at the first branching event gives

v(t, x) = Ex(g(Bt))P(τ1 > t) +
∞∑
k=1

pk

∫ t

0

Ex
([
v(t− s, x+Bs)

]k)P(τ1 ∈ ds)

= Ex(g(Bt))e
−t +

∞∑
k=1

pk

∫ t

0

Ex
([
v(t− s, x+Bs)

]k)
e−sds.

(3.36)

Recall that we consider a branching Brownian motion with a variance σ > 0. Hence, as
in (3.29), we have

Ex
[
v(t− s, x+Bs)

]k
= [eσ

2s∆/2vk(t− s, ·)](x). (3.37)

Recall also (3.25):

Ex(g(Bt)) = [eσ
2t∆/2g(·)](x). (3.38)

Now, (3.36) becomes

v(t, x) = [eσ
2t∆/2g(·)](x)e−t +

∞∑
k=1

pk

∫ t

0

[eσ
2s∆/2vk(t− s, ·)](x)e−sds

= [eσ
2t∆/2g(·)](x)e−t +

∫ t

0

[eσ
2s∆/2F (v(t− s, ·))](x)e−sds.

(3.39)

This is the Duhamel representation for the initial value problem

∂v

∂t
=
σ2

2
∆v − v + F (v),

v(0, x) = g(x).
(3.40)

Here, the nonlinearity F (v) is given by the generating function for the branching process:

F (v) =
∞∑
k=1

pkv
k. (3.41)

From the PDE point of view, it is often convenient to use instead the function

u(t, x) = 1− v(t, x) = 1− Ex
( Nt∏
k=1

g(Xk(t))
)
. (3.42)
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It satisfies the initial value problem

∂u

∂t
=
σ2

2
∆u+ f(u),

u(0, x) = 1− g(x).
(3.43)

Here, we have defined

f(u) = 1− u− F (1− u) = 1− u−
∞∑
k=1

pk(1− u)k. (3.44)

In the case of the purely binary branching, when p2 = 0 and all other pk = 0, the function f(u)
takes the form

f(u) = 1− u− (1− u)2 = u(1− u).

Then, (3.43) becomes the classical Fisher-KPP equation

∂u

∂t
=
σ2

2
∆u+ u− u2,

u(0, x) = 1− g(x).
(3.45)

As a small remark, applied mathematicians usually take σ =
√

2 and write (3.45) as

∂u

∂t
= ∆u+ u− u2,

u(0, x) = 1− g(x).
(3.46)

Other symmetric functionals

We have now seen how a partial differential equation can be derived for two functionals of
the Brownian motion: the additive functional

u(t, x) = Ex
( Nt∑
k=1

g(Xk(t))
)
, (3.47)

and the multiplicative one

v(t, x) = Ex
( Nt∏
k=1

g(Xk(t))
)
. (3.48)

The function u(t, x) satisfies the linear equation

∂u

∂t
=
σ2

2
∆u+ (N̄ − 1)u, (3.49)

and v(t, x) satisfies the nonlinear equation (3.40)

∂v

∂t
=
σ2

2
∆v − v + F (v). (3.50)

Both u(t, x) and v(t, x) are expectations of symmetric functions of g(X1), . . . , g(XNt). The
next exercise asks you to consider more general symmetric functionals of g(X1), . . . , g(XNt).
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Exercise 3.6 (i*) Consider the function

z(t, x) = Ex
( ∑

1≤i<j≤Nt

g(Xi(t))g(Xj(t))
)
. (3.51)

Write down a renewal relation for z(t, x) and try to describe it as a solution to some partial
differential equation.

(ii*) Let F be a symmetric function of its arguments. Investigate if

w(t, x) = Ex
[
F (g(X1(t)), g(X2(t)), . . . , g(XNt(t)))

]
(3.52)

satisfies a tractable problem. One should probably first consider the case when F is a sym-
metric polynomial, which is the case for u(t, x) and v(t, x) defined in (3.47) and (3.48). Can
one characterize a class of partial differential equations that have such interpretation in terms
of a symmetric functional of the branching Brownian motion?

3.3.2 The law of the maximum of BBM

Let us now make a particular choice of the function g(x) as

g(x) = 1(x ≥ 0). (3.53)

Then, the function v(t, x) defined by (3.35)

v(t, x) = Ex
( Nt∏
k=1

g(Xk(t))
)
, (3.54)

has the meaning
v(t, x) = Px

{
all Xk(t) ≥ 0

}
, (3.55)

hence the meaning of u(t, x) is

u(t, x) = Px
{

some Xk(t) ≤ 0
}
. (3.56)

Therefore, the solution to the initial value problem

ut =
σ2

2
uxx + f(u),

u(0, x) = 1(x < 0),
(3.57)

is
u(t, x) = Px

{
min

1≤k≤Nt
Xk(t) ≤ 0

}
.

The translational and reflection invariance of the process means that u(t, x) can be written
also as

u(t, x) = P0

{
max

1≤k≤Nt
Xk(t) ≥ x

}
,

that is, the solution u(t, x) to the Fisher-KPP equation (3.57) with the (reflected) Heaviside
function as the initial condition is the probability distribution function of the maximum of
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the branching Brownian motion starting at x = 0. In particular, the median point m(t) such
that

P0

{
max

1≤k≤Nt
Xk(t) ≥ m(t)

}
=

1

2
(3.58)

can be characterized by

u(t,m(t)) =
1

2
. (3.59)

Later we will see that there exists x0 ∈ R so that m(t) has the asymptpotics

m(t) = c∗t−
3

2λ∗
log t+ x0 + o(1), as t→ +∞. (3.60)

Here, the speed c∗ and the exponent λ∗ are given by

c∗ =
√

2(N̄ − 1), λ∗ = c∗. (3.61)

This asymptotics should be contrasted with the asymptotics (2.16)

mN = c∗N −
1

2λ∗
logN + x0 + o(1), as N → +∞, (3.62)

with
c∗ =

√
2 log 2, λ∗ = c∗, (3.63)

for median of the distribution of the maximum of 2N uncorrelated Gaussian random variables
of variance N . This number of particles corresponds to N̄ = 1 + log 2, hence the speed c∗ and
the exponential rate of decay λ∗ of the distribution match those for the corresponding BBM.
What is different is the pre-factor 3/2 in front of the log t term in (3.60) as opposed to 1/2 in
expression (3.62) for the uncorrelated model.

3.3.3 The Laplace transform of the point process for the branching Brownian
motion

We now explain how the Laplace transform of the point process of the branching Brownian
motion can be connected to the Fisher-KPP equation. Let X1(t), . . . , XNt(t) be the locations
of the BBM particles at a time t > 0, and set

E(t) =
Nt∑
k=1

δ(x−Xk(t)). (3.64)

For the moment, we assume that the BBM starts at the position x = 0 at t = 0. Note that
at the moment we do not center the locations of the particles near the maximum, as we did
for uncorrelated Gaussians in Section 2.4. This will be done later. The Laplace functional
of E(t) is

Ψ(φ)(t) = E0 exp
(
−
∫
φ(x)dE(t)

)
= E0 exp

(
−

Nt∑
k=1

φ(Xk(t))
)
. (3.65)
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Here, φ(x) is a non-negative bounded test function. The subscript 0 in (3.65) refers to the
starting point of the branching Brownian motion. A simple but important observation is
that (3.65) can be written as

Ψ(φ)(t) = E0 exp
(
−
∫
φ(x)dE

)
= E0 exp

(
−

Nt∑
k=1

φ(Xk(t))
)

= E0

( Nt∏
k=1

g(Xk(t))
)
, (3.66)

with the function g(x) given by
g(x) = e−φ(x). (3.67)

Combining with we have done in Section 3.3.1, we conclude that if we let u(t, x) be the
solution to the initial value problem

∂u

∂t
=
σ2

2
∆u+ f(u),

u(0, x) = 1− e−φ(x),

(3.68)

then
Ψ(φ)(t) = 1− u(t, 0). (3.69)

Let us see what happens if φ(x) = λ1[a,b](x) is a step function. In that case, the initial
condition in (3.68) is a multiple of of φ(x):

u(0, x) = (1− e−λ)1[a,b](x). (3.70)

Exercise 3.7 Let u(t, x) be the solution to (3.68) with the initial condition (3.70), corre-
sponding to φ(x) = λ1[a,b](x). Use the definition of the Laplace transform Ψ(φ)(t) and (3.69)
to interpret what it means, in terms of the branching Brownian motion, that u(t, 0) is small,
or that u(t, 0) ≈ 1.

Thus, the Laplace transform of the point process of the branching Brownian motion can
be directly computed in terms of a solution of the Fisher-KPP equation with a suitable
initial condition. This provides an occasionally powerful tool to understand the statistics of
the branching Brownian motion in terms of solutions of PDEs. For example, one may be
interested in finding a location y that would make the limit of the re-centered point process,
with

Zj(t) = Xj(t)− y (3.71)

be non-trivial. This is what we did in Section 2.4 by re-centering at the locations y = mN .
The re-centered point process is

E(t, x, y) =
Nt∑
k=1

δ(x+ y −Xk(t)). (3.72)

23



The Laplace functional of E(t, y) is

Ψ(φ)(t, y) = E0 exp
(
−
∫
φ(x)dE(t, x, y)

)
= E0 exp

(
−

Nt∑
k=1

φ(Xk(t)− y)
)

= E0 exp
(
−

Nt∑
k=1

φy(Xk(t))
)
.

(3.73)

Here, we have denoted
φy(x) = φ(x− y).

It follows that
Ψ(φ(t, y)) = 1− ũ(t, 0; y), (3.74)

and ũ(t, x; y) is the solution to the Fisher-KPP equation with a shifted initial condition

∂ũ

∂t
=
σ2

2
∆ũ+ f(ũ),

ũ(0, x; y) = 1− e−φ(x−y),

(3.75)

We see that
ũ(t, x, y) = u(t, x− y), (3.76)

with u(t, x) that is the solution to (3.68). In particular, we have

ũ(t, 0; y) = u(t,−y), (3.77)

and
Ψ(φ)(t, y) = u(t,−y). (3.78)

Thus, solution to (3.68) encodes the information about the shifted processes Zk(t) as well. In
particular, to find the shift y that would make the limit of Zk(t) non-trivial, we need to find
the locations where u(t, y) is neither close to 0 nor to 1. A natural question is if this range of
points would depend on the initial condition to (3.68), and we will soon see that it does not.

3.3.4 Some basic properties of the Fisher-KPP nonlinearities

To understand what kind of partial differential equations are related to the branching Brow-
nian motion by the above probabilistic interpretation, let us discuss some general properties
of the nonlinearities f(u) that can be obtained via (3.44):

f(u) = 1− u−
∞∑
k=1

pk(1− u)k. (3.79)

We claim that f(u) satisfies the following properties: first,

f(0) = f(1) = 0, f(u) > 0 for 0 < u < 1. (3.80)

Second, f(u) is concave, so that, in particular it satisfies the so-called FKPP assumption

f(u) ≤ f ′(0)u, for all u ∈ (0, 1). (3.81)
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Finally, we have
f ′(0) = N̄ − 1, (3.82)

with

N̄ =
∞∑
k=1

kpk. (3.83)

Let us prove these properties. It is immediate to see that f(1) = 0 simply from (3.79).
We also have

f(0) = 1−
∞∑
k=1

pk = 0,

because
∞∑
k=1

pk = 1. (3.84)

To finish the proof of (3.80), note that for 0 < u < 1 we have

f(u) = 1− u−
∞∑
k=1

pk(1− u)k > 1− u−
∞∑
k=1

pk(1− u) = 0, (3.85)

due to (3.84).
To establish the FKPP property (3.81), we simply note that f(u) of the form (3.79) is

concave on [0, 1]. This is because

f ′′(u) = −
∞∑
k=2

k(k − 1)(1− u)k−2 ≤ 0. (3.86)

An alternative way to see that (3.81) holds is to first note that

f ′(0) = −1 +
∞∑
k=1

kpk = N̄ − 1, (3.87)

which is (3.82). This allows us to write for 0 < u < 1

f(u) = 1− u−
∞∑
k=1

pk(1− u)k ≤ 1− u−
∞∑
k=1

pk(1− ku) = (N̄ − 1)u = f ′(0)u, (3.88)

which is (3.81).
As a side remark, if we assume that p1 = 0, to rule out not quite sensical ”branching into

one particle” events, then any f(u) of the form (3.79) satisfies

f ′(1) = −1. (3.89)

The above conditions are, clearly, not sufficient for a nonlinearity f(u) to be of the BBM
origin but give a good idea of the properties of that class.
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3.4 Voting models, branching Brownian motion and partial differ-
ential equations

It turns out that the connection between the branching Brownian motion and partial differen-
tial equations extends beyond the Fisher-KPP type nonlinearities. This is a very interesting
observation by Alison Etheridge, Nic Freeman and Sarah Penington [6, 7].

3.4.1 The voting scheme for the Fisher-KPP equation

Let us first discuss how the the McKean’s probabilistic interpretation of the standard Fisher-
KPP equation

∂u

∂t
=
σ2

2
∆u+ u− u2, t > 0, x ∈ Rd,

u(0, x) = p(x),
(3.90)

can be recast in terms of a voting process. Let us assume that the initial condition p(x)
satisfies

0 ≤ p(x) ≤ 1, for all x ∈ Rd. (3.91)

We run a standard binary branching Brownian motion with variance σ > 0 until a time t > 0.
Each of the particles X1(t), . . . , XNt(t) that are present at the final time t, vote 0 or 1, with
the probability p(x):

P(Vj = 1) = p(Xj(t)). (3.92)

Next, we propagate the voting decisions back up the genealogy tree, with the rule that the
parent votes 1 if at least one of its two children voted 1. Let Vorig be the resulting vote of the
original ancestral particle that started at t = 0 at the position x, and consider the function

u(t, x) = Px(Vorig = 1). (3.93)

Let us now use the familiar renewal idea to obtain an equation for the function u(t, x). There
are two possible ways in which the original ancestor can vote 1: either both of its children
voted 1, or one of them voted 1 and one voted 0. In the latter case, there are two choices of
the particle that voted 0. This gives the renewal identity

u(t, x) = Exp(Bt)P(τ1 > t)

+

∫ t

0

Ex(u2(t− s, Bs) + 2u(t− s, Bs)(1− u(t− s, Bs))P(τ1 ∈ ds)

= Exp(Bt)e
−t +

∫ t

0

Ex(u2(t− s, Bs) + 2u(t− s, Bs)(1− u(t− s, Bs))e
−sds.

(3.94)

Now, proceeding exactly as in Section 3.3.1, we deduce that u(t, x) satisfies the initial value
problem

∂u

∂t
=
σ2

2
∆u− u+ u2 + 2u(1− u),

u(0, x) = p(x).
(3.95)
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This is equivalent to
∂u

∂t
=
σ2

2
∆u+ u− u2,

u(0, x) = p(x),
(3.96)

which is the initial value problem for the Fisher-KPP equation.
Of course, this interpretation of the Fisher-KPP equation is not very different from McK-

ean’s. The reason is that in this voting scheme the original ancestor votes 0 if and only if all
of the particles X1(t), . . . , XNt(t) present at the time t vote 0. In other words, we have

v(t, x) = 1− u(t, x) = Px(Vorig = 0
)

= P
(
V (Xk) = 0 for all 1 ≤ k ≤ Nt)

= Ex
( Nt∏
k=1

(1− p(Xk))
)
,

(3.97)

which is exactly McKean’s functional. Therefore, v(t, x) satisfies

∂v

∂t
=
σ2

2
∆v − v + v2,

v(0, x) = 1− p(x),
(3.98)

and (3.97) follows. Nevertheless, we will see that the addition of the voting scheme expands
dramatically the class of partial differential equations for which a probabilistic interpretation
in terms of the branching Brownian motion is possible.

3.4.2 The voting scheme for the Allen-Cahn equation

To be concrete, consider first a ternary branching Brownian motion starting at the time t = 0
at a point x ∈ Rn. That is, each branching event produces three children. Let us run the
process until a time t > 0, with the particles located at X1(t), . . . , XNt(t). At the time t, each
of these particle votes 1 or 0 with the probabilities

P(Vj = 1) = p(Xj(t)), (3.99)

as in (3.92). Here, as before, p(x) is a fixed function such that 0 ≤ p(x) ≤ 1 for all x ∈ R,
and Vj is the vote of the particle Xj(t). This produces the votes of the youngest generation of
particles. So far, except for the ternary branching replacing the binary branching, the process
is exactly as when we obtained the Fisher-KPP equation (3.96). The difference with what
we have considered above is in how the parents vote. In the present case, we go back up
the ternary branching tree, and each parent accepts the vote of the majority of its children.
Let Vorig be the resulting vote of the original ancestral particle that started at t = 0 at the
position x, and consider the function

u(t, x) = Px(Vorig = 1). (3.100)

Again, we can use the renewal idea to obtain an equation for the function u(t, x). There are
two possible ways in which the original ancestor can vote 1: either all three of its children
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voted 1, or two of them voted 1 and one voted 0. In the latter case, there are three choices of
the particle that voted 0. This gives the renewal identity

u(t, x) = Exp(Bt)P(τ1 > t)

+

∫ t

0

Ex(u3(t− s, Bs) + 3u2(t− s, Bs)(1− u(t− s, Bs))P(τ1 ∈ ds)

= Exp(Bt)e
−t +

∫ t

0

Ex(u3(t− s, Bs) + 3u2(t− s, Bs)(1− u(t− s, Bs))e
−sds.

(3.101)

As before, we deduce that u(t, x) satisfies the initial value problem

∂u

∂t
=
σ2

2
∆u− u+ u3 + 3u2(1− u),

u(0, x) = p(x).
(3.102)

A simple computation shows that

u3 + 3u2(1− u)− u = 3u2 − 2u3 − u = u(3u− 2u2 − 1) = u(1− u)(2u− 1). (3.103)

Thus, u(t, x) satisfies the Allen-Cahn equation

∂u

∂t
=
σ2

2
∆u+ u(1− u)(2u− 1),

u(0, x) = p(x).
(3.104)

Note that the nonlinearity

f̃(u) = u(1− u)(2u− 1) (3.105)

does not satisfy the Fisher-KPP properties we have discussed in Section 3.3.4. Indeed, it is
not even non-negative for u ∈ (0, 1) but rather changes its sign. Thus, the partial differential
equation (3.104) does not have an interpretation in terms of a McKean functional. The voting
scheme adds a genuinely new aspect here.

Exercise 3.8 Devise a version of the voting scheme interpretation that would apply to other
initial conditions g(x), without the restriction that 0 ≤ g(x) ≤ 1 for all x ∈ R.

3.4.3 A digression on the Allen-Cahn equation

The Allen-Cahn type equations appear in many applications, ranging from biology and com-
bustion to differential geometry, as a very basic model of a diffusive connection between two
stable states. It is worth to discuss them in some detail. The main feature of the non-
linearity is that both u ≡ 0 and u ≡ 1 are stable steady solutions to the corresponding
time-dependent ODE

du

dt
= f̃(u), f̃(u) = u(1− u)(2u− 1). (3.106)

Traditionally, it is common to write (3.104) in terms of the function

w(t, x) = 2u(2t, x)− 1,

28



and also take σ = 1, which gives

∂w

∂t
= ∆w + w(1− w)(1 + w),

w(0, x) = w0(x),
(3.107)

with w0(x) = 2p(x)− 1. This shifts the steady equilibria to the more symmetric w = ±1 and
the unsteady equilibrium to w = 0. Solutions to the partial differential equation (3.107) in
one dimension, with the boundary conditions such that

w(t, x)→ 1, as x→ −∞, w(t, x)→ −1, as x→ +∞, (3.108)

describe the diffusive transitions between regions in space as x→ −∞ where w is close to the
stable equilibrium w ≡ 1 and those where w is close to w ≡ −1 as x→ +∞. They are often
taken as a basic model for many phenomena where such diffusive interfaces come up. There
are three obvious steady solutions to the Allen-Cahn equation (3.107) given by constants:

w(t, x) ≡ 0, w(t, x) ≡ 1 and w(t, x) ≡ −1. (3.109)

Exercise 3.9 Show that u = 0 is an unstable solution to the ODE

dw

dt
= w − w3, (3.110)

and u = ±1 are two stable solutions to (3.110).

In addition to the spatially uniform steady solutions to (3.107), there are steady solutions
that are not uniform in space. Consider for the moment an ordinary differential equation

w′′0 + f(w0) = 0, x ∈ R, (3.111)

with the boundary conditions (3.108):

w0(x)→ 1, as x→ −∞, w0(x)→ −1, as x→ +∞. (3.112)

This equation may be solved explicitly: multiplying (3.111) by w′0 and integrating from −∞
to x, using the boundary conditions, leads to

1

2
(w′0)2 + F (w0) = 0, w0(±∞) = ±1. (3.113)

Here, we have defined

F (s) =

∫ s

−1

f(w)dw. (3.114)

Letting x→ +∞ in (3.113) we see that a necessary condition for a solution of (3.113) to exist
is that F (1) = 0, or ∫ 1

−1

f(w)dw = 0. (3.115)
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Exercise 3.10 Show that the solutions of (3.111)-(3.112) are unique, up to a translation in
the x-variable – note that if w0(x) is a solution to (3.111)-(3.112), then so is w̃(x) = w0(x+ξ),
for any ξ ∈ R.

Exercise 3.11 Show that if f(w) = w − w3 then w0(x) has an explicit expression

w0(x) = tanh
( x√

2

)
, (3.116)

as well as all its translates u0(x+ ξ), with a fixed ξ ∈ R.

Exercise 3.9 shows that u = ±1 are stable solutions to (3.107) with respect to perturbations
that are spatially uniform – those are solutions to the ODE (3.110). In order to illustrate their
stability with respect to perturbations that are not uniform in space, consider the following
exercise.

Exercise 3.12 Let w(t, x) be the solution to (3.107) with an initial condition w(0, x) = w0(x).
Suppose that w0(x) is smooth and −1 ≤ w0(x) ≤ 1 for all x ∈ R and there exists δ0 > 0 so
that |w0(x)| > δ0 for all x ∈ R. Show that there exists a constant ω > 0 that does not depend
on u0 and a constant C0 > 0 that may depend on w0 but only through its L∞-norm, so that
if w0(x) > δ0 for all x ∈ R, then

sup
x∈R
|w(t, x)− 1| ≤ C0e

−ωt, (3.117)

and if w0(x) < −δ0 for all x ∈ R, then

sup
x∈R
|w(t, x) + 1| ≤ C0e

−ωt. (3.118)

Does either of the constants ω and C0 depend on δ0? First, provide an analytical proof.
Second, try to use the probabilistic interpretation of the Allen-Cahn equation in terms of the
ternary BBM and voting, to prove the same result.

Let us now discuss the long time behavior of the solutions to (3.107):

wt − wxx = w − w3, (3.119)

with an initial condition w(0, x) = w0(x) that connects the stable states w = ±1. That
is, w0(x) satisfies the boundary conditions (3.112):

lim
x→−∞

w0(x) = −1, lim
x→+∞

w0(x) = 1, (3.120)

and
− 1 ≤ w0(x) ≤ 1, for all x ∈ R. (3.121)

The simplest picture of the time evolution that one may expect is that, because of the equal
stability of the two steady states w = ±1, neither state wins in the long time limit. It is
natural to expect then that the solution to (3.119) with an initial condition w0(x) satisfying
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the boundary conditions (3.120) at t = 0 would converge to a shift of he steady state of the
form (3.116) connecting w = ±1:

φ(x) = tanh
( x√

2

)
. (3.122)

This is the subject of the next theorem, that shows, in addition, that the convergence rate is
exponential.

Theorem 3.13 There exists ω > 0 such that for any smooth and bounded initial condi-
tion w0(x) that satisfies (3.120), we can find x0 ∈ R and C0 > 0 such that the solution w(t, x)
to (3.119) with w(0, x) = w0(x), satisfies

|u(t, x)− φ(x− x∞)| ≤ C0e
−ωt, for all x ∈ R and t > 0. (3.123)

Since there is a one parameter family of steady solutions, naturally, one may ask how the
solution of the initial value problem chooses a particular translation of φ in the long time
limit. In other words, one would like to know how the shift x∞ depends on the initial
condition u0. This dependence is quite implicit and there is no simple expression for x∞.

Exercise 3.14 (**) Prove this theorem using the voting scheme for the Allen-Cahn equation.

Let us recall that the solution to the forced heat equation

ut =
σ2

2
∆u+ V (t, x),

u(0, x) = g(x),
(3.124)

has the following probabilistic interpretation:

u(t, x) = Ex(g(Bt)) + Ex
∫ t

0

V (s, Bt−s)ds. (3.125)

Here, V (t, x) is a prescribed bounded smooth function, and Bt is the Brownian motion of
variance σ that starts at the point x ∈ Rd.

Exercise 3.15 (**) Consider the forced Allen-Cahn equation:

ut =
σ2

2
∆u+ u(1− u)(2u− 1) + V (t, x),

u(0, x) = g(x).
(3.126)

Here, V (t, x) is a prescribed bounded smooth function. Is there an interpretation of the solu-
tion to (3.126) in terms of a modification of the voting scheme for the Allen-Cahn equation?

31



3.4.4 Generalizations to other equations

We may generalize this voting procedure in infinitely many ways. For example, consider a
branching process that has both binary and ternary branching, with p2 = α and p3 = 1− α.
Once again, at the time t the particles X1(t), . . . , XNt(t) vote 1 with the probability (3.99)

P(Vj = 1) = p(Xj(t)), (3.127)

with a fixed function p(x) such that 0 ≤ p(x) ≤ 1 for all x ∈ Rd. The votes of the previous
generations are determined as follows. A parent that has three children chooses the majority
vote of the children, while the parent with two children votes 1 if at least one of the children
votes 1. Then, the renewal (3.101) relation becomes

u(t, x) = Exp(Bt)P(τ1 > t)

+ (1− α)

∫ t

0

Ex(u3(t− s, Bs) + 3u2(t− s, Bs)(1− u(t− s, Bs))P(τ1 ∈ ds)

+ α

∫ t

0

Ex(u2(t− s, Bs) + 2u(t− s, Bs)(1− u(t− s, Bs))P(τ1 ∈ ds)

= Exp(Bt)e
−t +

∫ t

0

Ex
[
(1− α)u3(t− s, Bs) + 3(1− α)u2(t− s, Bs)(1− u(s, Bs)

+ αu2(t− s, Bs) + 2αu(t− s, Bs)(1− u(t− s, Bs)
]
e−sds.

(3.128)
This gives the initial value problem

∂u

∂t
=
σ2

2
∆u− u+ (1− α)(u3 + 3u2(1− u)) + α(u2 + 2u(1− u)),

u(0, x) = p(x).
(3.129)

Note that

(1− α)(u3 + 3u2(1− u)) + α(u2 + 2u(1− u))− u
= (1− α)(u3 + 3u2(1− u)− u) + α(u2 + 2u(1− u)− u)

= (1− α)u(1− u)(2u− 1) + α(u− u2) = (1− α)u(1− u)(2u− 1) + αu(1− u)

= u(1− u)((1− α)(2u− 1) + α) = u(1− u)(2(1− α)u+ 2α− 1).

(3.130)

Let us set
k = 2− 2α,

so that
2α− 1 = 2− k − 1 = 1− k.

Hence, (3.129) is
∂u

∂t
=
σ2

2
∆u+ u(1− u)(ku+ 1− k),

u(0, x) = p(x).
(3.131)

Note that since α ∈ (0, 1), we have k ∈ (0, 2). The case k = 0, which is α = 1 (purely binary
branching) corresponds to the pure FKPP problem, and k = 2, which is α = 0 (purely ternary
branching) to the Allen-Cahn equation.
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Exercise 3.16 Assume that 1/2 < α < 1. Show that there exists p(α) > 0 so that for
any t > 0 there exists a purely binary sub-graph of the tree with the probability at least p(α).

Exercise 3.17 Assume that k ∈ (0, 1). Let the initial condition p(x) for (3.129) be continu-
ous, and such that 0 ≤ p(x) ≤ 1 for all x ∈ R, and p(x) 6≡ 0. Show that

lim
t→+∞

u(t, x) = 1, for all x ∈ R. (3.132)

This is known as the hair trigger effect. The standard PDE proof uses some carefully con-
structed sub-solutions. Instead, note that k = 1 corresponds to α = 1/2. This happens to be
the threshold value for the existence of a purely binary tree with a positive probability. Use
this to prove (3.132).

Let us recall that the nonlinearities that can be obtained by the McKean construction
satisfy the Fisher-KPP properties (3.80)-(3.81):

f(0) = f(1) = 0, f(u) > 0, f(u) ≤ f ′(0)u, for 0 < u < 1. (3.133)

Exercise 3.18 (i) Show that f(u) = u(1−u)(ku+ 1− k), with k ∈ (0, 2) satisfies the FKPP
property for all k ∈ (0, 1/2). Note that k = 1/2 corresponds to α = 3/4.
(ii*) Interpret this transition in terms of the voting model.

Exercise 3.19 (*) Let f(u) be a polynomial such that f(0) = f(1) = 0. Does there exist a
voting scheme for all such f(u) that leads to an equation of the form

∂u

∂t
=
σ2

2
∆u+ f(u),

u(0, x) = p(x).
(3.134)

This should be contained in the results of [5].

4 Convergence in shape to a traveling wave for the

Fisher-KPP equation

In this section, we will first use PDE techniques to prove that solutions to the Fisher-KPP
equation converge to a traveling wave in shape as t→ +∞.

4.1 Traveling waves for the Fisher-KPP equation

Let us recall some basic facts about traveling waves for the Fisher-KPP equation

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R. (4.1)
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We will assume that f(u) is of the McKean form

f(u) = 1− u−
∞∑
k=1

pk(1− u)k, (4.2)

with
∞∑
k=1

pk = 1, pk ≥ 0. (4.3)

Equation (4.1) has special solutions, called traveling waves. These are solutions to (4.1) of
the form

u(t, x) = Uc(x− ct). (4.4)

In order for such u(t, x) to be a solution to (4.1), the function Uc(x) has to satisfy the ODE

− cU ′c = U ′′c + f(Uc). (4.5)

In addition, we will require that Uc(x) satisfy the following boundary conditions at infinity

Uc(x)→ 1, as x→ −∞, Uc(x)→ 0, as x→ −∞. (4.6)

Here is the key result on the existence of traveling waves for the Fisher-KPP type nonlinear-
ities.

Proposition 4.1 Assume that f(u) has the form (4.2)-(4.3). Then, equation (4.5) has pos-
itive solutions Uc(x) > 0 that satisfy the boundary conditions (4.6) if and only if

c ≥ c∗ =
√

2σ2f ′(0). (4.7)

The key role below will be played by the traveling wave profile U∗(x) = Uc∗(x) that corresponds
to the minimal speed c∗. Let us recall that for the McKean nonlinearities f ′(0) is related to
the average number of off-spring at each branching event by

f ′(0) = N̄ − 1, N̄ =
∞∑
k=1

kpk, (4.8)

so that (4.7) says that

c∗ =
√

2σ2(N̄ − 1). (4.9)

Exercise 4.2 (i) Prove Proposition 4.1 using the phase plane analysis of the trajectories
connecting the equilibria (U,U ′) = (0, 0) and (U,U ′) = (1, 0) for a given c ∈ R. It should help
to look for an invariant region that has the form of a triangle in the (U,U ′)-plane, with the
base formed by the interval (0, 1) on the U -axis.
(ii) Show that the claim of Proposition 4.1 holds not only for the McKean nonlinearities of
the form (4.2)-(4.3) but for any f(u) that satisfies the Fisher-KPP assumption:

f(0) = f(1) = 0, 0 < f(u) ≤ f ′(0)u for all 0 < u < 1. (4.10)

(iii) How does the claim of Proposition 4.1 change if you drop the requirement that Uc(x)
is positive for all x ∈ R but keep the boundary conditions (4.6)? For which c ∈ R do such
solutions to (4.5) exist?

34



The next exercise will also be very important. It can also be addressed by ODE methods.

Exercise 4.3 (i) Fix the translation of the traveling wave so that Uc(0) = 1/2 and set

λc =
c−

√
c2 − 2σ2f ′(0)

σ2
, for c > c∗, (4.11)

and
λ∗ =

c∗
σ2
. (4.12)

Show that if c > c∗ then there exists a constant A > 0 so that

Uc(x) ∼ Ae−λcx, as x→ +∞, (4.13)

and that there exists A > 0 so that

U∗(x) ∼ Axe−λ∗x, as x→ +∞. (4.14)

(ii) Either using part (i) or otherwise, show that the traveling wave profile Uc(x) is unique up
to translation in x: if both Uc(x) and Ũc(x) are solutions to (4.5)-(4.6), with the same c ≥ c∗,
then there exists x0 ∈ R so that U(x) = Ũ(x+ x0) for all x ∈ R.

The key point of part (i) of Exercise 4.3 is that for c > c∗ the traveling waves Uc(x) have a
”purely exponential” decay as x → +∞ but the minimal speed traveling wave U∗(x) has an
extra factor of x in front of the exponential.

Note that the coefficient A in (4.14) depends on the translation of the traveling wave:
if U∗(x) has asymptotics (4.14), then

U∗(x− x0) ∼ A(x− x0)e−λ∗(x−x0) ∼ A[x0]eλ∗x0xe−λ∗x, as x→ +∞, (4.15)

with
A[x0] = Aeλ∗x0 . (4.16)

Unless stated otherwise, we will fix the translation of the wave by requiring that U∗(x) has
the asymtptotics

U∗(x) ∼ xe−λ∗x, as x→ +∞, (4.17)

with the pre-factor equal to 1.

4.2 Convergence to a traveling wave in shape

We now consider the long time behavior of the solutions to the Fisher-KPP equation

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = 1(x ≤ 0).
(4.18)
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Let us recall that if f(u) is of the McKean form (4.2)-(4.3), then the solution to (4.18) is the
probability distribution of the maximum of BBM starting at x = 0. That is, we have

u(t, x) = P0

(
max

1≤k≤Nt
Xk > x

)
. (4.19)

One may, of course, consider more general initial conditions than in (4.18) with very similar
results but it is a little simpler to study convergence to a traveling wave for the step function
initial condition.

The study of the large time behavior uses the notion of steepness of the solution. While
such arguments date back to the original KPP paper [10], we will use the definition from the
recent paper by Giletti and Matano [9]. As we will only need it for smooth functions, we
can formulate their notion as follows. Let us denote by W the class of smooth monotonically
decreasing functions u(x), x ∈ R, such that

lim
x→−∞

u(x) = 1, lim
x→+∞

u(x) = 0. (4.20)

Given two functions u1, u2 ∈ W , we say that u1 is steeper than u2 if

|u′1(u−1
1 (z))| > |u′2(u−1

2 (z))|, for all z ∈ (0, 1). (4.21)

In other words, the graph of u1(x) is steeper than the graph of u2(x) when compared at each
fixed level z ∈ (0, 1), rather than at a fixed point x ∈ R. This notion is translation invariant;
if u1 is steeper than u2, it is also steeper than any translate u2(·+ h), with a fixed h ∈ R.

Exercise 4.4 Let Uc(x) be a traveling wave solution to (4.18) with c > c∗. Show that U∗(x)
is steeper than Uc(x).

Equation (4.18) has the following important property.

Proposition 4.5 Let u1(t, x) and u2(t, x) be the solutions to (4.18) with the corresponding
initial conditions u10, u20 ∈ W. If u10 is steeper than u20, then u1(t, ·) is steeper than u2(t, ·)
for all t > 0.

This result was essentially proved for the classical Fisher-KPP equation in the original KPP
paper [10]. The PDE proof below does not use the assumption that f(u) is of the McKean
form (4.2)-(4.3).

The proof of Proposition 4.5

Let u1(t, x) and u2(t, x) be the solutions to (4.18) with the initial conditions u10, u20 ∈ W such
that u10 is steeper than u20. First, we note that since the initial conditions are decreasing,
both u1(t, x) and u2(t, x) are decreasing and have the left and right limits as in (4.20), so that
both u1(t, ·) and u2(t, ·) lie in W .

Exercise 4.6 Prove that if the initial condition u0(x) for (4.18) is monotonically decreasing
in x, then u(t, x) is strictly decreasing in x for all t > 0. This can be done in two ways.
(i) Differentiate (4.18) in x to get the equation for v(t, x) = ux(t, x) and use the strong
maximum principle to show that if v(0, x) ≤ 0 for all x ∈ R, then v(t, x) < 0 for all t > 0
and x ∈ R, unless v(t, x) ≡ 0.
(ii) Assume that f(u) satisfies (4.2)-(4.3) and give a proof using the McKean representation
of the solution.
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To show that u1(t, ·) is steeper than u2(t, ·) for any t > 0, consider the difference

w(t, x; k0) = u1(t, x)− u2(t, x+ k0),

for a fixed k0 ∈ R. The function w(t, x; k0) satisfies

wt = wxx + g(t, x)w, g(t, x) =
f(u1(t, x))− f(u2(t, x+ k0))

u1(t, x)− u2(t, x+ k0)
, (4.22)

with the initial condition

w(0, x; k0) = u10(x)− u20(x+ k0). (4.23)

Note that if f(u) is twice differentiable, then the function g(t, x) is differentiable and uniformly
bounded.

Since u10 is steeper than u20, it is also steeper than u20(·+ k0). Therefore, there exists x0

so that
w(0, x; k0) > 0 for all x < x0,

and
w(0, x; k0) < 0 for all x > x0.

Since w(t, x; k0) is a solution to the parabolic equation (4.22), the strong maximum principle
implies that w(t, x; k0) has exactly one zero y(t; k0) for all t > 0, so that w(t, x; k0) > 0 for
all x < y(t; k0) and w(t, x; k0) < 0 for all x > y(t; k0), with y(0; k0) = x0. In addition, we
have wx(t, y(t; k0)) < 0, which translates into

∂xu1(t, y(t; k0)) < ∂xu2(t, y(t; k0)). (4.24)

Since this is true for all k0 ∈ R, it follows that u1(t, ·) is steeper than u2(t, ·). �
A standard approximation argument shows the following.

Corollary 4.7 Let v(t, x) and u(t, x) be the solutions to (4.18) with the respective initial
conditions vin ∈ W and uin(x) = 1(x ≤ 0). Assume that vin(x) is steeper than the minimal
speed traveling wave U∗(x). Then, for any t > 0 the solution v(t, ·) is steeper than U∗(x), and
is less steep than u(t, x).

Convergence in shape

We now establish convergence of the solution in shape to a traveling wave. This result goes
back to the original papers of Fisher and KPP. The proof is a slightly simplified version of
the KPP argument.

Theorem 4.8 Let u(t, x) be the solution to (4.18) with the initial condition uin ∈ W that is
steeper than the minimal speed traveling wave U∗(x), or with uin(x) = 1(x ≤ 0). Then, there
exists a function m(t) such that

dm(t)

dt
→ c∗, as t→ +∞, (4.25)

and a constant x0 ∈ R

u(t, x+m(t))→ U∗(x+ x0) as t→ +∞, uniformly on R. (4.26)

Here, U∗(x) is normalized via (4.17).
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The steepness assumption on the initial condition is really not necessary and is only made to
shorten the proof. The result holds for a large class of initial conditions that decay sufficiently
fast as x → +∞. For example, one may assume that uin(x) is non-negative everywhere and
is compactly supported on the right: there exists L0 so that uin(x) = 0 for all x ≥ L0.

Proof. Corollary 4.7 shows that it suffices to consider the solution u(t, x) to (4.18) with
the initial condition u(0, x) = 1(x ≤ 0). This is because if we take any solution v(t, x)
to (4.18) with the initial condition vin(x) that is steeper than U∗(x), then v(t, x) is steeper
than U∗(x) and is less steep than u(t, x), for any t > 0. Note that for any τ > 0, the function

u(τ)(t, x) = u(t+ τ, x)

is the solution to (4.18) with the initial condition u(τ)(0, x) = u(τ, x) that is less steep
than u(0, x) = 1(x ≤ 0). It follows that for any t > 0 and τ > 0 the function u(t, ·)
is steeper than u(t + τ, ·). In addition, u(t, ·) is steeper than the minimal speed traveling
wave U∗(x) for all t > 0. This is because u(0, x) = 1(x ≤ 0) is steeper than U∗(x) and the
solution to (4.18) with the initial condition U∗(x) is U∗(x − c∗t), which has the same shape
as U∗(x). Hence, if for each v ∈ (0, 1) and t > 0, we let x(t, v) be the unique point such
that u(t, x(t, v)) = v, then, the function

E(t, v) = ux(t, x(t, v)) ≤ 0, (4.27)

is increasing in t for all v ∈ (0, 1), and

E(t, v) ≤ Ē(v) := U ′∗(U
−1
∗ (v)). (4.28)

Let now m(t) be the position such that u(t,m(t)) = 1/2 for all t > 0, and consider the
translate

ũ(t, x) = u(t, x+m(t)),

as well as the corresponding inverse ξ(t, v) defined by

ũ(t, ξ(t, v)) = v, for 0 < v < 1.

Observe that ξ(t, 1/2) = 0 for all t > 0, simply because ũ(t, 0) = 1/2 by construction. We see
from (4.27)-(4.28) that the function E(t, v) is negative and increasing in time. Thus, it has a
limit

E(t, v)→ E∞(v) ≤ Ē(v) < 0, as t→ +∞. (4.29)

Hence
∂ξ(t, v)

∂v
=

1

E(t, v)
→ 1

E∞(v)
, as t→ +∞,

and

ξ(t, v) =

∫ v

1/2

∂ξ(t, v′)

∂v′
dv′ →

∫ v

1/2

dv′

E∞(v′)
:= ξ∞(v). (4.30)

As a consequence, the function ũ(t, x) also converges uniformly on compact sets to a limit ũ∞(x):

ũ(t, x)→ ũ∞(x) as t→ +∞, (4.31)
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with ũ∞(x) determined by
ξ∞(ũ∞(x)) = x. (4.32)

Moreover, due to (4.29), we have

|ξ∞(v)| =
∫ v

1/2

dv′

|E∞(v′)|
≤
∫ v

1/2

dv′

|Ē(v′)|
:= ξ̄(v). (4.33)

This yields the correct behavior of the limits x→ ±∞:

ũ∞(−∞) = 1, ũ∞(+∞) = 0. (4.34)

Furthermore, as u(t, x) is strictly decreasing in x and ux(t,m(t)) < 0, the function m(t)
is differentiable in t, with

ṁ(t) = − ut(t,m(t))

ux(t,m(t))
= −ut(t,m(t))

ũx(t, 0)
. (4.35)

Hence, ũ(t, x) satisfies
ũt − ṁ(t)ũx = ũxx + f(ũ). (4.36)

By the parabolic regularity theory, the numerator in the very right side of (4.35) is bounded.
Moreover, since ũ converges to ũ∞(x) that is steeper than U∗(x), the denominator is bounded
away from zero and converges to ∂xũ∞(0) 6= 0. It follows that ṁ(t) is bounded uniformly
in t. In addition, because u(t′, x) is less steep than u(t, x) for t′ > t, we know that the
function ũ(t, x) is decreasing in t and ũt(t, x) → 0 as t → +∞. Then, passing to the
limit t → +∞ in (4.36), we deduce that there exists c ∈ R such that ṁ(t) → c as t → +∞
and ũ∞(x) satisfies

− c∂xũ∞ = ∂2
xũ∞ + f(ũ∞). (4.37)

We see from (4.37) that ũ∞(x) is a traveling wave solution to (4.18) moving with the speed c.
It remains to show that c = c∗. The key point is that the steepness comparison argument
above applies to any traveling wave solution to

− cU ′c = U ′′c + f(Uc). (4.38)

In other words, if we set

Ec(v) = U ′c(U
−1
c (v)), for 0 < v < 1,

then we know that
E∞(v) ≤ Ec(v),

for any Uc that satisfies (4.38) with some c ≥ c∗. Therefore, the limit ũ∞(x) is the traveling
wave that is the steepest among all traveling wave solutions. Exercise 4.4 implies that

ũ∞(x) = U∗(x)

is the minimal speed traveling wave. This finishes the proof of Theorem 4.8. �
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4.3 Generalizations to other initial conditions

We will later need the corresponding results for other initial conditions, that are not necessarily
steeper than the minimal speed traveling wave. Let H(t, x) be the solution to the initial value
problem that starts with a step function:

Ht =
σ2

2
Hxx + f(H), t > 0, x ∈ R,

H(0, x) = 1(x ≤ 0).
(4.39)

We assume that f(u) = 1−u−g(1−u) is of the McKean type. Theorem 4.8 applies to H(t, x)
and says that there is a function m(t) and x0 ∈ R so that

H(t, x+m(t))→ U∗(x+ x0), as t→ +∞, uniformly in x ∈ R, (4.40)

and
ṁ(t)→ c∗, as t→ +∞. (4.41)

A fundamental result of Bramson says that m(t) can be taken to be

m(t) = c∗t−
3

2λ∗
log(t+ 1). (4.42)

It will be convenient for us to accept (4.42) for now without proof. We will explain how this
asymptotics comes about in Section 6.2 below.

The first generalization concerns other initial conditions compactly supported on the right
and uniformly positive on the left. It shows that they converge to a traveling wave in shape
and stay a fixed shift away from H(t, x) as t→ +∞.

Theorem 4.9 Let f be a McKean type nonlinearity, and u(t, x) be the solution to the initial
value problem

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = η(x).
(4.43)

Assume that the initial condition η(x) is such that (i) 0 ≤ η(x) ≤ 1, and η(x) 6≡ 0,
(ii) lim infx→−∞ η(x) > 0, and (iii) there is L0 ∈ R such that η(x) = 0 for all x ≥ L0.
Then, there is a constant s[η] ∈ R, known as the Bramson shift of η such that

u(t, x+m(t))→ U∗(x+ s[η]) as t→ +∞, uniformly on R. (4.44)

Here, m(t) is defined by (4.42).

A key assumption above is (iii): the initial condition vanishes on the right. The result can be
generalized to other initial conditions as long as the decay is faster than exp(−λ∗x).

The next theorem shows that if the initial condition η(x) is compactly supported, then the
solution develops two fronts, one moving to the right and another to the left, one located a
fixed distance away from m(t), and another a fixed distance away from the position (−m(t)).
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Theorem 4.10 Let f be a McKean type nonlinearity, and u(t, x) be the solution to

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = η(x),
(4.45)

with a compactly supported initial condition η(x) such that 0 ≤ η(x) ≤ 1 and η(x) 6≡ 0. Then,
there are two constant s`[η] ∈ R and sr[η] ∈ R, such that for every K ∈ R we have

u(t, x+m(t))→ U∗(x+ sr[η]) as t→ +∞, uniformly in x ≥ K, (4.46)

and
u(t, x−m(t))→ U∗(−(x+ s`[η])) as t→ +∞, uniformly in x ≤ K. (4.47)

Here, again, m(t) is defined by (4.42).

Exercise 4.11 (**) Prove Theorems 4.9 and 4.10, without assuming Bramson’s asymp-
totics (4.42). Instead, define m(t) via H(t,m(t)) = 1/2. The proofs that we are aware
of are quite long and simultaneously prove (4.42). There should be a way around using this
fact: the proof of (4.42) should be harder than the claims of these two theorems.

5 The randomized Gumbel distribution of the maxi-

mum of BBM

A lot of intuition about BBM can be deduced from the martingale property of several of its
functionals. This is what we introduce in this section.

5.1 The traveling wave martingale

Let us go back to branching Brownian motion and connect various BBM objects to the
traveling wave we have just constructed, and the long time convergence results. It will be
convenient for us not to work with the Fisher-KPP equation (4.1) directly but to use the
solution to

vt =
σ2

2
vxx − v + g(v), t > 0, x ∈ R,

v(0, x) = r(x).
(5.1)

We will again assume that g(v) is of the McKean form

g(v) =
∞∑
k=1

pkv
k,

∞∑
k=1

pk = 1, pk ≥ 0. (5.2)

Recall that if v is a solution to (5.1), then u = 1− v satisfies the Fisher-KPP equation (4.1):

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = 1− r(x),
(5.3)
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with
f(u) = 1− u− g(1− u).

McKean’s representation tells us that

v(t, x) = E
Nt∏
k=1

r(Xx
k (t)) = E

Nt∏
k=1

r(x+Xk(t)). (5.4)

Here, Xk(t) are the BBM particles starting at x = 0 at t = 0, and Xx
k (t) are the BBM particles

starting at t = 0 at the position x ∈ R.
Let us go into the frame moving with the speed c∗ and note that the function

v̂(t, x) = v(t, x+ c∗t) (5.5)

satisfies the initial value problem

v̂t − c∗v̂x =
σ2

2
v̂xx − v̂ + g(v̂), t > 0, x ∈ R,

v̂(0, x) = r(x).
(5.6)

Using (5.4) we obtain a representation

v̂(t, x) = E
Nt∏
k=1

r(x+ c∗t+Xk(t)). (5.7)

Let us introduce the minimal speed traveling wave ω(x) for (5.1), the solution to

− c∗ω′ =
σ2

2
ω′′ − ω + g(ω), x ∈ R,

ω(−∞) = 0, ω(+∞) = 1.
(5.8)

It is related to U∗(x), the minimal speed traveling wave for (4.1) by ω(x) = 1−U∗(x). We fix
the translation of ω(x) by the normalization ω(0) = 1/2. Note that ω(x) is a time-independent
solution to (5.6). Hence, (5.7) implies an identity

ω(x) = E
Nt∏
k=1

ω(x+ c∗t+Xk(t)), (5.9)

that holds for all t ≥ 0. This is a manifestation of the following important fact.

Proposition 5.1 For a fixed x ∈ R, the function

W (t, x) =
Nt∏
k=1

ω(x+ c∗t+Xk(t)). (5.10)

is a martingale. Moreover, W (t, x) converges almost surely and in L1 to a limit W∞(x) such
that

EW∞(x) = ω(x). (5.11)
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Proof. Integrability of W is immediate from the fact that 0 < ω(x) < 1. To show the
martingale property of W (t, x), let us take t > 0 and s > 0. The Markov nature of the
exponential clocks and BBM allows us to write

E(W (t+ s)|Fs) = E
(Nt+s∏
m=1

ω(x+ c∗(t+ s) +Xm(t+ s))
∣∣∣Fs)

=
Ns∏
k=1

E
( Nt∏
j=1

ω(x+Xk(s) + c∗(t+ s) +Xkj(t))
∣∣∣Fs)

=
Ns∏
k=1

ω(x+Xk(s) + c∗s) = W (s).

(5.12)

We used (5.9) in the last step above. Since W (t) is a non-negative martingale, it converges
as t → +∞, almost surely and in L1 to a limit W∞. Taking the expectation in (5.10) and
passing to the limit t→ +∞ gives (5.11). �

Exercise 5.2 Use Proposition 5.1, the boundary conditions for ω(x) in (5.8), as well as the
fact that 0 < ω(x) < 1 to understand informally where we should expect the minimum
of Xk(t) to be, relative to the position (−c∗t).

The next exercise gives a martingale characterization of the traveling wave profile.

Exercise 5.3 Let φ(x) be a smooth function such that φ(−∞) = 0 and φ(+∞) = 1, and
also 0 < φ(x) < 1 for all x ∈ R. Show that if

Wφ(t, x) =
Nt∏
k=1

φ(x+ c∗t+Xk(t)) (5.13)

is a martingale for all x ∈ R fixed, then there is x0 ∈ R so that

φ(x) = ω(x− x0), for all x ∈ R.

5.2 The additive and derivative martingales

The next two martingales are constructed out of solutions not to the Fisher-KPP equation
but to the linearized Fisher-KPP equation written in the frame moving with the speed c∗:

zt − c∗zx =
σ2

2
zxx + (N̄ − 1)z,

z(0, x) = r(x).
(5.14)

Here, N̄ is the expected number of the off-spring at each branching:

N̄ =
∞∑
k=1

kpk, (5.15)
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As we have seen, solutions to (5.14) have the probabilistic representation similar to McKean’s
for the Fisher-KPP equation but with the product replaced by the sum:

z(t, x) = E
Nt∑
k=1

r(x+ c∗t+Xk(t)). (5.16)

In particular, if z̄(x) is a steady solution to (5.14):

− c∗z̄x =
σ2

2
z̄xx + (N̄ − 1)z̄, (5.17)

then we have an identity, similar to (5.9):

z̄(x) = E
Nt∑
k=1

z̄(x+ c∗t+Xk(t)), (5.18)

that holds for all t ≥ 0. There are two explicit steady solutions to (5.14). The first one is

η(x) = e−λ∗x, (5.19)

with λ∗ given by (4.12):

λ∗ =
c∗
σ2
. (5.20)

The second is
z̄(x) = xe−λ∗x. (5.21)

They give us the following two objects:

Y (t) =
Nt∑
k=1

exp(−λ∗(c∗t+Xk(t))), (5.22)

and

Z(t) =
Nt∑
k=1

(c∗t+Xk(t)) exp(−λ∗(c∗t+Xk(t))), (5.23)

that we may expect to be martingales, for the same reason as W (t, x) is a martingale.

Exercise 5.4 Using the proof of Proposition 5.1, show that Y (t) is a martingale.

The martingale Y (t) is non-negative and

E(Y (t)) = 1, (5.24)

for all t ≥ 0. Hence, it converges as t → +∞, almost surely to a finite limit Y∞ ≥ 0. This
has the following important consequence.

Exercise 5.5 Use the fact that Y (t) has a finite limit to show that

lim
t→+∞

(
c∗t+ min

1≤k≤Nt
Xk(t)

)
= +∞, (5.25)

almost surely. Hint: all exponentials in the definition of Y (t) must tend to negative infinity
as t→ +∞ in order for the limit to exist.
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Similarly to (5.25), we also have

lim
t→+∞

(
c∗t− max

1≤k≤Nt
Xk(t)

)
= +∞, a.s. (5.26)

This, roughly speaking, says that there are no BBM particles to the right of the position c∗t,
or to the left of (−c∗t), with a very high probability. The obvious question is how far behind
the position c∗t the maximal particle lags, we will look at this a bit later.

Exercise 5.6 Use the proof of Proposition 5.1, and (5.25) and (5.26) to show that Z(t) is a
martingale.

We will refer to Y (t) and Z(t) as, respectively, the additive martingale and the derivative
martingale.

5.3 The limit of the derivative martingale

The martingale Z(t, x) is not necessarily positive, hence we do not a priori know that it has a
limit as t→ +∞. On the other hand, (5.25) hints that it should become positive as t→ +∞,
at least with a very high probability. To show that, indeed, it does have a limit, let us look
again at the traveling wave martingale W (t, x) and represent it as

W (t, x) =
Nt∏
k=1

ω(x+ c∗t+Xk(t)) =
Nt∏
k=1

exp(logω(x+ c∗t+Xk(t)))

= exp
( Nt∑
k=1

logω(x+ c∗t+Xk(t))
)
.

(5.27)

The arguments in the right side of (5.27) are all very large as t→ +∞, because of (5.25). Let
us recall the corresponding asymptotics (4.14):

U∗(x) ∼ xe−λ∗x, as x→ +∞, (5.28)

which translates into
1− ω(x) ∼ xe−λ∗x, as x→ +∞. (5.29)

With (5.25) in mind, we see that

logω(x+ c∗t+Xk(t)) ≈ log
[
1− (x+ c∗t+Xk(t)) exp(−λ∗(x+ c∗t+Xk(t)))

]
≈ −(x+ c∗t+Xk(t)) exp(−λ∗(x+ c∗t+Xk(t))).

(5.30)

This gives the asymptotics

Nt∑
k=1

logω(x+ c∗t+Xk(t))) ≈ −
Nt∑
k=1

(x+ c∗t+Xk(t)) exp(−λ∗(x+ c∗t+Xk(t)))

= −(xY (t) + Z(t))e−λ∗x.

(5.31)

Using this in (5.27) gives

W (t, x) ≈ exp
(
− e−λ∗x(xY (t) + Z(t))

)
. (5.32)
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Exercise 5.7 Make the above argument rigorous and show that almost surely we have

W∞(x) = lim
t→+∞

W (t, x) = lim
t→+∞

exp
(
− e−λ∗x(xY (t) + Z(t))

)
. (5.33)

Since we know that the limits W∞(x) and Y∞ of W (t, x) and Y (t) as t→ +∞ exist almost
surely, it follows from (5.32) that the limit

Z∞ = lim
t→+∞

Z(t) (5.34)

exists and is finite. On the other hand, as we also have (5.25), existence of the limit of Z(t)
means that we must have Y∞ = 0 almost surely. Thus, passing to the limit t→ +∞ in (5.32)
we obtain

W∞(x) = exp
(
− e−λ∗xZ∞

)
. (5.35)

Recalling (5.11), we deduce a representation for the traveling wave as the Laplace transform
of the limit of the derivative martingale

ω(x) = E exp
(
− e−λ∗xZ∞

)
. (5.36)

Viewed differently, this identifies the law of the derivative martingale via its Laplace transform
in terms of the traveling wave: for every κ > 0 we have

E exp
(
− κZ∞

)
= ω

(
− 1

λ∗
log κ

)
. (5.37)

As we will see, the derivative martingale plays an important qualitative role in the description
of the limiting law of BBM.

5.4 The law of the maximum and the derivative martingale

We now derive the law of the maximum of BBM and connect it to the derivative martingale.
Let us recall that in Section 2.1 we have considered the maximum of 2N independent Gaussian
random variables G1, . . . , G2N , with each Gk having variance N . We have shown that if we
set

mN = c∗N −
1

2λ∗
logN, (5.38)

with c∗ = λ∗ = 2
√

2, and define

uN(y) = P
(

max
1≤k≤2N

Gk < mN + y
)
, (5.39)

then in the limit N → +∞ we get the Gumbel distribution

uN(y)→ exp
(
− 1

c∗
√

2π
e−λ∗y

)
, as N → +∞. (5.40)

It is helpful to think of (5.40) as

uN(y)→ exp
(
− e−λ∗(y−`∗)

)
, as N → +∞, (5.41)
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with the shift
`∗ = − log(c∗

√
2π). (5.42)

We now describe a similar result for the branching Brownian motion – the obvious dif-
ference with the above situation is that the locations of the BBM are not uncorrelated.
Let X1(t), . . . , XNt(t) be the BBM particles present at time t > 0. Recall that the function

v(t, x) = P
(

max
1≤k≤Nt

Xk(t) ≤ x
)

(5.43)

satisfies (5.1)

vt =
σ2

2
vxx − v + g(v), t > 0, x ∈ R,

v(0, x) = 1(x ≥ 0).
(5.44)

We know from Theorem 4.8 that if we fix m(t) by (4.42):

m(t) = c∗t−
3

2
log(t+ 1) (5.45)

then there exists x0 so that

v(t, x+m(t))→ ω(x+ x0) as t→ +∞, uniformly on R. (5.46)

Let us now set
M(t) = max

1≤k≤Nt
Xk(t). (5.47)

Then (5.46) says that

P
(
M(t)−m(t) ≤ x

)
→ ω(x+ x0) as t→ +∞, uniformly on R. (5.48)

In order to compare to (5.40) and see the Gumbel distribution, we go back to the traveling
wave representation (5.36), which gives

P
(
M(t)−m(t) ≤ x

)
→ E exp

(
− e−λ∗(x+x0)Z∞

)
, as t→ +∞, uniformly on R. (5.49)

Comparing it to (5.40), we see that the probability distribution of the maximum of BBM
in the reference frame m(t) is a “randomized Gumbel distribution” that is re-centered by a
random shift

x→ x+ x0 −
1

λ∗
logZ∞. (5.50)

In other words, if we set

L∞ =
1

λ∗
log(Z∞)− x0, (5.51)

then we can write (5.49) as a random shift of (5.41):

P
(
M(t)−m(t) ≤ x

)
→ E exp

(
− e−λ∗(x−L∞)

)
, as t→ +∞, uniformly on R. (5.52)
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The law of the random shift L∞ is determined by (5.51) and the Laplace transform of Z∞
in (5.37). We should also mention that the Bramson centering (4.42)

m(t) = c∗t−
3

2λ∗
log(t+ 1), (5.53)

for the location m(t) is different from (5.38) for the independent Gaussians – the pre-factor
in front of log t changes from 1/2 to 3/2. The reason is the slowdown of BBM relative to
independent Gaussians because the BBM particles are correlated. The intuitive reason for
the random shift L∞ is different: it is accumulated from the randomness at the initial stage
of the branching process.

6 The limiting extremal process

In this section, we look at the limit of the point process of BBM centered at the Bramson
centering location

m(t) = c∗t−
3

2λ∗
log(t+ 1), (6.1)

and defined via

Et(x) =
Nt∑
k=1

δ(x− (Xk(t)−m(t))). (6.2)

Recall that we have considered in Section 2.4 the point process for 2N independent Gaussian
random variables G1, . . . , G2N , with each Gk having variance N . We proved in Theorem 2.5
that the corresponding limit is a Poisson point process. Here, we will derive an analog of
this result for the branching Brownian motion. The limit will end up being more complicated
than just a Poisson process: it will consist of Poisson points, known as cluster centers, with
a cluster of points attached to each of the Poisson points.

6.1 Existence of the limit process and its Laplace transform

The first step is to prove existence of the limit of the point process Et.

Theorem 6.1 The process Et converges as → +∞ to a measure-valued process E.

Proof. Let φ(x) be a non-negative, bounded, smooth, and compactly supported test function.
We will look at the limit of the Laplace transform of Et

Ψt(φ) = E
(

exp
(
−
∫
φ(x)dEt(x)

))
. (6.3)

We need to show that Ψt(φ) converges for all such φ, as this will prove existence of the limit
of Et(x). We will also identify, albeit at this stage very implicitly, the Laplace transform Ψ(φ)
of the limit E .
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Let us re-write Ψt(φ) as

Ψt(φ) = E
(

exp
(
−
∫
φ(x)dEt(x)

))
= E

(
exp

(
−

Nt∑
k=1

φ(Xk(t)−m(t))
))

= E
( Nt∏
k=1

exp(−φ(Xk(t)−m(t))
)

= E
( Nt∏
k=1

r(−Xk(t) +m(t))
)

= E
( Nt∏
k=1

r(Xk(t) +m(t))
)
.

(6.4)

Here, we have set
r(x) = e−φ(−x). (6.5)

Note that in the last step in (6.4) we used the reflection symmetry of the law of BBM starting
at x = 0: the laws of Xk(t) and −Xk(t) are identical. Let us recall that the function

v(t, x) = E
( Nt∏
k=1

r(Xk(t) + x)
)

(6.6)

is the solution to the initial value problem (5.1)

vt =
σ2

2
vxx − v + g(v), t > 0, x ∈ R,

v(0, x) = r(x).
(6.7)

Thus, (6.4) says that the Laplace transform can be written as

Ψt(φ) = v(t,m(t)). (6.8)

Note that the function
u(t, x) = 1− v(t, x) (6.9)

satisfies the Fisher-KPP equation

ut =
σ2

2
uxx + f(u), t > 0, x ∈ R, (6.10)

with the usual relation between the functions f and g:

f(u) = 1− u− g(1− u), (6.11)

and the initial condition

u(0, x) = 1− v(0, x) = 1− r(−x) = 1− e−φ(−x). (6.12)

As the function φ(x) is compactly supported, the function u(0, x) is also compactly supported.
Thus, its long time behavior is governed by Theorem 4.10. In particular, the claim (4.46) of
that theorem implies that there exists a constant

γ[φ] = sr
[
ζ], ζ(x) = 1− e−φ(−x), (6.13)
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so that for each K ∈ R we have

u(t, x+m(t))→ U∗(x+ γ[φ]), as t→ +∞, uniformly in x ≥ K. (6.14)

Taking x = 0 in (6.14) and recalling (6.8)-(6.9) gives

Ψt[φ] = v(t,m(t)) = 1− u(t,m(t))→ 1− U∗(γ[φ]), as t→ +∞. (6.15)

This shows that the Laplace transforms Ψt[φ] converge as t → +∞, proving existence of a
the limit of the point processes Et. �

Let us note again that we have shown in the course of the proof of Theorem 6.1 that
the point process Et of BBM converges as t → +∞ to a measure-valued process E with the
Laplace transform given by (6.15), with γ[φ] defined by (6.13). This description of the limit
is extremely implicit but, surprisingly, one can untangle it to obtain a nice description of the
limit process. In particular, one can show that the limit is a point process. This is what we
will do below.

In order to understand what we can hope for, let us go back to the corresponding result for
a family of independent Gaussian random variables G1, . . . , G2N of variance N . Theorem 2.5
says that the point processes

EN =
2N∑
k=1

δ(x− (Gk −mN)), (6.16)

converges in law as N → +∞ to a Poisson point process with intensity

µ(x) =
1√
2π
e−λ∗x. (6.17)

Here, the median location is

mN = c∗N −
1

2λ∗
logN. (6.18)

Recall that in Section 5.4 we recovered the probability distribution of the maximal particle
of BBM as the law of the maximum of the independent collection G1, . . . , G2N :

P
(
M(t)−m(t) ≤ x

)
→ E exp

(
− e−λ∗(x+x0)Z∞

)
, as t→ +∞, uniformly on R. (6.19)

but with the random shift (5.50)-(5.51):

x→ x+ L∞, L∞ =
1

λ∗
logZ∞ − x0, (6.20)

expressed in the terms of the limit Z∞ of the derivative martingale Zt.
Our goal is to find a similar interpretation for the law of the extremal process of BBM,

as a Poisson point process, hopefully with the familiar random shift by L∞. As we have
mentioned, the true limit is not quite that, but it is a good naive picture to have in mind for
now. We go back to (6.15) and write it as

Ψ[φ] = ω(sr[ζ]), ζ(x) = 1− e−φ(−x), (6.21)
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with sr[ζ] being the right Bramson shift of the compactly supported function ζ(x). Let us
recall (5.36) and re-write (6.21) as

Ψ[φ] = ω(sr[ζ]) = E exp
(
− Z∞e−λ∗sr[ζ]

)
. (6.22)

We will need to understand why the right side can be interpreted in terms of some relative of
a Poisson point process. For this, we will need an expression for the Bramson shift sr[ζ] and
we will next take a detour to this end.

6.2 How the asymptotics for the Bramson shift comes about

Let us now make a rather long digression to obtain informally an expression for the Bram-
son sr[ζ] that enters (6.22) and also explain the Bramson centering

m(t) = c∗t−
3

2λ∗
log(t+ 1). (6.23)

For simplicity of notation, from now on we will set σ = 1. We start with the initial value
problem Fisher-KPP equation

ut =
1

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = ζ(x),
(6.24)

with a compactly supported initial condition ζ(x). Theorem 4.10 shows that there exists sr[ζ]
so that

u(t, x+m(t))→ U∗(x+ sr[ζ]), as x→ +∞, (6.25)

uniformly on sets of the form x > K.
Our goal will be to establish the following formula for sr[ζ]

e−λ∗sr[ζ] = lim
t→+∞

√
2

π

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx. (6.26)

The proof of (6.26) is surprisingly technical, so we will not give the details but only convey the
gist of the argument. Along the way, we will also explain how the Bramson centering (6.23)
comes about.

The fact that the right side of (6.26) is finite already tells us informally what the Bramson
centering should be. To see this, let us recall that we have shown, at least, for the step
function initial condition u(0, x) = 1(x ≤ 0) that there exists a reference frame m̃(t) such
that

u(t, x+ m̃(t))→ U∗(x), (6.27)

and that m̃(t) = 2t+ o(t) as t→ +∞. One can think of m̃(t) as being a finite distance away
from the median location of the BBM.

The traveling wave asymptotics

U∗(x) ∼ xe−λ∗x, as x→ +∞, (6.28)
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shows that if we naively insert the limit in (6.27) into the integral in the right side of (6.26),
the result would be a diverging integral. This would be circumvented if we would have a more
precise asymptotics than (6.27):

u(t, x+ m̃(t)) ∼ U∗(x)e−x
2/(2t), (6.29)

with the additional Gaussian decay coming from the heat equation. The reason for this
correction is that it is natural to expect that, on the scales x ∼ O(

√
t) away from the front,

the Gaussian decay of the heat equation dominates the exponential decay of the traveling
wave. This would give

u(t, x+ c∗t) ∼ U∗(x+ c∗t− m̃(t))e−(x+c∗t−m̃(t))2/(2t). (6.30)

Recalling (5.26)

lim
t→+∞

(
c∗t− max

1≤k≤Nt
Xk(t)

)
= +∞, a.s., (6.31)

and that m̃(t) is close to the location of the BBM maximum, we expect that

d(t) := c∗t− m̃(t)→ +∞, as t→ +∞. (6.32)

Hence, the integral in (6.26) is, to the leading order,∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx ≈
∫ ∞
−∞

xeλ∗xU∗(x+ d(t))e−(x+d(t))2/(2t)dx

≈
∫ ∞
−∞

xeλ∗x(x+ d(t))e−λ∗(x+d(t))e−(x+d(t))2/(2t)dx

=

∫ ∞
−∞

x(x+ d(t))e−λ∗d(t)e−(x+d(t))2/(2t)dx.

(6.33)

Exercise 6.2 Use the change of variable x = y
√
t to show that the last integral in the right

side of (6.33) has a finite limit only if

d(t) ∼ 3

2λ∗
log t, as t→ +∞. (6.34)

Thus, the existence of the limit in the right side of (6.25) is intricately related to the Bramson
centering (6.23). In the rest of this subsection we explain how (6.26) comes about, and also
in more detail how the Bramson centering arises.

6.2.1 The approximate Dirichlet problem

Let us consider the solution to (6.24) in a reference frame x→ x−(c∗t−µ log(t+1)), with µ ∈ R
to be determined. The goal is to find µ such that the function u(t, x) stays strictly between 0
and 1 in the new reference frame, and to see that this necessitates taking µ = 3/(2λ∗). The
function

ũ(t, x) = u(t, x+ c∗t− µ log(t+ 1)) (6.35)
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satisfies the initial value problem

ũt −
(
c∗ −

µ

t+ 1

)
ũx =

σ2

2
ũxx + f(ũ),

ũ(0, x) = ζ(x).

(6.36)

Next, we take out the exponential factor: set

ũ(t, x) = w(t, x)e−λ∗x. (6.37)

The function w(t, x) satisfies

wt − (c∗ −
µ

t+ 1

)
(wx − λ∗w) =

1

2
wxx − λ∗wx +

1

2
λ2
∗w + eλ∗xf

(
we−λ∗x

)
,

w(0, x) = ζ(x)eλ∗x.
(6.38)

Let us recall that c∗ and λ∗ satisfy (4.11)-(4.12), with σ = 1:

1

2
λ2
∗ − c∗λ∗ + f ′(0) = 0, λ∗ = c∗. (6.39)

Hence, (6.38) is

wt +
µ

t+ 1
(wx − λ∗w) =

1

2
wxx +

[
eλ∗xf

(
we−λ∗x

)
− f ′(0)w

]
,

w(0, x) = ζ(x)eλ∗x.
(6.40)

The Fisher-KPP property of the nonlinearity f(u) says that

f(u) ≤ f ′(0)u, for all u ∈ (0, 1). (6.41)

Therefore, the function
q(u) = f ′(0)u− f(u) (6.42)

is non-negative:
q(u) ≥ 0, for all u ∈ (0, 1). (6.43)

In addition, we have q′(0) = 0, and q(u) is smooth. Hence, there exists a constant Cq > 0 so
that

Cqu
2 ≤ q(u), for all u ∈ (0, 1). (6.44)

Let us now consider the last term in the right side of (6.40):

eλ∗xf
(
we−λ∗x

)
− f ′(0)w = eλ∗x

[
f ′(0)we−λ∗x − q

(
we−λ∗x

)]
− f ′(0)w

= −eλ∗xq
(
we−λ∗x

)
≤ −eλ∗xw2e−2λ∗x = −w2e−λ∗x.

(6.45)

This term is negative and exponentially large as x → −∞, while it is exponentially small
as x → +∞. Thus, it is natural to expect that, on one hand, it plays the role of a huge
absorption as x → −∞, forcing w(t, x) to be very small for very negative x, and on the
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other, (6.40) behaves as the linear heat equation for large positive x and t. Thus, a toy model
for (6.40) for t � 1 is the heat equation on the half-line x > 0, with the Dirichlet boundary
condition at x = 0:

wt =
1

2
wxx, x > 0,

w(t, 0) = 0.
(6.46)

This toy model is a bit too simplistic – we expect the solution to (6.40) to converge a traveling
wave, modulo the exponential factor exp(λ∗x), while solutions to (6.46) decay in time as t−3/2.
Hence, we need to be more careful even if we stick to informal arguments.

6.2.2 The asymptotics in the self-similar variables and the Bramson shift

In order to be slightly less careless, and also to account for the term involving µ/(t + 1)
in (6.40), let us consider (6.40) in the self-similar variables, writing

w(t, x) = z
(

log(t+ 1),
x√
t+ 1

)
. (6.47)

The function z(τ, η) satisfies

zτ −
η

2
zη + µ(e−τ/2zη − λ∗z) =

1

2
zηη − eτeλ∗ηe

τ/2

q(ze−λ∗ηe
τ/2

),

z(0, η) = ζ(η)eλ∗η.
(6.48)

Note that term involving µ has been “promoted” to order O(1) as τ → +∞, and it will have
a non-trivial effect.

Let us see what happens as τ → +∞ in (6.48). The last term in the right side of (6.48)
plays the role of the absorption that is (i) exponentially large for η < 0 and |η| � e−λ∗τ/2

and (ii) exponentially small for η > 0 and η � e−λ∗τ/2. The first property says that z(τ, η)
is very small for η < 0 – hence, it is reasonable to use the approximate Dirichlet boundary
condition z(τ, 0) = 0 for τ � 1. The second means that the nonlinear term can be dropped
for η > 0. In addition, the term with zη in the left side of (6.48) is exponentially small
for τ � 1. Thus, for τ � 1 a good approximation to (6.48) is the Dirichlet boundary value
problem

zτ −
η

2
zη − µλ∗z =

1

2
zηη, η > 0,

z(τ, 0) = 0.
(6.49)

The difference with the “more reckless” approximation (6.46) in the original variables is that
we have retained the last term in the left side of (6.49). This will play a crucial role, leading
to the correct choice µ = 3/(2λ∗).

To understand the long time behavior of the solutions to (6.49), note that the function

z̄(η) = ηe−η
2/2 (6.50)

satisfies
1

2
z̄ηη +

η

2
z̄η =

η

2

(
1− η2

)
e−η

2/2 +
1

2

(
− 2η −

(
1− η2

)
η
)
e−η

2/2

=
(η

2
− η3

2
− 3η

2
+
η3

2

)
e−η

2/2 = −z̄(η).

(6.51)
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Thus, the function
z0(τ, η) = e(µλ∗−1)τ z̄(η) (6.52)

is a particular solution to (6.49). In particular, it satisfies the boundary condition z̄(0) = 0.

Exercise 6.3 Show that if z(τ, η) is a positive solution to (6.49) then there exists a con-
stant K[z] > 0 so that

z(τ, η)e(1−µλ∗)τ → K[z]z̄(η), as t→ +∞. (6.53)

Hint: find β ∈ R so that the operator

Mz =
1

2
zηη +

η

2
zη (6.54)

is compact and self-adjoint on the weighted space L2(eβx
2
dx) and has a discrete spectrum.

All its eigenfunctions are actually explicit. Moreover, z̄(η) is its principal eigenfunction. This
leads to (6.53).

The conclusion of Exercise 6.3 means that z(τ, η) has the asymptotics

z(τ, η) ≈ K[z]z̄(η)e−(1−µλ∗)τ = K[z]ηe−η
2/2e−(1−µλ∗)τ , as τ → +∞. (6.55)

The corresponding asymptotics for the function w(t, x) is

w(t, x) = z
(

log(t+ 1),
x√
t+ 1

)
≈ K[z]

x√
t+ 1

(t+ 1)−(1−µλ∗)e−x
2/(2(t+1)). (6.56)

Recalling the changes of variables (6.35) and (6.37), we obtain the following asymptotics
for u(t, x):

u(t, x+ c∗t−µ log(t+ 1)) = w(t, x)e−λ∗x

≈ K[z]xe−λ∗x(t+ 1)−(1−µλ∗)−1/2e−x
2/(2(t+1)),

(6.57)

as t→ +∞. This is why we expected a Gaussian correction in (6.29).
Here comes another delicate technical point. The asymptotics (6.55) holds as τ → +∞

and η ∼ O(1). This translates into t→ +∞ and x ∼ O(
√
t+ 1). This spatial scale is too large

for our purposes. With a bit more work we can extend (6.55) to hold for η ∼ O(exp(−δτ))
as τ → +∞. This means that (6.57) holds for x ∼ O(tδ) with δ > 0 but arbitrarily small.

On the other hand, the limit (4.46) in Theorem 4.10 says that u(t, x) converges to a shift
of the traveling wave in the frame where it stays away from being close to 0 or 1. This is
exactly what we want the frame

m(t) = c∗t− µ log(t+ 1) (6.58)

to be. Thus, our goal is to choose µ so that

u(t, x+m(t))→ U∗(x+ sr[ζ]) as t→ +∞, uniformly in x ≥ K, (6.59)

The final ingredient is the asymptotics (5.28) for U∗(x) for x� 1:

U∗(x) ∼ xe−λ∗x, as x→ +∞, (6.60)
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In order for (6.57) and (6.59) to be consistent for x ∼ O(tδ), we must have

− (1− µλ∗)−
1

2
= 0, (6.61)

which means that

µ =
3

2λ∗
. (6.62)

This leads to the Bramson centering (6.23)

m(t) = c∗t−
3

2λ∗
log(t+ 1). (6.63)

Comparing (6.56), with µ chosen as in (6.62), and (6.59), and keeping in mind the asymp-
totics (6.60) gives

K[z] = e−λ∗sr[ζ], (6.64)

so that the Bramson shift sr[ζ] is related to the coefficient K[z] by

e−λ∗sr[ζ] = K[z]. (6.65)

Thus, to derive (6.26), we need to show that

K[z] = lim
t→+∞

√
2

π

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx. (6.66)

This is what we will do next.

6.2.3 Using an integral of motion

To obtain an expression for the coefficient K[z], we will use an integral of motion. Let us go
back to the Dirichlet boundary value problem (6.49), with µ = 3/(2λ∗)

zτ −
η

2
zη −

3

2
z =

1

2
zηη, η > 0,

z(τ, 0) = 0.
(6.67)

Let us multiply (6.67) by η and integrate:

d

dt

∫ ∞
0

ηz(τ, η)dη =
1

2

∫ ∞
0

ηzηη(τ, η)dη +
1

2

∫ ∞
0

η2zη(τ, η)dη +
3

2

∫ ∞
0

ηz(τ, η)dη

= −1

2

∫ ∞
0

zη(τ, η)dη −
∫ ∞

0

ηz(τ, η)dη +
3

2

∫ ∞
0

ηz(τ, η)dη

=
1

2

∫ ∞
0

ηz(τ, η)dη.

(6.68)

It follows that for any τ > τ ′ > 0 we have∫ ∞
0

ηz(τ, η)dη = e(τ−τ ′)/2
∫ ∞

0

ηz(τ ′, η)dη, (6.69)
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or, equivalently

I(τ) := e−τ/2
∫ ∞

0

ηz(τ, η)dη = I(τ ′), (6.70)

is an integral of motion.
Let us now recall the asymptotics (6.55), written with µ = 3/(2λ∗):

z(τ, η) ≈ K[z]ηe−η
2/2eτ/2, as τ → +∞. (6.71)

It follows from (6.70) that

K[z]

∫ ∞
0

η2e−η
2/2dη = lim

τ→+∞
e−τ/2

∫ ∞
0

ηz(τ, η)dη. (6.72)

A simple computation shows that∫ ∞
0

η2e−η
2/2dη =

∫ ∞
0

η2e−η
2/2dη =

1

2

∫ ∞
∞

e−η
2/2dη =

√
2π

2
. (6.73)

Thus, (6.72) is

K[z] =
2√
2π

lim
τ→+∞

∫ ∞
0

e−τ/2ηz(τ, η)dη. (6.74)

Of course, if z(τ, η) is a solution to (6.67), then (6.72) holds for all τ > 0, without the limit in
the right side. The point is that (6.67) gives a better and better approximation to the original
Fisher-KPP problem in the self-similar variables as τ → +∞. With some more work, one can
show that (6.74), with the limit in the right side, is correct for the true solution. Using (6.64)
and expressing z(τ, η) in terms of the changes of variables (6.47) gives

e−λ∗sr[ζ] =
2√
2π

lim
τ→+∞

∫ ∞
0

ηe−τ/2z(τ, η)dη =
2√
2π

lim
τ→+∞

∫ ∞
0

ηe−τ/2w(eτ − 1, ηeτ/2)dη

=
2√
2π

lim
t→+∞

∫ ∞
0

ηw(t, η
√
t+ 1)

dη√
t+ 1

=
2√
2π

lim
t→+∞

∫ ∞
−∞

xw(t, x)
dx

(t+ 1)3/2
.

(6.75)
Note that we extended the integration in x to the whole line in the last step because the
contribution of the integral over x < 0 vanishes as t → +∞ due to the factor 1/(t + 1)3/2

since the function w(t, x) is rapidly decaying as x → −∞. Next, we undo the change of
variables (6.35)-(6.37):

w(t, x) = eλ∗xu(t, x+ c∗t−
3

2λ∗
log(t+ 1)), (6.76)

and (6.75) becomes

e−λ∗sr[ζ] =
2√
2π

lim
t→+∞

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t−
3

2λ∗
log(t+ 1))

dx

(t+ 1)3/2

=
2√
2π

lim
t→+∞

∫ ∞
−∞

(
x+

3

2λ∗
log(t+ 1)

)
eλ∗(x+3/(2λ∗) log(t+1))u(t, x+ c∗t)

dx

(t+ 1)3/2

=
2√
2π

lim
t→+∞

∫ ∞
−∞

(
x+

3

2λ∗
log(t+ 1)

)
eλ∗xu(t, x+ c∗t)dx.

(6.77)
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Exercise 6.4 Use the previous asymptotics we have obtained in this section to argue that

u(t, x+ c∗t) ∼
x

t3/2
e−λ∗xe−x

2/(2t), as t→ +∞. (6.78)

Conclude that the integral in the right side of (6.77) is dominated by x ∼
√
t, and the

contribution of the term involving log(t+ 1) is small.

Exercise 6.4 shows that (6.77) can be re-written as

e−λ∗sr[ζ] =
2√
2π

lim
t→+∞

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx, (6.79)

which is (6.26)!

6.3 An auxiliary point process

Let us go back to the limit E of the point process Et. So far ,we have shown that the Laplace
transform of E is given by (6.22)

Ψ[φ] = E exp
(
− Z∞e−λ∗sr[ζ]

)
, (6.80)

and the Bramson shift sr[ζ] is given by (6.79)

e−λ∗sr[ζ] = lim
t→+∞

√
2

π

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx, (6.81)

Here, u(t, x) is the solution to the initial value problem (6.24):

ut =
1

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = ζ(x) := 1− e−φ(−x).
(6.82)

The first step in identifying E will be to construct an auxiliary point process Πt such that
the limits of Πt and Et are the same. Then, we will identify the limit of Πt. To construct Πt

we first take a collection of Poisson points ηk, k = 1, 2, . . . that lie in (−∞, 0), distributed
with the intensity

Γ(x) =

√
2

π
(−x)e−λ∗x. (6.83)

For each k we construct independent BBM processes X
(k)
i (t), i = 1, . . . Nk(t). The process Πt

combines all these points shifted by L∞ + ηk, with

L∞ =
1

λ∗
logZ∞. (6.84)

That is, Πt is given by

Πt(x) =
∞∑
k=1

Nk(t)∑
i=1

δ
(
x− [X

(k)
i (t)− c∗t+ L∞ + ηk]

)
. (6.85)

Note that for each k fixed we have

c∗t− L∞ − ηk − max
1≤i≤N(k)(t)

X
(k)
i (t)→ +∞, as t→ +∞. (6.86)

Hence, each individual term in the sum goes to zero weakly as t→ +∞. However, there are
infinitely many terms, and that is what saves the day, allowing Πt to have a non-trivial limit.
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The Laplace transform of a Poisson point process

In order to identify the limit, we will need to compute the Laplace transform of Πt. To do
this, we will need the formula for the Laplace transform of a Poisson point process

P(x) =
∑
k

δ(x− Yk). (6.87)

Here, Yk are Poisson points distributed with an intensity Λ(dx). We claim that the Laplace
transform of P(x) is

E
(

exp
(
−
∫
φ(x)dP(x)

))
= E

(
exp

(
−
∑
k

φ(Yk)
))

= exp
(
−
∫

(1−e−φ(x))Λ(dx)
)
. (6.88)

To see why (6.88) holds, consider a non-negative simple function

φ(x) =
∑
k

ck1(x ∈ Ak). (6.89)

Here, Ak are pairwise disjoint measurable sets and ck > 0. Since Ak are pairwise disjoint,
the random variables Nk = #

[
Yj ∈ Ak

]
are independent. With this in mind, an explicit

computation gives

E
(

exp
(
−
∫
φ(x)dP(x)

))
= E

(
exp

(
−
∑
j

φ(Yj)
))

= E
(

exp
(
−
∑
k

ck#
[
Yj ∈ Ak

]))
= E

(∏
k

exp
(
− ckNk

))
=
∏
k

E
(

exp
(
− ckNk

))
.

(6.90)
Note that for each k we have

E
(

exp
(
− ckNk

))
=

∞∑
m=0

e−ckme−Λ(Ak) (Λ(Ak))
m

m!
= e−Λ(Ak) exp

(
Λ(Ak)e

−ck
)

= exp
(
− (1− e−ck)Λ(Ak)

)
.

(6.91)

Inserting this into (6.90) gives

E
(

exp
(
−
∫
φ(x)dP(x)

))
=
∏
k

exp
(
− (1− e−ck)Λ(Ak)

)
= exp

(
−
∑
k

(
(1− e−ck)Λ(Ak)

)
= exp

(
−
∫

(1− e−φ(x))Λ(dx)
)
.

(6.92)

This proves (6.88) for simple functions, and the conclusion for continuous functions follows
by a standard approximation argument.
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The limits of Πt and Et are the same

We are now ready to prove the following theorem. It will allow us to understand the limit
process E in terms of the limit of Πt.

Theorem 6.5 The process Πt converges to a limit measure-valued process Π, and the law
of Π is the same as that of E.

Proof. The Laplace transform of Πt is

E
(

exp
(
−
∫
φ(x)Πt(dx)

))
= E

(
exp

(
−
∑
k

Nk(t)∑
i=1

φ(X
(k)
i (t)− c∗t+ L∞ + ηk)

))
= E

(∏
k

v(t, ηk − c∗t+ L∞)
)

= E
(

exp
(∑

k

log v(t, ηk − c∗t+ L∞)
)
.

(6.93)

Here, we have taken the expectation with respect to the independent BBM X(k), and have
denoted v(t, x) = 1− ũ(t, x), where ũ(t, x) is the solution to (6.82)

ũt =
1

2
ũxx + f(ũ), t > 0, x ∈ R,

ũ(0, x) = 1− e−φ(x).
(6.94)

Recall that

v(t, x) = E
(

exp
(
−

Nt∑
i=1

φ(Xi(t) + x)
))
, (6.95)

where Xi(t) is the standard BBM.
Since ηk are Poisson points with the intensity (6.83):

Γ(x) =

√
2

π
(−x)e−λ∗x, (6.96)

we may use (6.88) to re-write (6.93) as

E
(

exp
(
−
∫
φ(x)Πt(dx)

))
= E

(
exp

(
−
∑
k

log v(t, ηk − c∗t+ L∞)
)

= E exp
(
−
∫ 0

−∞

[
1− elog(v(t,x−c∗t+L∞))

]√ 2

π
(−x)e−λ∗xdx

)
= E exp

(
−
∫ 0

−∞
ũ(t, x− c∗t+ L∞))

√
2

π
(−x)e−λ∗xdx

)
= E exp

(
−
√

2

π

∫ ∞
0

ũ(t,−x− c∗t+ L∞)xeλ∗xdx
)

= E exp
(
−
√

2

π

∫ ∞
0

u(t, x+ c∗t− L∞)xeλ∗xdx
)
.

(6.97)
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Here, u(t, x) = ũ(t,−x) is the solution to

ut =
1

2
uxx + f(u), t > 0, x ∈ R,

u(0, x) = 1− e−φ(−x).
(6.98)

This, of course, is nothing but (6.82). Next, recalling (6.84), we write (6.97) as

E
(

exp
(
−
∫
φ(x)Πt(dx)

))
= E exp

(
−
√

2

π

∫ ∞
−L∞

u(t, x+ c∗t)(x+ L∞)eλ∗(x+L∞)dx
)

= E exp
(
−
√

2

π
Z∞

∫ ∞
−L∞

u(t, x+ c∗t)(x+
1

λ∗
logZ∞)eλ∗xdx

)
.

(6.99)

Exercise 6.6 Show that (6.99) can be simplified in the limit t→ +∞ to

lim
t→∞

E
(

exp
(
−
∫
φ(x)Πt(dx)

))
= lim

t→∞
E exp

(
−
√

2

π
Z∞

∫ ∞
−∞

u(t, x+ c∗t)xe
λ∗xdx

)
.

(6.100)
Hint: Exercise 6.4 may be useful here.

We now recall (6.81)

e−λ∗sr[ζ] = lim
t→+∞

√
2

π

∫ ∞
−∞

xeλ∗xu(t, x+ c∗t)dx, (6.101)

which, combined with (6.100) gives

lim
t→∞

E
(

exp
(
−
∫
φ(x)Πt(dx)

))
= E exp

(
− Z∞e−λ∗sr[ζ]

)
. (6.102)

Recall also that the Laplace transform of the limit E of Et is given by (6.80):

Ψ[φ] = E exp
(
− Z∞e−λ∗sr[ζ]

)
. (6.103)

Comparing (6.102) and (6.103), we see that the limits of the point processes Πt and Et are
the same, finishing the proof of Theorem 6.5. �

6.4 The maxima of the auxiliary BBMs

So far, we have shown that the limit E of the BBM point process

Et =
Nt∑
k=1

δ(x− (Xk(t)−m(t)), (6.104)

as seen from the location

m(t) = c∗t−
3

2λ∗
log(t+ 1), (6.105)
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has the same law as the limit Π of the process defined in (6.85)

Πt(x) =
∞∑
k=1

Nk(t)∑
i=1

δ
(
x− [X

(k)
i (t)− c∗t+ L∞ + ηk]

)
. (6.106)

Here, X(k) are independent BBM, the points ηk are Poisson, distributed on (−∞, 0] with the
intensity (6.83)

Γ(x) =

√
2

π
(−x)e−λ∗x, (6.107)

and L∞ = (1/λ∗)Z∞.
Our next goal is to better understand Π, and hence E . Let us recall that for each k fixed,

the maximum of X(k)(t) satisfies

c∗t− max
1≤i≤N(k)

t

X
(k)
i (t)→ +∞, as t→ +∞. (6.108)

Thus, the only k that contribute to the weak limit of the sum in (6.106) are those with
“anomalously large” maxima.

To get a handle on the anomalosuly large maxima, let us first consider the process that
looks only at the maxima: set

Mk(t) = max
1≤k≤Nk(t)

X
(k)
i (t), (6.109)

and define the point process of the maxima

Πext
t (x) =

∞∑
k=1

δ
(
x− [Mk(t)− c∗t+ L∞ + ηk]

)
. (6.110)

Proposition 6.7 The process Πext
t converges in law as t→ +∞, to a Poisson point process

with the intensity
K0Z∞e

−λ∗x, (6.111)

with a deterministic constant K0 > 0.

Proposition 6.7 says that the anomalously large maxima are Poisson points with the in-
tensity exp(−λ∗x), that is much smaller than the intensity (−x) exp{−λ∗x} of the Poisson
starting points ηk as x→ −∞. This thinning out comes from the fact that most of maxima
are much smaller than c∗t and do not contribute to the limit.

Proof. As usual, we will look at the Laplace transform of Πext
t :

E
(

exp
(
−
∫
φ(x)Πext

t (dx)
))

= E
(

exp−
(∑

k

φ(Mk(t)− c∗t+ L∞ + ηk)
))
. (6.112)

Let us set
q(t, x) = Ee−φ(−x+M(t)), (6.113)
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where M(t) is the maximum of the standard BBM. Taking the expectation with respect
to Mk(t), we re-write (6.112) as

E
(

exp
(
−
∫
φ(x)Πext

t (dx)
))

= E
(

exp
(
−
∑
k

φ(Mk(t)− c∗t+ L∞ + ηk)
))

= E
(∏

k

exp
(
− φ(Mk(t)− c∗t+ L∞ + ηk)

))
= E

(∏
k

q(c∗t− L∞ − ηk)
)

= E
(

exp
(
−
∑
k

[
− log q(t, c∗t− L∞ − ηk)

]))
.

(6.114)

Now, we can use the formula (6.88)

E
(

exp
(
−
∫
φ(x)dP(x)

))
= E

(
exp

(
−
∑
k

φ(Yk)
))

= exp
(
−
∫

(1−e−φ(x))Λ(dx)
)
, (6.115)

for the Laplace transform of a Poisson point process Yk with intensity Λ(x), to obtain
from (6.114) that

E
(

exp
(
−
∫
φ(x)Πext

t (dx)
))

= E
(

exp
(
−
∑
k

[
− log q(t, c∗t− L∞ − ηk)

]))
= E exp

(
−
√

2

π

∫ ∞
0

(1− q(t, x+ c∗t− L∞))xeλ∗xdx
)

= E exp
(
−
√

2

π

∫ ∞
0

w(t, x+ c∗t− L∞)xeλ∗xdx
)
.

(6.116)

Here, we have introduced

w(t, x) = 1− q(t, x) = E
(

1− e−φ(−x+M(t))
)
. (6.117)

In order to compute the right side of (6.116), recall that the cumulative distirbution function
of the maximum

u(t, x) = P(M(t) > x), (6.118)

is the solution to the initial value problem

ut =
1

2
uxx + f(u), t > 0,

u(0, x) = 1(x ≤ 0).
(6.119)

Therefore, the integral in the right side of (6.116) can be re-written as∫ ∞
0

w(t, x+ c∗t− L∞)xeλ∗xdx =

∫ ∞
0

E
(

1− e−φ(−x−c∗t+L∞+M(t))
)
xeλ∗xdx

=

∫ ∞
0

∫ ∞
−∞

(
1− e−φ(−x−c∗t+L∞+y)

)
(−uy(t, y))xeλ∗xdydx

=

∫ ∞
0

∫ ∞
−∞

(
1− e−φ(−x+L∞+y)

)
(−uy(t, y + c∗t))xe

λ∗xdydx

=

∫ ∞
−∞

∫ y

−∞

(
1− e−φ(ξ+L∞)

)
(−uy(t, y + c∗t))(y − ξ)eλ∗(y−ξ)dξdy.

(6.120)
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Exercise 6.8 Go back to Exercise 6.4 to show that there exists x0 so that we have the
asymptotics

u(t, y + c∗t) ≈ e−λ∗x0
ye−λ∗y

t3/2
e−y

2/(2t), (6.121)

and

(−uy)(t, y + c∗t) ≈ C0
ye−λ∗y

t3/2
e−y

2/(2t). (6.122)

with
C0 = λ∗e

−λ∗x0 .

Using (6.122) in (6.120) we obtain∫ ∞
0

w(t, x+ c∗t− L∞)xeλ∗xdx

≈ C0

∫ ∞
−∞

∫ y

−∞

(
1− e−φ(ξ+L∞)

)ye−λ∗y
t3/2

e−y
2/(2t)(y − ξ)eλ∗(y−ξ)dξdy

= C0

∫ ∞
−∞

∫ y

−∞

(
1− e−φ(ξ+L∞)

) y

t3/2
e−y

2/(2t)(y − ξ)e−λ∗ξdξdy.

(6.123)

Making a change of variables y = z
√
t gives∫ ∞

0

w(t, x+ c∗t− L∞)xeλ∗xdx

≈ C0

∫ ∞
−∞

∫ z
√
t

−∞

(
1− e−φ(ξ+L∞)

)
ze−z

2/2
(
z − ξ√

t

)
e−λ∗ξdξdz

≈ C0

∫ ∞
−∞

∫ ∞
−∞

(
1− e−φ(ξ+L∞)

)
z2e−z

2/2e−λ∗ξdξdz.

(6.124)

Integrating out the z variable we get∫ ∞
0

w(t, x+ c∗t− L∞)xeλ∗xdx ≈ C1

∫ ∞
−∞

(
1− e−φ(ξ+L∞)

)
e−λ∗ξdξ. (6.125)

Going back to (6.116), we have shown that

lim
t→+∞

E
(

exp
(
−
∫
φ(x)Πext

t (dx)
))

= C1

∫ ∞
−∞

(
1− e−φ(ξ+L∞)

)
e−λ∗ξdξ

= C1

∫ ∞
−∞

(
1− e−φ(ξ)

)
e−λ∗(ξ−L∞)dξ = C1Z

∫ ∞
−∞

(
1− e−φ(ξ)

)
e−λ∗ξdξ.

(6.126)

Recalling the formula (6.88)

E
(

exp
(
−
∫
φ(x)dP(x)

))
= exp

(
−
∫

(1− e−φ(x))Λ(dx)
)
. (6.127)

for the Laplace transform of a Poisson point process, we have shown that the limit of the
point process Πext

t as t→ +∞ is a Poisson point process on (−∞,∞) with the intensity

C1Ze
−λ∗x. (6.128)

This finishes the proof of Proposition 6.7. �

64



6.5 The clusters

Now, we know that the limit process Π comes from the limit of the anomalously large maxima
of BBM and their families. The points correspoding to the anomalous maxima are Poisson
distributed points, as in Proposition 6.7, and the limits of the families form what is known as
clusters around those maxima. The law of the cluster is simply the limit of the law of BBM
conditioned to have a maximum that is larger than c∗t. We omit the details.
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